1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "fs_mgr.h"
18 
19 #include <ctype.h>
20 #include <dirent.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <libgen.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <sys/ioctl.h>
29 #include <sys/mount.h>
30 #include <sys/stat.h>
31 #include <sys/swap.h>
32 #include <sys/types.h>
33 #include <sys/wait.h>
34 #include <time.h>
35 #include <unistd.h>
36 
37 #include <chrono>
38 #include <functional>
39 #include <map>
40 #include <memory>
41 #include <string>
42 #include <thread>
43 #include <utility>
44 #include <vector>
45 
46 #include <android-base/chrono_utils.h>
47 #include <android-base/file.h>
48 #include <android-base/properties.h>
49 #include <android-base/stringprintf.h>
50 #include <android-base/strings.h>
51 #include <android-base/unique_fd.h>
52 #include <cutils/android_filesystem_config.h>
53 #include <cutils/android_reboot.h>
54 #include <cutils/partition_utils.h>
55 #include <cutils/properties.h>
56 #include <ext4_utils/ext4.h>
57 #include <ext4_utils/ext4_sb.h>
58 #include <ext4_utils/ext4_utils.h>
59 #include <ext4_utils/wipe.h>
60 #include <fs_avb/fs_avb.h>
61 #include <fs_mgr/file_wait.h>
62 #include <fs_mgr_overlayfs.h>
63 #include <fscrypt/fscrypt.h>
64 #include <libdm/dm.h>
65 #include <libdm/loop_control.h>
66 #include <liblp/metadata_format.h>
67 #include <linux/fs.h>
68 #include <linux/loop.h>
69 #include <linux/magic.h>
70 #include <log/log_properties.h>
71 #include <logwrap/logwrap.h>
72 
73 #include "fs_mgr_priv.h"
74 
75 #define KEY_LOC_PROP   "ro.crypto.keyfile.userdata"
76 #define KEY_IN_FOOTER  "footer"
77 
78 #define E2FSCK_BIN      "/system/bin/e2fsck"
79 #define F2FS_FSCK_BIN   "/system/bin/fsck.f2fs"
80 #define MKSWAP_BIN      "/system/bin/mkswap"
81 #define TUNE2FS_BIN     "/system/bin/tune2fs"
82 #define RESIZE2FS_BIN "/system/bin/resize2fs"
83 
84 #define FSCK_LOG_FILE   "/dev/fscklogs/log"
85 
86 #define ZRAM_CONF_DEV   "/sys/block/zram0/disksize"
87 #define ZRAM_CONF_MCS   "/sys/block/zram0/max_comp_streams"
88 #define ZRAM_BACK_DEV   "/sys/block/zram0/backing_dev"
89 
90 #define SYSFS_EXT4_VERITY "/sys/fs/ext4/features/verity"
91 #define SYSFS_EXT4_CASEFOLD "/sys/fs/ext4/features/casefold"
92 
93 // FIXME: this should be in system/extras
94 #define EXT4_FEATURE_COMPAT_STABLE_INODES 0x0800
95 
96 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a)))
97 
98 using android::base::Basename;
99 using android::base::GetBoolProperty;
100 using android::base::GetUintProperty;
101 using android::base::Realpath;
102 using android::base::SetProperty;
103 using android::base::StartsWith;
104 using android::base::Timer;
105 using android::base::unique_fd;
106 using android::dm::DeviceMapper;
107 using android::dm::DmDeviceState;
108 using android::dm::DmTargetLinear;
109 using android::dm::LoopControl;
110 
111 // Realistically, this file should be part of the android::fs_mgr namespace;
112 using namespace android::fs_mgr;
113 
114 using namespace std::literals;
115 
116 // record fs stat
117 enum FsStatFlags {
118     FS_STAT_IS_EXT4 = 0x0001,
119     FS_STAT_NEW_IMAGE_VERSION = 0x0002,
120     FS_STAT_E2FSCK_F_ALWAYS = 0x0004,
121     FS_STAT_UNCLEAN_SHUTDOWN = 0x0008,
122     FS_STAT_QUOTA_ENABLED = 0x0010,
123     FS_STAT_RO_MOUNT_FAILED = 0x0040,
124     FS_STAT_RO_UNMOUNT_FAILED = 0x0080,
125     FS_STAT_FULL_MOUNT_FAILED = 0x0100,
126     FS_STAT_E2FSCK_FAILED = 0x0200,
127     FS_STAT_E2FSCK_FS_FIXED = 0x0400,
128     FS_STAT_INVALID_MAGIC = 0x0800,
129     FS_STAT_TOGGLE_QUOTAS_FAILED = 0x10000,
130     FS_STAT_SET_RESERVED_BLOCKS_FAILED = 0x20000,
131     FS_STAT_ENABLE_ENCRYPTION_FAILED = 0x40000,
132     FS_STAT_ENABLE_VERITY_FAILED = 0x80000,
133     FS_STAT_ENABLE_CASEFOLD_FAILED = 0x100000,
134     FS_STAT_ENABLE_METADATA_CSUM_FAILED = 0x200000,
135 };
136 
log_fs_stat(const std::string & blk_device,int fs_stat)137 static void log_fs_stat(const std::string& blk_device, int fs_stat) {
138     if ((fs_stat & FS_STAT_IS_EXT4) == 0) return; // only log ext4
139     std::string msg =
140             android::base::StringPrintf("\nfs_stat,%s,0x%x\n", blk_device.c_str(), fs_stat);
141     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(FSCK_LOG_FILE, O_WRONLY | O_CLOEXEC |
142                                                         O_APPEND | O_CREAT, 0664)));
143     if (fd == -1 || !android::base::WriteStringToFd(msg, fd)) {
144         LWARNING << __FUNCTION__ << "() cannot log " << msg;
145     }
146 }
147 
is_extfs(const std::string & fs_type)148 static bool is_extfs(const std::string& fs_type) {
149     return fs_type == "ext4" || fs_type == "ext3" || fs_type == "ext2";
150 }
151 
is_f2fs(const std::string & fs_type)152 static bool is_f2fs(const std::string& fs_type) {
153     return fs_type == "f2fs";
154 }
155 
realpath(const std::string & blk_device)156 static std::string realpath(const std::string& blk_device) {
157     std::string real_path;
158     if (!Realpath(blk_device, &real_path)) {
159         real_path = blk_device;
160     }
161     return real_path;
162 }
163 
should_force_check(int fs_stat)164 static bool should_force_check(int fs_stat) {
165     return fs_stat &
166            (FS_STAT_E2FSCK_F_ALWAYS | FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED |
167             FS_STAT_RO_MOUNT_FAILED | FS_STAT_RO_UNMOUNT_FAILED | FS_STAT_FULL_MOUNT_FAILED |
168             FS_STAT_E2FSCK_FAILED | FS_STAT_TOGGLE_QUOTAS_FAILED |
169             FS_STAT_SET_RESERVED_BLOCKS_FAILED | FS_STAT_ENABLE_ENCRYPTION_FAILED);
170 }
171 
check_fs(const std::string & blk_device,const std::string & fs_type,const std::string & target,int * fs_stat)172 static void check_fs(const std::string& blk_device, const std::string& fs_type,
173                      const std::string& target, int* fs_stat) {
174     int status;
175     int ret;
176     long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID;
177     auto tmpmnt_opts = "errors=remount-ro"s;
178     const char* e2fsck_argv[] = {E2FSCK_BIN, "-y", blk_device.c_str()};
179     const char* e2fsck_forced_argv[] = {E2FSCK_BIN, "-f", "-y", blk_device.c_str()};
180 
181     if (*fs_stat & FS_STAT_INVALID_MAGIC) {  // will fail, so do not try
182         return;
183     }
184 
185     Timer t;
186     /* Check for the types of filesystems we know how to check */
187     if (is_extfs(fs_type)) {
188         /*
189          * First try to mount and unmount the filesystem.  We do this because
190          * the kernel is more efficient than e2fsck in running the journal and
191          * processing orphaned inodes, and on at least one device with a
192          * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes
193          * to do what the kernel does in about a second.
194          *
195          * After mounting and unmounting the filesystem, run e2fsck, and if an
196          * error is recorded in the filesystem superblock, e2fsck will do a full
197          * check.  Otherwise, it does nothing.  If the kernel cannot mount the
198          * filesytsem due to an error, e2fsck is still run to do a full check
199          * fix the filesystem.
200          */
201         if (!(*fs_stat & FS_STAT_FULL_MOUNT_FAILED)) {  // already tried if full mount failed
202             errno = 0;
203             if (fs_type == "ext4") {
204                 // This option is only valid with ext4
205                 tmpmnt_opts += ",nomblk_io_submit";
206             }
207             ret = mount(blk_device.c_str(), target.c_str(), fs_type.c_str(), tmpmnt_flags,
208                         tmpmnt_opts.c_str());
209             PINFO << __FUNCTION__ << "(): mount(" << blk_device << "," << target << "," << fs_type
210                   << ")=" << ret;
211             if (!ret) {
212                 bool umounted = false;
213                 int retry_count = 5;
214                 while (retry_count-- > 0) {
215                     umounted = umount(target.c_str()) == 0;
216                     if (umounted) {
217                         LINFO << __FUNCTION__ << "(): unmount(" << target << ") succeeded";
218                         break;
219                     }
220                     PERROR << __FUNCTION__ << "(): umount(" << target << ") failed";
221                     if (retry_count) sleep(1);
222                 }
223                 if (!umounted) {
224                     // boot may fail but continue and leave it to later stage for now.
225                     PERROR << __FUNCTION__ << "(): umount(" << target << ") timed out";
226                     *fs_stat |= FS_STAT_RO_UNMOUNT_FAILED;
227                 }
228             } else {
229                 *fs_stat |= FS_STAT_RO_MOUNT_FAILED;
230             }
231         }
232 
233         /*
234          * Some system images do not have e2fsck for licensing reasons
235          * (e.g. recent SDK system images). Detect these and skip the check.
236          */
237         if (access(E2FSCK_BIN, X_OK)) {
238             LINFO << "Not running " << E2FSCK_BIN << " on " << realpath(blk_device)
239                   << " (executable not in system image)";
240         } else {
241             LINFO << "Running " << E2FSCK_BIN << " on " << realpath(blk_device);
242             if (should_force_check(*fs_stat)) {
243                 ret = logwrap_fork_execvp(ARRAY_SIZE(e2fsck_forced_argv), e2fsck_forced_argv,
244                                           &status, false, LOG_KLOG | LOG_FILE, false,
245                                           FSCK_LOG_FILE);
246             } else {
247                 ret = logwrap_fork_execvp(ARRAY_SIZE(e2fsck_argv), e2fsck_argv, &status, false,
248                                           LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
249             }
250 
251             if (ret < 0) {
252                 /* No need to check for error in fork, we can't really handle it now */
253                 LERROR << "Failed trying to run " << E2FSCK_BIN;
254                 *fs_stat |= FS_STAT_E2FSCK_FAILED;
255             } else if (status != 0) {
256                 LINFO << "e2fsck returned status 0x" << std::hex << status;
257                 *fs_stat |= FS_STAT_E2FSCK_FS_FIXED;
258             }
259         }
260     } else if (is_f2fs(fs_type)) {
261         const char* f2fs_fsck_argv[] = {F2FS_FSCK_BIN,     "-a", "-c", "10000", "--debug-cache",
262                                         blk_device.c_str()};
263         const char* f2fs_fsck_forced_argv[] = {
264                 F2FS_FSCK_BIN, "-f", "-c", "10000", "--debug-cache", blk_device.c_str()};
265 
266         if (should_force_check(*fs_stat)) {
267             LINFO << "Running " << F2FS_FSCK_BIN << " -f -c 10000 --debug-cache "
268                   << realpath(blk_device);
269             ret = logwrap_fork_execvp(ARRAY_SIZE(f2fs_fsck_forced_argv), f2fs_fsck_forced_argv,
270                                       &status, false, LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
271         } else {
272             LINFO << "Running " << F2FS_FSCK_BIN << " -a -c 10000 --debug-cache "
273                   << realpath(blk_device);
274             ret = logwrap_fork_execvp(ARRAY_SIZE(f2fs_fsck_argv), f2fs_fsck_argv, &status, false,
275                                       LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
276         }
277         if (ret < 0) {
278             /* No need to check for error in fork, we can't really handle it now */
279             LERROR << "Failed trying to run " << F2FS_FSCK_BIN;
280         }
281     }
282     android::base::SetProperty("ro.boottime.init.fsck." + Basename(target),
283                                std::to_string(t.duration().count()));
284     return;
285 }
286 
ext4_blocks_count(const struct ext4_super_block * es)287 static ext4_fsblk_t ext4_blocks_count(const struct ext4_super_block* es) {
288     return ((ext4_fsblk_t)le32_to_cpu(es->s_blocks_count_hi) << 32) |
289            le32_to_cpu(es->s_blocks_count_lo);
290 }
291 
ext4_r_blocks_count(const struct ext4_super_block * es)292 static ext4_fsblk_t ext4_r_blocks_count(const struct ext4_super_block* es) {
293     return ((ext4_fsblk_t)le32_to_cpu(es->s_r_blocks_count_hi) << 32) |
294            le32_to_cpu(es->s_r_blocks_count_lo);
295 }
296 
is_ext4_superblock_valid(const struct ext4_super_block * es)297 static bool is_ext4_superblock_valid(const struct ext4_super_block* es) {
298     if (es->s_magic != EXT4_SUPER_MAGIC) return false;
299     if (es->s_rev_level != EXT4_DYNAMIC_REV && es->s_rev_level != EXT4_GOOD_OLD_REV) return false;
300     if (EXT4_INODES_PER_GROUP(es) == 0) return false;
301     return true;
302 }
303 
304 // Read the primary superblock from an ext4 filesystem.  On failure return
305 // false.  If it's not an ext4 filesystem, also set FS_STAT_INVALID_MAGIC.
read_ext4_superblock(const std::string & blk_device,struct ext4_super_block * sb,int * fs_stat)306 static bool read_ext4_superblock(const std::string& blk_device, struct ext4_super_block* sb,
307                                  int* fs_stat) {
308     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
309 
310     if (fd < 0) {
311         PERROR << "Failed to open '" << blk_device << "'";
312         return false;
313     }
314 
315     if (TEMP_FAILURE_RETRY(pread(fd, sb, sizeof(*sb), 1024)) != sizeof(*sb)) {
316         PERROR << "Can't read '" << blk_device << "' superblock";
317         return false;
318     }
319 
320     if (!is_ext4_superblock_valid(sb)) {
321         LINFO << "Invalid ext4 superblock on '" << blk_device << "'";
322         // not a valid fs, tune2fs, fsck, and mount  will all fail.
323         *fs_stat |= FS_STAT_INVALID_MAGIC;
324         return false;
325     }
326     *fs_stat |= FS_STAT_IS_EXT4;
327     LINFO << "superblock s_max_mnt_count:" << sb->s_max_mnt_count << "," << blk_device;
328     if (sb->s_max_mnt_count == 0xffff) {  // -1 (int16) in ext2, but uint16 in ext4
329         *fs_stat |= FS_STAT_NEW_IMAGE_VERSION;
330     }
331     return true;
332 }
333 
334 // exported silent version of the above that just answer the question is_ext4
fs_mgr_is_ext4(const std::string & blk_device)335 bool fs_mgr_is_ext4(const std::string& blk_device) {
336     android::base::ErrnoRestorer restore;
337     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
338     if (fd < 0) return false;
339     ext4_super_block sb;
340     if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), 1024)) != sizeof(sb)) return false;
341     if (!is_ext4_superblock_valid(&sb)) return false;
342     return true;
343 }
344 
345 // Some system images do not have tune2fs for licensing reasons.
346 // Detect these and skip running it.
tune2fs_available(void)347 static bool tune2fs_available(void) {
348     return access(TUNE2FS_BIN, X_OK) == 0;
349 }
350 
run_command(const char * argv[],int argc)351 static bool run_command(const char* argv[], int argc) {
352     int ret;
353 
354     ret = logwrap_fork_execvp(argc, argv, nullptr, false, LOG_KLOG, false, nullptr);
355     return ret == 0;
356 }
357 
358 // Enable/disable quota support on the filesystem if needed.
tune_quota(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)359 static void tune_quota(const std::string& blk_device, const FstabEntry& entry,
360                        const struct ext4_super_block* sb, int* fs_stat) {
361     bool has_quota = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_QUOTA)) != 0;
362     bool want_quota = entry.fs_mgr_flags.quota;
363     bool want_projid = android::base::GetBoolProperty("external_storage.projid.enabled", false);
364 
365     if (has_quota == want_quota) {
366         return;
367     }
368 
369     if (!tune2fs_available()) {
370         LERROR << "Unable to " << (want_quota ? "enable" : "disable") << " quotas on " << blk_device
371                << " because " TUNE2FS_BIN " is missing";
372         return;
373     }
374 
375     const char* argv[] = {TUNE2FS_BIN, nullptr, nullptr, blk_device.c_str()};
376 
377     if (want_quota) {
378         LINFO << "Enabling quotas on " << blk_device;
379         argv[1] = "-Oquota";
380         // Once usr/grp unneeded, make just prjquota to save overhead
381         if (want_projid)
382             argv[2] = "-Qusrquota,grpquota,prjquota";
383         else
384             argv[2] = "-Qusrquota,grpquota";
385         *fs_stat |= FS_STAT_QUOTA_ENABLED;
386     } else {
387         LINFO << "Disabling quotas on " << blk_device;
388         argv[1] = "-O^quota";
389         argv[2] = "-Q^usrquota,^grpquota,^prjquota";
390     }
391 
392     if (!run_command(argv, ARRAY_SIZE(argv))) {
393         LERROR << "Failed to run " TUNE2FS_BIN " to " << (want_quota ? "enable" : "disable")
394                << " quotas on " << blk_device;
395         *fs_stat |= FS_STAT_TOGGLE_QUOTAS_FAILED;
396     }
397 }
398 
399 // Set the number of reserved filesystem blocks if needed.
tune_reserved_size(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)400 static void tune_reserved_size(const std::string& blk_device, const FstabEntry& entry,
401                                const struct ext4_super_block* sb, int* fs_stat) {
402     if (entry.reserved_size == 0) {
403         return;
404     }
405 
406     // The size to reserve is given in the fstab, but we won't reserve more
407     // than 2% of the filesystem.
408     const uint64_t max_reserved_blocks = ext4_blocks_count(sb) * 0.02;
409     uint64_t reserved_blocks = entry.reserved_size / EXT4_BLOCK_SIZE(sb);
410 
411     if (reserved_blocks > max_reserved_blocks) {
412         LWARNING << "Reserved blocks " << reserved_blocks << " is too large; "
413                  << "capping to " << max_reserved_blocks;
414         reserved_blocks = max_reserved_blocks;
415     }
416 
417     if ((ext4_r_blocks_count(sb) == reserved_blocks) && (sb->s_def_resgid == AID_RESERVED_DISK)) {
418         return;
419     }
420 
421     if (!tune2fs_available()) {
422         LERROR << "Unable to set the number of reserved blocks on " << blk_device
423                << " because " TUNE2FS_BIN " is missing";
424         return;
425     }
426 
427     LINFO << "Setting reserved block count on " << blk_device << " to " << reserved_blocks;
428 
429     auto reserved_blocks_str = std::to_string(reserved_blocks);
430     auto reserved_gid_str = std::to_string(AID_RESERVED_DISK);
431     const char* argv[] = {
432             TUNE2FS_BIN,       "-r", reserved_blocks_str.c_str(), "-g", reserved_gid_str.c_str(),
433             blk_device.c_str()};
434     if (!run_command(argv, ARRAY_SIZE(argv))) {
435         LERROR << "Failed to run " TUNE2FS_BIN " to set the number of reserved blocks on "
436                << blk_device;
437         *fs_stat |= FS_STAT_SET_RESERVED_BLOCKS_FAILED;
438     }
439 }
440 
441 // Enable file-based encryption if needed.
tune_encrypt(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)442 static void tune_encrypt(const std::string& blk_device, const FstabEntry& entry,
443                          const struct ext4_super_block* sb, int* fs_stat) {
444     if (!entry.fs_mgr_flags.file_encryption) {
445         return;  // Nothing needs done.
446     }
447     std::vector<std::string> features_needed;
448     if ((sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_ENCRYPT)) == 0) {
449         features_needed.emplace_back("encrypt");
450     }
451     android::fscrypt::EncryptionOptions options;
452     if (!android::fscrypt::ParseOptions(entry.encryption_options, &options)) {
453         LERROR << "Unable to parse encryption options on " << blk_device << ": "
454                << entry.encryption_options;
455         return;
456     }
457     if ((options.flags &
458          (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 | FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)) != 0) {
459         // We can only use this policy on ext4 if the "stable_inodes" feature
460         // is set on the filesystem, otherwise shrinking will break encrypted files.
461         if ((sb->s_feature_compat & cpu_to_le32(EXT4_FEATURE_COMPAT_STABLE_INODES)) == 0) {
462             features_needed.emplace_back("stable_inodes");
463         }
464     }
465     if (features_needed.size() == 0) {
466         return;
467     }
468     if (!tune2fs_available()) {
469         LERROR << "Unable to enable ext4 encryption on " << blk_device
470                << " because " TUNE2FS_BIN " is missing";
471         return;
472     }
473 
474     auto flags = android::base::Join(features_needed, ',');
475     auto flag_arg = "-O"s + flags;
476     const char* argv[] = {TUNE2FS_BIN, flag_arg.c_str(), blk_device.c_str()};
477 
478     LINFO << "Enabling ext4 flags " << flags << " on " << blk_device;
479     if (!run_command(argv, ARRAY_SIZE(argv))) {
480         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
481                << "ext4 flags " << flags << " on " << blk_device;
482         *fs_stat |= FS_STAT_ENABLE_ENCRYPTION_FAILED;
483     }
484 }
485 
486 // Enable fs-verity if needed.
tune_verity(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)487 static void tune_verity(const std::string& blk_device, const FstabEntry& entry,
488                         const struct ext4_super_block* sb, int* fs_stat) {
489     bool has_verity = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_VERITY)) != 0;
490     bool want_verity = entry.fs_mgr_flags.fs_verity;
491 
492     if (has_verity || !want_verity) {
493         return;
494     }
495 
496     std::string verity_support;
497     if (!android::base::ReadFileToString(SYSFS_EXT4_VERITY, &verity_support)) {
498         LERROR << "Failed to open " << SYSFS_EXT4_VERITY;
499         return;
500     }
501 
502     if (!(android::base::Trim(verity_support) == "supported")) {
503         LERROR << "Current ext4 verity not supported by kernel";
504         return;
505     }
506 
507     if (!tune2fs_available()) {
508         LERROR << "Unable to enable ext4 verity on " << blk_device
509                << " because " TUNE2FS_BIN " is missing";
510         return;
511     }
512 
513     LINFO << "Enabling ext4 verity on " << blk_device;
514 
515     const char* argv[] = {TUNE2FS_BIN, "-O", "verity", blk_device.c_str()};
516     if (!run_command(argv, ARRAY_SIZE(argv))) {
517         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
518                << "ext4 verity on " << blk_device;
519         *fs_stat |= FS_STAT_ENABLE_VERITY_FAILED;
520     }
521 }
522 
523 // Enable casefold if needed.
tune_casefold(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)524 static void tune_casefold(const std::string& blk_device, const FstabEntry& entry,
525                           const struct ext4_super_block* sb, int* fs_stat) {
526     bool has_casefold = (sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_CASEFOLD)) != 0;
527     bool wants_casefold =
528             android::base::GetBoolProperty("external_storage.casefold.enabled", false);
529 
530     if (entry.mount_point != "/data" || !wants_casefold || has_casefold) return;
531 
532     std::string casefold_support;
533     if (!android::base::ReadFileToString(SYSFS_EXT4_CASEFOLD, &casefold_support)) {
534         LERROR << "Failed to open " << SYSFS_EXT4_CASEFOLD;
535         return;
536     }
537 
538     if (!(android::base::Trim(casefold_support) == "supported")) {
539         LERROR << "Current ext4 casefolding not supported by kernel";
540         return;
541     }
542 
543     if (!tune2fs_available()) {
544         LERROR << "Unable to enable ext4 casefold on " << blk_device
545                << " because " TUNE2FS_BIN " is missing";
546         return;
547     }
548 
549     LINFO << "Enabling ext4 casefold on " << blk_device;
550 
551     const char* argv[] = {TUNE2FS_BIN, "-O", "casefold", "-E", "encoding=utf8", blk_device.c_str()};
552     if (!run_command(argv, ARRAY_SIZE(argv))) {
553         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
554                << "ext4 casefold on " << blk_device;
555         *fs_stat |= FS_STAT_ENABLE_CASEFOLD_FAILED;
556     }
557 }
558 
resize2fs_available(void)559 static bool resize2fs_available(void) {
560     return access(RESIZE2FS_BIN, X_OK) == 0;
561 }
562 
563 // Enable metadata_csum
tune_metadata_csum(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)564 static void tune_metadata_csum(const std::string& blk_device, const FstabEntry& entry,
565                                const struct ext4_super_block* sb, int* fs_stat) {
566     bool has_meta_csum =
567             (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) != 0;
568     bool want_meta_csum = entry.fs_mgr_flags.ext_meta_csum;
569 
570     if (has_meta_csum || !want_meta_csum) return;
571 
572     if (!tune2fs_available()) {
573         LERROR << "Unable to enable metadata_csum on " << blk_device
574                << " because " TUNE2FS_BIN " is missing";
575         return;
576     }
577     if (!resize2fs_available()) {
578         LERROR << "Unable to enable metadata_csum on " << blk_device
579                << " because " RESIZE2FS_BIN " is missing";
580         return;
581     }
582 
583     LINFO << "Enabling ext4 metadata_csum on " << blk_device;
584 
585     // Must give `-T now` to prevent last_fsck_time from growing too large,
586     // otherwise, tune2fs won't enable metadata_csum.
587     const char* tune2fs_args[] = {TUNE2FS_BIN, "-O",        "metadata_csum,64bit,extent",
588                                   "-T",        "now", blk_device.c_str()};
589     const char* resize2fs_args[] = {RESIZE2FS_BIN, "-b", blk_device.c_str()};
590 
591     if (!run_command(tune2fs_args, ARRAY_SIZE(tune2fs_args))) {
592         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
593                << "ext4 metadata_csum on " << blk_device;
594         *fs_stat |= FS_STAT_ENABLE_METADATA_CSUM_FAILED;
595     } else if (!run_command(resize2fs_args, ARRAY_SIZE(resize2fs_args))) {
596         LERROR << "Failed to run " RESIZE2FS_BIN " to enable "
597                << "ext4 metadata_csum on " << blk_device;
598         *fs_stat |= FS_STAT_ENABLE_METADATA_CSUM_FAILED;
599     }
600 }
601 
602 // Read the primary superblock from an f2fs filesystem.  On failure return
603 // false.  If it's not an f2fs filesystem, also set FS_STAT_INVALID_MAGIC.
604 #define F2FS_BLKSIZE 4096
605 #define F2FS_SUPER_OFFSET 1024
read_f2fs_superblock(const std::string & blk_device,int * fs_stat)606 static bool read_f2fs_superblock(const std::string& blk_device, int* fs_stat) {
607     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
608     __le32 sb1, sb2;
609 
610     if (fd < 0) {
611         PERROR << "Failed to open '" << blk_device << "'";
612         return false;
613     }
614 
615     if (TEMP_FAILURE_RETRY(pread(fd, &sb1, sizeof(sb1), F2FS_SUPER_OFFSET)) != sizeof(sb1)) {
616         PERROR << "Can't read '" << blk_device << "' superblock1";
617         return false;
618     }
619     if (TEMP_FAILURE_RETRY(pread(fd, &sb2, sizeof(sb2), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) !=
620         sizeof(sb2)) {
621         PERROR << "Can't read '" << blk_device << "' superblock2";
622         return false;
623     }
624 
625     if (sb1 != cpu_to_le32(F2FS_SUPER_MAGIC) && sb2 != cpu_to_le32(F2FS_SUPER_MAGIC)) {
626         LINFO << "Invalid f2fs superblock on '" << blk_device << "'";
627         *fs_stat |= FS_STAT_INVALID_MAGIC;
628         return false;
629     }
630     return true;
631 }
632 
633 // exported silent version of the above that just answer the question is_f2fs
fs_mgr_is_f2fs(const std::string & blk_device)634 bool fs_mgr_is_f2fs(const std::string& blk_device) {
635     android::base::ErrnoRestorer restore;
636     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
637     if (fd < 0) return false;
638     __le32 sb;
639     if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_SUPER_OFFSET)) != sizeof(sb)) {
640         return false;
641     }
642     if (sb == cpu_to_le32(F2FS_SUPER_MAGIC)) return true;
643     if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) !=
644         sizeof(sb)) {
645         return false;
646     }
647     return sb == cpu_to_le32(F2FS_SUPER_MAGIC);
648 }
649 
SetReadAheadSize(const std::string & entry_block_device,off64_t size_kb)650 static void SetReadAheadSize(const std::string& entry_block_device, off64_t size_kb) {
651     std::string block_device;
652     if (!Realpath(entry_block_device, &block_device)) {
653         PERROR << "Failed to realpath " << entry_block_device;
654         return;
655     }
656 
657     static constexpr std::string_view kDevBlockPrefix("/dev/block/");
658     if (!android::base::StartsWith(block_device, kDevBlockPrefix)) {
659         LWARNING << block_device << " is not a block device";
660         return;
661     }
662 
663     DeviceMapper& dm = DeviceMapper::Instance();
664     while (true) {
665         std::string block_name = block_device;
666         if (android::base::StartsWith(block_device, kDevBlockPrefix)) {
667             block_name = block_device.substr(kDevBlockPrefix.length());
668         }
669         std::string sys_partition =
670                 android::base::StringPrintf("/sys/class/block/%s/partition", block_name.c_str());
671         struct stat info;
672         if (lstat(sys_partition.c_str(), &info) == 0) {
673             // it has a partition like "sda12".
674             block_name += "/..";
675         }
676         std::string sys_ra = android::base::StringPrintf("/sys/class/block/%s/queue/read_ahead_kb",
677                                                          block_name.c_str());
678         std::string size = android::base::StringPrintf("%llu", (long long)size_kb);
679         android::base::WriteStringToFile(size, sys_ra.c_str());
680         LINFO << "Set readahead_kb: " << size << " on " << sys_ra;
681 
682         auto parent = dm.GetParentBlockDeviceByPath(block_device);
683         if (!parent) {
684             return;
685         }
686         block_device = *parent;
687     }
688 }
689 
690 //
691 // Prepare the filesystem on the given block device to be mounted.
692 //
693 // If the "check" option was given in the fstab record, or it seems that the
694 // filesystem was uncleanly shut down, we'll run fsck on the filesystem.
695 //
696 // If needed, we'll also enable (or disable) filesystem features as specified by
697 // the fstab record.
698 //
prepare_fs_for_mount(const std::string & blk_device,const FstabEntry & entry,const std::string & alt_mount_point="")699 static int prepare_fs_for_mount(const std::string& blk_device, const FstabEntry& entry,
700                                 const std::string& alt_mount_point = "") {
701     auto& mount_point = alt_mount_point.empty() ? entry.mount_point : alt_mount_point;
702     // We need this because sometimes we have legacy symlinks that are
703     // lingering around and need cleaning up.
704     struct stat info;
705     if (lstat(mount_point.c_str(), &info) == 0 && (info.st_mode & S_IFMT) == S_IFLNK) {
706         unlink(mount_point.c_str());
707     }
708     mkdir(mount_point.c_str(), 0755);
709 
710     // Don't need to return error, since it's a salt
711     if (entry.readahead_size_kb != -1) {
712         SetReadAheadSize(blk_device, entry.readahead_size_kb);
713     }
714 
715     int fs_stat = 0;
716 
717     if (is_extfs(entry.fs_type)) {
718         struct ext4_super_block sb;
719 
720         if (read_ext4_superblock(blk_device, &sb, &fs_stat)) {
721             if ((sb.s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER) != 0 ||
722                 (sb.s_state & EXT4_VALID_FS) == 0) {
723                 LINFO << "Filesystem on " << blk_device << " was not cleanly shutdown; "
724                       << "state flags: 0x" << std::hex << sb.s_state << ", "
725                       << "incompat feature flags: 0x" << std::hex << sb.s_feature_incompat;
726                 fs_stat |= FS_STAT_UNCLEAN_SHUTDOWN;
727             }
728 
729             // Note: quotas should be enabled before running fsck.
730             tune_quota(blk_device, entry, &sb, &fs_stat);
731         } else {
732             return fs_stat;
733         }
734     } else if (is_f2fs(entry.fs_type)) {
735         if (!read_f2fs_superblock(blk_device, &fs_stat)) {
736             return fs_stat;
737         }
738     }
739 
740     if (entry.fs_mgr_flags.check ||
741         (fs_stat & (FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED))) {
742         check_fs(blk_device, entry.fs_type, mount_point, &fs_stat);
743     }
744 
745     if (is_extfs(entry.fs_type) &&
746         (entry.reserved_size != 0 || entry.fs_mgr_flags.file_encryption ||
747          entry.fs_mgr_flags.fs_verity || entry.fs_mgr_flags.ext_meta_csum)) {
748         struct ext4_super_block sb;
749 
750         if (read_ext4_superblock(blk_device, &sb, &fs_stat)) {
751             tune_reserved_size(blk_device, entry, &sb, &fs_stat);
752             tune_encrypt(blk_device, entry, &sb, &fs_stat);
753             tune_verity(blk_device, entry, &sb, &fs_stat);
754             tune_casefold(blk_device, entry, &sb, &fs_stat);
755             tune_metadata_csum(blk_device, entry, &sb, &fs_stat);
756         }
757     }
758 
759     return fs_stat;
760 }
761 
762 // Mark the given block device as read-only, using the BLKROSET ioctl.
fs_mgr_set_blk_ro(const std::string & blockdev,bool readonly)763 bool fs_mgr_set_blk_ro(const std::string& blockdev, bool readonly) {
764     unique_fd fd(TEMP_FAILURE_RETRY(open(blockdev.c_str(), O_RDONLY | O_CLOEXEC)));
765     if (fd < 0) {
766         return false;
767     }
768 
769     int ON = readonly;
770     return ioctl(fd, BLKROSET, &ON) == 0;
771 }
772 
773 // Orange state means the device is unlocked, see the following link for details.
774 // https://source.android.com/security/verifiedboot/verified-boot#device_state
fs_mgr_is_device_unlocked()775 bool fs_mgr_is_device_unlocked() {
776     std::string verified_boot_state;
777     if (fs_mgr_get_boot_config("verifiedbootstate", &verified_boot_state)) {
778         return verified_boot_state == "orange";
779     }
780     return false;
781 }
782 
783 // __mount(): wrapper around the mount() system call which also
784 // sets the underlying block device to read-only if the mount is read-only.
785 // See "man 2 mount" for return values.
__mount(const std::string & source,const std::string & target,const FstabEntry & entry)786 static int __mount(const std::string& source, const std::string& target, const FstabEntry& entry) {
787     errno = 0;
788     unsigned long mountflags = entry.flags;
789     int ret = 0;
790     int save_errno = 0;
791     int gc_allowance = 0;
792     std::string opts;
793     bool try_f2fs_gc_allowance = is_f2fs(entry.fs_type) && entry.fs_checkpoint_opts.length() > 0;
794     Timer t;
795 
796     do {
797         if (save_errno == EINVAL && try_f2fs_gc_allowance) {
798             PINFO << "Kernel does not support checkpoint=disable:[n]%, trying without.";
799             try_f2fs_gc_allowance = false;
800         }
801         if (try_f2fs_gc_allowance) {
802             opts = entry.fs_options + entry.fs_checkpoint_opts + ":" +
803                    std::to_string(gc_allowance) + "%";
804         } else {
805             opts = entry.fs_options;
806         }
807         if (save_errno == EAGAIN) {
808             PINFO << "Retrying mount (source=" << source << ",target=" << target
809                   << ",type=" << entry.fs_type << ", gc_allowance=" << gc_allowance << "%)=" << ret
810                   << "(" << save_errno << ")";
811         }
812         ret = mount(source.c_str(), target.c_str(), entry.fs_type.c_str(), mountflags,
813                     opts.c_str());
814         save_errno = errno;
815         if (try_f2fs_gc_allowance) gc_allowance += 10;
816     } while ((ret && save_errno == EAGAIN && gc_allowance <= 100) ||
817              (ret && save_errno == EINVAL && try_f2fs_gc_allowance));
818     const char* target_missing = "";
819     const char* source_missing = "";
820     if (save_errno == ENOENT) {
821         if (access(target.c_str(), F_OK)) {
822             target_missing = "(missing)";
823         } else if (access(source.c_str(), F_OK)) {
824             source_missing = "(missing)";
825         }
826         errno = save_errno;
827     }
828     PINFO << __FUNCTION__ << "(source=" << source << source_missing << ",target=" << target
829           << target_missing << ",type=" << entry.fs_type << ")=" << ret;
830     if ((ret == 0) && (mountflags & MS_RDONLY) != 0) {
831         fs_mgr_set_blk_ro(source);
832     }
833     android::base::SetProperty("ro.boottime.init.mount." + Basename(target),
834                                std::to_string(t.duration().count()));
835     errno = save_errno;
836     return ret;
837 }
838 
fs_match(const std::string & in1,const std::string & in2)839 static bool fs_match(const std::string& in1, const std::string& in2) {
840     if (in1.empty() || in2.empty()) {
841         return false;
842     }
843 
844     auto in1_end = in1.size() - 1;
845     while (in1_end > 0 && in1[in1_end] == '/') {
846         in1_end--;
847     }
848 
849     auto in2_end = in2.size() - 1;
850     while (in2_end > 0 && in2[in2_end] == '/') {
851         in2_end--;
852     }
853 
854     if (in1_end != in2_end) {
855         return false;
856     }
857 
858     for (size_t i = 0; i <= in1_end; ++i) {
859         if (in1[i] != in2[i]) {
860             return false;
861         }
862     }
863 
864     return true;
865 }
866 
867 // Tries to mount any of the consecutive fstab entries that match
868 // the mountpoint of the one given by fstab[start_idx].
869 //
870 // end_idx: On return, will be the last entry that was looked at.
871 // attempted_idx: On return, will indicate which fstab entry
872 //     succeeded. In case of failure, it will be the start_idx.
873 // Sets errno to match the 1st mount failure on failure.
mount_with_alternatives(const Fstab & fstab,int start_idx,int * end_idx,int * attempted_idx)874 static bool mount_with_alternatives(const Fstab& fstab, int start_idx, int* end_idx,
875                                     int* attempted_idx) {
876     unsigned long i;
877     int mount_errno = 0;
878     bool mounted = false;
879 
880     // Hunt down an fstab entry for the same mount point that might succeed.
881     for (i = start_idx;
882          // We required that fstab entries for the same mountpoint be consecutive.
883          i < fstab.size() && fstab[start_idx].mount_point == fstab[i].mount_point; i++) {
884         // Don't try to mount/encrypt the same mount point again.
885         // Deal with alternate entries for the same point which are required to be all following
886         // each other.
887         if (mounted) {
888             LERROR << __FUNCTION__ << "(): skipping fstab dup mountpoint=" << fstab[i].mount_point
889                    << " rec[" << i << "].fs_type=" << fstab[i].fs_type << " already mounted as "
890                    << fstab[*attempted_idx].fs_type;
891             continue;
892         }
893 
894         int fs_stat = prepare_fs_for_mount(fstab[i].blk_device, fstab[i]);
895         if (fs_stat & FS_STAT_INVALID_MAGIC) {
896             LERROR << __FUNCTION__
897                    << "(): skipping mount due to invalid magic, mountpoint=" << fstab[i].mount_point
898                    << " blk_dev=" << realpath(fstab[i].blk_device) << " rec[" << i
899                    << "].fs_type=" << fstab[i].fs_type;
900             mount_errno = EINVAL;  // continue bootup for FDE
901             continue;
902         }
903 
904         int retry_count = 2;
905         while (retry_count-- > 0) {
906             if (!__mount(fstab[i].blk_device, fstab[i].mount_point, fstab[i])) {
907                 *attempted_idx = i;
908                 mounted = true;
909                 if (i != start_idx) {
910                     LERROR << __FUNCTION__ << "(): Mounted " << fstab[i].blk_device << " on "
911                            << fstab[i].mount_point << " with fs_type=" << fstab[i].fs_type
912                            << " instead of " << fstab[start_idx].fs_type;
913                 }
914                 fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
915                 mount_errno = 0;
916                 break;
917             } else {
918                 if (retry_count <= 0) break;  // run check_fs only once
919                 fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
920                 // back up the first errno for crypto decisions.
921                 if (mount_errno == 0) {
922                     mount_errno = errno;
923                 }
924                 // retry after fsck
925                 check_fs(fstab[i].blk_device, fstab[i].fs_type, fstab[i].mount_point, &fs_stat);
926             }
927         }
928         log_fs_stat(fstab[i].blk_device, fs_stat);
929     }
930 
931     /* Adjust i for the case where it was still withing the recs[] */
932     if (i < fstab.size()) --i;
933 
934     *end_idx = i;
935     if (!mounted) {
936         *attempted_idx = start_idx;
937         errno = mount_errno;
938         return false;
939     }
940     return true;
941 }
942 
TranslateExtLabels(FstabEntry * entry)943 static bool TranslateExtLabels(FstabEntry* entry) {
944     if (!StartsWith(entry->blk_device, "LABEL=")) {
945         return true;
946     }
947 
948     std::string label = entry->blk_device.substr(6);
949     if (label.size() > 16) {
950         LERROR << "FS label is longer than allowed by filesystem";
951         return false;
952     }
953 
954     auto blockdir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/dev/block"), closedir};
955     if (!blockdir) {
956         LERROR << "couldn't open /dev/block";
957         return false;
958     }
959 
960     struct dirent* ent;
961     while ((ent = readdir(blockdir.get()))) {
962         if (ent->d_type != DT_BLK)
963             continue;
964 
965         unique_fd fd(TEMP_FAILURE_RETRY(
966                 openat(dirfd(blockdir.get()), ent->d_name, O_RDONLY | O_CLOEXEC)));
967         if (fd < 0) {
968             LERROR << "Cannot open block device /dev/block/" << ent->d_name;
969             return false;
970         }
971 
972         ext4_super_block super_block;
973         if (TEMP_FAILURE_RETRY(lseek(fd, 1024, SEEK_SET)) < 0 ||
974             TEMP_FAILURE_RETRY(read(fd, &super_block, sizeof(super_block))) !=
975                     sizeof(super_block)) {
976             // Probably a loopback device or something else without a readable superblock.
977             continue;
978         }
979 
980         if (super_block.s_magic != EXT4_SUPER_MAGIC) {
981             LINFO << "/dev/block/" << ent->d_name << " not ext{234}";
982             continue;
983         }
984 
985         if (label == super_block.s_volume_name) {
986             std::string new_blk_device = "/dev/block/"s + ent->d_name;
987 
988             LINFO << "resolved label " << entry->blk_device << " to " << new_blk_device;
989 
990             entry->blk_device = new_blk_device;
991             return true;
992         }
993     }
994 
995     return false;
996 }
997 
needs_block_encryption(const FstabEntry & entry)998 static bool needs_block_encryption(const FstabEntry& entry) {
999     if (android::base::GetBoolProperty("ro.vold.forceencryption", false) && entry.is_encryptable())
1000         return true;
1001     if (entry.fs_mgr_flags.force_crypt) return true;
1002     if (entry.fs_mgr_flags.crypt) {
1003         // Check for existence of convert_fde breadcrumb file.
1004         auto convert_fde_name = entry.mount_point + "/misc/vold/convert_fde";
1005         if (access(convert_fde_name.c_str(), F_OK) == 0) return true;
1006     }
1007     if (entry.fs_mgr_flags.force_fde_or_fbe) {
1008         // Check for absence of convert_fbe breadcrumb file.
1009         auto convert_fbe_name = entry.mount_point + "/convert_fbe";
1010         if (access(convert_fbe_name.c_str(), F_OK) != 0) return true;
1011     }
1012     return false;
1013 }
1014 
should_use_metadata_encryption(const FstabEntry & entry)1015 static bool should_use_metadata_encryption(const FstabEntry& entry) {
1016     return !entry.metadata_key_dir.empty() &&
1017            (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe);
1018 }
1019 
1020 // Check to see if a mountable volume has encryption requirements
handle_encryptable(const FstabEntry & entry)1021 static int handle_encryptable(const FstabEntry& entry) {
1022     // If this is block encryptable, need to trigger encryption.
1023     if (needs_block_encryption(entry)) {
1024         if (umount(entry.mount_point.c_str()) == 0) {
1025             return FS_MGR_MNTALL_DEV_NEEDS_ENCRYPTION;
1026         } else {
1027             PWARNING << "Could not umount " << entry.mount_point << " - allow continue unencrypted";
1028             return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED;
1029         }
1030     } else if (should_use_metadata_encryption(entry)) {
1031         if (umount(entry.mount_point.c_str()) == 0) {
1032             return FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION;
1033         } else {
1034             PERROR << "Could not umount " << entry.mount_point << " - fail since can't encrypt";
1035             return FS_MGR_MNTALL_FAIL;
1036         }
1037     } else if (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe) {
1038         LINFO << entry.mount_point << " is file encrypted";
1039         return FS_MGR_MNTALL_DEV_FILE_ENCRYPTED;
1040     } else if (entry.is_encryptable()) {
1041         return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED;
1042     } else {
1043         return FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
1044     }
1045 }
1046 
set_type_property(int status)1047 static void set_type_property(int status) {
1048     switch (status) {
1049         case FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED:
1050             SetProperty("ro.crypto.type", "block");
1051             break;
1052         case FS_MGR_MNTALL_DEV_FILE_ENCRYPTED:
1053         case FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED:
1054         case FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION:
1055             SetProperty("ro.crypto.type", "file");
1056             break;
1057     }
1058 }
1059 
call_vdc(const std::vector<std::string> & args,int * ret)1060 static bool call_vdc(const std::vector<std::string>& args, int* ret) {
1061     std::vector<char const*> argv;
1062     argv.emplace_back("/system/bin/vdc");
1063     for (auto& arg : args) {
1064         argv.emplace_back(arg.c_str());
1065     }
1066     LOG(INFO) << "Calling: " << android::base::Join(argv, ' ');
1067     int err = logwrap_fork_execvp(argv.size(), argv.data(), ret, false, LOG_ALOG, false, nullptr);
1068     if (err != 0) {
1069         LOG(ERROR) << "vdc call failed with error code: " << err;
1070         return false;
1071     }
1072     LOG(DEBUG) << "vdc finished successfully";
1073     if (ret != nullptr) {
1074         *ret = WEXITSTATUS(*ret);
1075     }
1076     return true;
1077 }
1078 
fs_mgr_update_logical_partition(FstabEntry * entry)1079 bool fs_mgr_update_logical_partition(FstabEntry* entry) {
1080     // Logical partitions are specified with a named partition rather than a
1081     // block device, so if the block device is a path, then it has already
1082     // been updated.
1083     if (entry->blk_device[0] == '/') {
1084         return true;
1085     }
1086 
1087     DeviceMapper& dm = DeviceMapper::Instance();
1088     std::string device_name;
1089     if (!dm.GetDmDevicePathByName(entry->blk_device, &device_name)) {
1090         return false;
1091     }
1092 
1093     entry->blk_device = device_name;
1094     return true;
1095 }
1096 
SupportsCheckpoint(FstabEntry * entry)1097 static bool SupportsCheckpoint(FstabEntry* entry) {
1098     return entry->fs_mgr_flags.checkpoint_blk || entry->fs_mgr_flags.checkpoint_fs;
1099 }
1100 
1101 class CheckpointManager {
1102   public:
CheckpointManager(int needs_checkpoint=-1,bool metadata_encrypted=false)1103     CheckpointManager(int needs_checkpoint = -1, bool metadata_encrypted = false)
1104         : needs_checkpoint_(needs_checkpoint), metadata_encrypted_(metadata_encrypted) {}
1105 
NeedsCheckpoint()1106     bool NeedsCheckpoint() {
1107         if (needs_checkpoint_ != UNKNOWN) {
1108             return needs_checkpoint_ == YES;
1109         }
1110         if (!call_vdc({"checkpoint", "needsCheckpoint"}, &needs_checkpoint_)) {
1111             LERROR << "Failed to find if checkpointing is needed. Assuming no.";
1112             needs_checkpoint_ = NO;
1113         }
1114         return needs_checkpoint_ == YES;
1115     }
1116 
Update(FstabEntry * entry,const std::string & block_device=std::string ())1117     bool Update(FstabEntry* entry, const std::string& block_device = std::string()) {
1118         if (!SupportsCheckpoint(entry)) {
1119             return true;
1120         }
1121 
1122         if (entry->fs_mgr_flags.checkpoint_blk && !metadata_encrypted_) {
1123             call_vdc({"checkpoint", "restoreCheckpoint", entry->blk_device}, nullptr);
1124         }
1125 
1126         if (!NeedsCheckpoint()) {
1127             return true;
1128         }
1129 
1130         if (!UpdateCheckpointPartition(entry, block_device)) {
1131             LERROR << "Could not set up checkpoint partition, skipping!";
1132             return false;
1133         }
1134 
1135         return true;
1136     }
1137 
Revert(FstabEntry * entry)1138     bool Revert(FstabEntry* entry) {
1139         if (!SupportsCheckpoint(entry)) {
1140             return true;
1141         }
1142 
1143         if (device_map_.find(entry->blk_device) == device_map_.end()) {
1144             return true;
1145         }
1146 
1147         std::string bow_device = entry->blk_device;
1148         entry->blk_device = device_map_[bow_device];
1149         device_map_.erase(bow_device);
1150 
1151         DeviceMapper& dm = DeviceMapper::Instance();
1152         if (!dm.DeleteDevice("bow")) {
1153             PERROR << "Failed to remove bow device";
1154         }
1155 
1156         return true;
1157     }
1158 
1159   private:
UpdateCheckpointPartition(FstabEntry * entry,const std::string & block_device)1160     bool UpdateCheckpointPartition(FstabEntry* entry, const std::string& block_device) {
1161         if (entry->fs_mgr_flags.checkpoint_fs) {
1162             if (is_f2fs(entry->fs_type)) {
1163                 entry->fs_checkpoint_opts = ",checkpoint=disable";
1164             } else {
1165                 LERROR << entry->fs_type << " does not implement checkpoints.";
1166             }
1167         } else if (entry->fs_mgr_flags.checkpoint_blk) {
1168             auto actual_block_device = block_device.empty() ? entry->blk_device : block_device;
1169             if (fs_mgr_find_bow_device(actual_block_device).empty()) {
1170                 unique_fd fd(
1171                         TEMP_FAILURE_RETRY(open(entry->blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
1172                 if (fd < 0) {
1173                     PERROR << "Cannot open device " << entry->blk_device;
1174                     return false;
1175                 }
1176 
1177                 uint64_t size = get_block_device_size(fd) / 512;
1178                 if (!size) {
1179                     PERROR << "Cannot get device size";
1180                     return false;
1181                 }
1182 
1183                 android::dm::DmTable table;
1184                 auto bowTarget =
1185                         std::make_unique<android::dm::DmTargetBow>(0, size, entry->blk_device);
1186 
1187                 // dm-bow uses the first block as a log record, and relocates the real first block
1188                 // elsewhere. For metadata encrypted devices, dm-bow sits below dm-default-key, and
1189                 // for post Android Q devices dm-default-key uses a block size of 4096 always.
1190                 // So if dm-bow's block size, which by default is the block size of the underlying
1191                 // hardware, is less than dm-default-key's, blocks will get broken up and I/O will
1192                 // fail as it won't be data_unit_size aligned.
1193                 // However, since it is possible there is an already shipping non
1194                 // metadata-encrypted device with smaller blocks, we must not change this for
1195                 // devices shipped with Q or earlier unless they explicitly selected dm-default-key
1196                 // v2
1197                 unsigned int options_format_version = android::base::GetUintProperty<unsigned int>(
1198                         "ro.crypto.dm_default_key.options_format.version",
1199                         (android::fscrypt::GetFirstApiLevel() <= __ANDROID_API_Q__ ? 1 : 2));
1200                 if (options_format_version > 1) {
1201                     bowTarget->SetBlockSize(4096);
1202                 }
1203 
1204                 if (!table.AddTarget(std::move(bowTarget))) {
1205                     LERROR << "Failed to add bow target";
1206                     return false;
1207                 }
1208 
1209                 DeviceMapper& dm = DeviceMapper::Instance();
1210                 if (!dm.CreateDevice("bow", table)) {
1211                     PERROR << "Failed to create bow device";
1212                     return false;
1213                 }
1214 
1215                 std::string name;
1216                 if (!dm.GetDmDevicePathByName("bow", &name)) {
1217                     PERROR << "Failed to get bow device name";
1218                     return false;
1219                 }
1220 
1221                 device_map_[name] = entry->blk_device;
1222                 entry->blk_device = name;
1223             }
1224         }
1225         return true;
1226     }
1227 
1228     enum { UNKNOWN = -1, NO = 0, YES = 1 };
1229     int needs_checkpoint_;
1230     bool metadata_encrypted_;
1231     std::map<std::string, std::string> device_map_;
1232 };
1233 
fs_mgr_find_bow_device(const std::string & block_device)1234 std::string fs_mgr_find_bow_device(const std::string& block_device) {
1235     if (block_device.substr(0, 5) != "/dev/") {
1236         LOG(ERROR) << "Expected block device, got " << block_device;
1237         return std::string();
1238     }
1239 
1240     std::string sys_dir = std::string("/sys/") + block_device.substr(5);
1241 
1242     for (;;) {
1243         std::string name;
1244         if (!android::base::ReadFileToString(sys_dir + "/dm/name", &name)) {
1245             PLOG(ERROR) << block_device << " is not dm device";
1246             return std::string();
1247         }
1248 
1249         if (name == "bow\n") return sys_dir;
1250 
1251         std::string slaves = sys_dir + "/slaves";
1252         std::unique_ptr<DIR, decltype(&closedir)> directory(opendir(slaves.c_str()), closedir);
1253         if (!directory) {
1254             PLOG(ERROR) << "Can't open slave directory " << slaves;
1255             return std::string();
1256         }
1257 
1258         int count = 0;
1259         for (dirent* entry = readdir(directory.get()); entry; entry = readdir(directory.get())) {
1260             if (entry->d_type != DT_LNK) continue;
1261 
1262             if (count == 1) {
1263                 LOG(ERROR) << "Too many slaves in " << slaves;
1264                 return std::string();
1265             }
1266 
1267             ++count;
1268             sys_dir = std::string("/sys/block/") + entry->d_name;
1269         }
1270 
1271         if (count != 1) {
1272             LOG(ERROR) << "No slave in " << slaves;
1273             return std::string();
1274         }
1275     }
1276 }
1277 
1278 static constexpr const char* kUserdataWrapperName = "userdata-wrapper";
1279 
WrapUserdata(FstabEntry * entry,dev_t dev,const std::string & block_device)1280 static void WrapUserdata(FstabEntry* entry, dev_t dev, const std::string& block_device) {
1281     DeviceMapper& dm = DeviceMapper::Instance();
1282     if (dm.GetState(kUserdataWrapperName) != DmDeviceState::INVALID) {
1283         // This will report failure for us. If we do fail to get the path,
1284         // we leave the device unwrapped.
1285         dm.GetDmDevicePathByName(kUserdataWrapperName, &entry->blk_device);
1286         return;
1287     }
1288 
1289     unique_fd fd(open(block_device.c_str(), O_RDONLY | O_CLOEXEC));
1290     if (fd < 0) {
1291         PLOG(ERROR) << "open failed: " << entry->blk_device;
1292         return;
1293     }
1294 
1295     auto dev_str = android::base::StringPrintf("%u:%u", major(dev), minor(dev));
1296     uint64_t sectors = get_block_device_size(fd) / 512;
1297 
1298     android::dm::DmTable table;
1299     table.Emplace<DmTargetLinear>(0, sectors, dev_str, 0);
1300 
1301     std::string dm_path;
1302     if (!dm.CreateDevice(kUserdataWrapperName, table, &dm_path, 20s)) {
1303         LOG(ERROR) << "Failed to create userdata wrapper device";
1304         return;
1305     }
1306     entry->blk_device = dm_path;
1307 }
1308 
1309 // When using Virtual A/B, partitions can be backed by /data and mapped with
1310 // device-mapper in first-stage init. This can happen when merging an OTA or
1311 // when using adb remount to house "scratch". In this case, /data cannot be
1312 // mounted directly off the userdata block device, and e2fsck will refuse to
1313 // scan it, because the kernel reports the block device as in-use.
1314 //
1315 // As a workaround, when mounting /data, we create a trivial dm-linear wrapper
1316 // if the underlying block device already has dependencies. Note that we make
1317 // an exception for metadata-encrypted devices, since dm-default-key is already
1318 // a wrapper.
WrapUserdataIfNeeded(FstabEntry * entry,const std::string & actual_block_device={})1319 static void WrapUserdataIfNeeded(FstabEntry* entry, const std::string& actual_block_device = {}) {
1320     const auto& block_device =
1321             actual_block_device.empty() ? entry->blk_device : actual_block_device;
1322     if (entry->mount_point != "/data" || !entry->metadata_key_dir.empty() ||
1323         android::base::StartsWith(block_device, "/dev/block/dm-")) {
1324         return;
1325     }
1326 
1327     struct stat st;
1328     if (stat(block_device.c_str(), &st) < 0) {
1329         PLOG(ERROR) << "stat failed: " << block_device;
1330         return;
1331     }
1332 
1333     std::string path = android::base::StringPrintf("/sys/dev/block/%u:%u/holders",
1334                                                    major(st.st_rdev), minor(st.st_rdev));
1335     std::unique_ptr<DIR, decltype(&closedir)> dir(opendir(path.c_str()), closedir);
1336     if (!dir) {
1337         PLOG(ERROR) << "opendir failed: " << path;
1338         return;
1339     }
1340 
1341     struct dirent* d;
1342     bool has_holders = false;
1343     while ((d = readdir(dir.get())) != nullptr) {
1344         if (strcmp(d->d_name, ".") != 0 && strcmp(d->d_name, "..") != 0) {
1345             has_holders = true;
1346             break;
1347         }
1348     }
1349 
1350     if (has_holders) {
1351         WrapUserdata(entry, st.st_rdev, block_device);
1352     }
1353 }
1354 
IsMountPointMounted(const std::string & mount_point)1355 static bool IsMountPointMounted(const std::string& mount_point) {
1356     // Check if this is already mounted.
1357     Fstab fstab;
1358     if (!ReadFstabFromFile("/proc/mounts", &fstab)) {
1359         return false;
1360     }
1361     return GetEntryForMountPoint(&fstab, mount_point) != nullptr;
1362 }
1363 
1364 // When multiple fstab records share the same mount_point, it will try to mount each
1365 // one in turn, and ignore any duplicates after a first successful mount.
1366 // Returns -1 on error, and  FS_MGR_MNTALL_* otherwise.
fs_mgr_mount_all(Fstab * fstab,int mount_mode)1367 MountAllResult fs_mgr_mount_all(Fstab* fstab, int mount_mode) {
1368     int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
1369     int error_count = 0;
1370     CheckpointManager checkpoint_manager;
1371     AvbUniquePtr avb_handle(nullptr);
1372     bool wiped = false;
1373 
1374     bool userdata_mounted = false;
1375     if (fstab->empty()) {
1376         return {FS_MGR_MNTALL_FAIL, userdata_mounted};
1377     }
1378 
1379     // Keep i int to prevent unsigned integer overflow from (i = top_idx - 1),
1380     // where top_idx is 0. It will give SIGABRT
1381     for (int i = 0; i < static_cast<int>(fstab->size()); i++) {
1382         auto& current_entry = (*fstab)[i];
1383 
1384         // If a filesystem should have been mounted in the first stage, we
1385         // ignore it here. With one exception, if the filesystem is
1386         // formattable, then it can only be formatted in the second stage,
1387         // so we allow it to mount here.
1388         if (current_entry.fs_mgr_flags.first_stage_mount &&
1389             (!current_entry.fs_mgr_flags.formattable ||
1390              IsMountPointMounted(current_entry.mount_point))) {
1391             continue;
1392         }
1393 
1394         // Don't mount entries that are managed by vold or not for the mount mode.
1395         if (current_entry.fs_mgr_flags.vold_managed || current_entry.fs_mgr_flags.recovery_only ||
1396             ((mount_mode == MOUNT_MODE_LATE) && !current_entry.fs_mgr_flags.late_mount) ||
1397             ((mount_mode == MOUNT_MODE_EARLY) && current_entry.fs_mgr_flags.late_mount)) {
1398             continue;
1399         }
1400 
1401         // Skip swap and raw partition entries such as boot, recovery, etc.
1402         if (current_entry.fs_type == "swap" || current_entry.fs_type == "emmc" ||
1403             current_entry.fs_type == "mtd") {
1404             continue;
1405         }
1406 
1407         // Skip mounting the root partition, as it will already have been mounted.
1408         if (current_entry.mount_point == "/" || current_entry.mount_point == "/system") {
1409             if ((current_entry.flags & MS_RDONLY) != 0) {
1410                 fs_mgr_set_blk_ro(current_entry.blk_device);
1411             }
1412             continue;
1413         }
1414 
1415         // Terrible hack to make it possible to remount /data.
1416         // TODO: refactor fs_mgr_mount_all and get rid of this.
1417         if (mount_mode == MOUNT_MODE_ONLY_USERDATA && current_entry.mount_point != "/data") {
1418             continue;
1419         }
1420 
1421         // Translate LABEL= file system labels into block devices.
1422         if (is_extfs(current_entry.fs_type)) {
1423             if (!TranslateExtLabels(&current_entry)) {
1424                 LERROR << "Could not translate label to block device";
1425                 continue;
1426             }
1427         }
1428 
1429         if (current_entry.fs_mgr_flags.logical) {
1430             if (!fs_mgr_update_logical_partition(&current_entry)) {
1431                 LERROR << "Could not set up logical partition, skipping!";
1432                 continue;
1433             }
1434         }
1435 
1436         WrapUserdataIfNeeded(&current_entry);
1437 
1438         if (!checkpoint_manager.Update(&current_entry)) {
1439             continue;
1440         }
1441 
1442         if (current_entry.fs_mgr_flags.wait && !WaitForFile(current_entry.blk_device, 20s)) {
1443             LERROR << "Skipping '" << current_entry.blk_device << "' during mount_all";
1444             continue;
1445         }
1446 
1447         if (current_entry.fs_mgr_flags.avb) {
1448             if (!avb_handle) {
1449                 avb_handle = AvbHandle::Open();
1450                 if (!avb_handle) {
1451                     LERROR << "Failed to open AvbHandle";
1452                     set_type_property(encryptable);
1453                     return {FS_MGR_MNTALL_FAIL, userdata_mounted};
1454                 }
1455             }
1456             if (avb_handle->SetUpAvbHashtree(&current_entry, true /* wait_for_verity_dev */) ==
1457                 AvbHashtreeResult::kFail) {
1458                 LERROR << "Failed to set up AVB on partition: " << current_entry.mount_point
1459                        << ", skipping!";
1460                 // Skips mounting the device.
1461                 continue;
1462             }
1463         } else if (!current_entry.avb_keys.empty()) {
1464             if (AvbHandle::SetUpStandaloneAvbHashtree(&current_entry) == AvbHashtreeResult::kFail) {
1465                 LERROR << "Failed to set up AVB on standalone partition: "
1466                        << current_entry.mount_point << ", skipping!";
1467                 // Skips mounting the device.
1468                 continue;
1469             }
1470         } else if ((current_entry.fs_mgr_flags.verify)) {
1471             int rc = fs_mgr_setup_verity(&current_entry, true);
1472             if (rc == FS_MGR_SETUP_VERITY_DISABLED || rc == FS_MGR_SETUP_VERITY_SKIPPED) {
1473                 LINFO << "Verity disabled";
1474             } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) {
1475                 LERROR << "Could not set up verified partition, skipping!";
1476                 continue;
1477             }
1478         }
1479 
1480         int last_idx_inspected;
1481         int top_idx = i;
1482         int attempted_idx = -1;
1483 
1484         bool mret = mount_with_alternatives(*fstab, i, &last_idx_inspected, &attempted_idx);
1485         auto& attempted_entry = (*fstab)[attempted_idx];
1486         i = last_idx_inspected;
1487         int mount_errno = errno;
1488 
1489         // Handle success and deal with encryptability.
1490         if (mret) {
1491             int status = handle_encryptable(attempted_entry);
1492 
1493             if (status == FS_MGR_MNTALL_FAIL) {
1494                 // Fatal error - no point continuing.
1495                 return {status, userdata_mounted};
1496             }
1497 
1498             if (status != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
1499                 if (encryptable != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
1500                     // Log and continue
1501                     LERROR << "Only one encryptable/encrypted partition supported";
1502                 }
1503                 encryptable = status;
1504                 if (status == FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION) {
1505                     if (!call_vdc({"cryptfs", "encryptFstab", attempted_entry.blk_device,
1506                                    attempted_entry.mount_point, wiped ? "true" : "false",
1507                                    attempted_entry.fs_type},
1508                                   nullptr)) {
1509                         LERROR << "Encryption failed";
1510                         set_type_property(encryptable);
1511                         return {FS_MGR_MNTALL_FAIL, userdata_mounted};
1512                     }
1513                 }
1514             }
1515 
1516             if (current_entry.mount_point == "/data") {
1517                 userdata_mounted = true;
1518             }
1519             // Success!  Go get the next one.
1520             continue;
1521         }
1522 
1523         // Mounting failed, understand why and retry.
1524         wiped = partition_wiped(current_entry.blk_device.c_str());
1525         bool crypt_footer = false;
1526         if (mount_errno != EBUSY && mount_errno != EACCES &&
1527             current_entry.fs_mgr_flags.formattable && wiped) {
1528             // current_entry and attempted_entry point at the same partition, but sometimes
1529             // at two different lines in the fstab.  Use current_entry for formatting
1530             // as that is the preferred one.
1531             LERROR << __FUNCTION__ << "(): " << realpath(current_entry.blk_device)
1532                    << " is wiped and " << current_entry.mount_point << " " << current_entry.fs_type
1533                    << " is formattable. Format it.";
1534 
1535             checkpoint_manager.Revert(&current_entry);
1536 
1537             if (current_entry.is_encryptable() && current_entry.key_loc != KEY_IN_FOOTER) {
1538                 unique_fd fd(TEMP_FAILURE_RETRY(
1539                         open(current_entry.key_loc.c_str(), O_WRONLY | O_CLOEXEC)));
1540                 if (fd >= 0) {
1541                     LINFO << __FUNCTION__ << "(): also wipe " << current_entry.key_loc;
1542                     wipe_block_device(fd, get_file_size(fd));
1543                 } else {
1544                     PERROR << __FUNCTION__ << "(): " << current_entry.key_loc << " wouldn't open";
1545                 }
1546             } else if (current_entry.is_encryptable() && current_entry.key_loc == KEY_IN_FOOTER) {
1547                 crypt_footer = true;
1548             }
1549 
1550             // EncryptInplace will be used when vdc gives an error or needs to format partitions
1551             // other than /data
1552             if (should_use_metadata_encryption(current_entry) &&
1553                 current_entry.mount_point == "/data") {
1554 
1555                 // vdc->Format requires "ro.crypto.type" to set an encryption flag
1556                 encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED;
1557                 set_type_property(encryptable);
1558 
1559                 if (!call_vdc({"cryptfs", "encryptFstab", current_entry.blk_device,
1560                                current_entry.mount_point, "true" /* shouldFormat */,
1561                                current_entry.fs_type},
1562                               nullptr)) {
1563                     LERROR << "Encryption failed";
1564                 } else {
1565                     userdata_mounted = true;
1566                     continue;
1567                 }
1568             }
1569 
1570             if (fs_mgr_do_format(current_entry, crypt_footer) == 0) {
1571                 // Let's replay the mount actions.
1572                 i = top_idx - 1;
1573                 continue;
1574             } else {
1575                 LERROR << __FUNCTION__ << "(): Format failed. "
1576                        << "Suggest recovery...";
1577                 encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
1578                 continue;
1579             }
1580         }
1581 
1582         // mount(2) returned an error, handle the encryptable/formattable case.
1583         if (mount_errno != EBUSY && mount_errno != EACCES && attempted_entry.is_encryptable()) {
1584             if (wiped) {
1585                 LERROR << __FUNCTION__ << "(): " << attempted_entry.blk_device << " is wiped and "
1586                        << attempted_entry.mount_point << " " << attempted_entry.fs_type
1587                        << " is encryptable. Suggest recovery...";
1588                 encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
1589                 continue;
1590             } else {
1591                 // Need to mount a tmpfs at this mountpoint for now, and set
1592                 // properties that vold will query later for decrypting
1593                 LERROR << __FUNCTION__ << "(): possibly an encryptable blkdev "
1594                        << attempted_entry.blk_device << " for mount " << attempted_entry.mount_point
1595                        << " type " << attempted_entry.fs_type;
1596                 if (fs_mgr_do_tmpfs_mount(attempted_entry.mount_point.c_str()) < 0) {
1597                     ++error_count;
1598                     continue;
1599                 }
1600             }
1601             encryptable = FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED;
1602         } else if (mount_errno != EBUSY && mount_errno != EACCES &&
1603                    should_use_metadata_encryption(attempted_entry)) {
1604             if (!call_vdc({"cryptfs", "mountFstab", attempted_entry.blk_device,
1605                            attempted_entry.mount_point},
1606                           nullptr)) {
1607                 ++error_count;
1608             } else if (current_entry.mount_point == "/data") {
1609                 userdata_mounted = true;
1610             }
1611             encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED;
1612             continue;
1613         } else {
1614             // fs_options might be null so we cannot use PERROR << directly.
1615             // Use StringPrintf to output "(null)" instead.
1616             if (attempted_entry.fs_mgr_flags.no_fail) {
1617                 PERROR << android::base::StringPrintf(
1618                         "Ignoring failure to mount an un-encryptable or wiped "
1619                         "partition on %s at %s options: %s",
1620                         attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
1621                         attempted_entry.fs_options.c_str());
1622             } else {
1623                 PERROR << android::base::StringPrintf(
1624                         "Failed to mount an un-encryptable or wiped partition "
1625                         "on %s at %s options: %s",
1626                         attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
1627                         attempted_entry.fs_options.c_str());
1628                 ++error_count;
1629             }
1630             continue;
1631         }
1632     }
1633 
1634     set_type_property(encryptable);
1635 
1636 #if ALLOW_ADBD_DISABLE_VERITY == 1  // "userdebug" build
1637     fs_mgr_overlayfs_mount_all(fstab);
1638 #endif
1639 
1640     if (error_count) {
1641         return {FS_MGR_MNTALL_FAIL, userdata_mounted};
1642     } else {
1643         return {encryptable, userdata_mounted};
1644     }
1645 }
1646 
fs_mgr_umount_all(android::fs_mgr::Fstab * fstab)1647 int fs_mgr_umount_all(android::fs_mgr::Fstab* fstab) {
1648     AvbUniquePtr avb_handle(nullptr);
1649     int ret = FsMgrUmountStatus::SUCCESS;
1650     for (auto& current_entry : *fstab) {
1651         if (!IsMountPointMounted(current_entry.mount_point)) {
1652             continue;
1653         }
1654 
1655         if (umount(current_entry.mount_point.c_str()) == -1) {
1656             PERROR << "Failed to umount " << current_entry.mount_point;
1657             ret |= FsMgrUmountStatus::ERROR_UMOUNT;
1658             continue;
1659         }
1660 
1661         if (current_entry.fs_mgr_flags.logical) {
1662             if (!fs_mgr_update_logical_partition(&current_entry)) {
1663                 LERROR << "Could not get logical partition blk_device, skipping!";
1664                 ret |= FsMgrUmountStatus::ERROR_DEVICE_MAPPER;
1665                 continue;
1666             }
1667         }
1668 
1669         if (current_entry.fs_mgr_flags.avb || !current_entry.avb_keys.empty()) {
1670             if (!AvbHandle::TearDownAvbHashtree(&current_entry, true /* wait */)) {
1671                 LERROR << "Failed to tear down AVB on mount point: " << current_entry.mount_point;
1672                 ret |= FsMgrUmountStatus::ERROR_VERITY;
1673                 continue;
1674             }
1675         } else if ((current_entry.fs_mgr_flags.verify)) {
1676             if (!fs_mgr_teardown_verity(&current_entry)) {
1677                 LERROR << "Failed to tear down verified partition on mount point: "
1678                        << current_entry.mount_point;
1679                 ret |= FsMgrUmountStatus::ERROR_VERITY;
1680                 continue;
1681             }
1682         }
1683     }
1684     return ret;
1685 }
1686 
GetMillisProperty(const std::string & name,std::chrono::milliseconds default_value)1687 static std::chrono::milliseconds GetMillisProperty(const std::string& name,
1688                                                    std::chrono::milliseconds default_value) {
1689     auto value = GetUintProperty(name, static_cast<uint64_t>(default_value.count()));
1690     return std::chrono::milliseconds(std::move(value));
1691 }
1692 
fs_mgr_unmount_all_data_mounts(const std::string & data_block_device)1693 static bool fs_mgr_unmount_all_data_mounts(const std::string& data_block_device) {
1694     LINFO << __FUNCTION__ << "(): about to umount everything on top of " << data_block_device;
1695     Timer t;
1696     auto timeout = GetMillisProperty("init.userspace_reboot.userdata_remount.timeoutmillis", 5s);
1697     while (true) {
1698         bool umount_done = true;
1699         Fstab proc_mounts;
1700         if (!ReadFstabFromFile("/proc/mounts", &proc_mounts)) {
1701             LERROR << __FUNCTION__ << "(): Can't read /proc/mounts";
1702             return false;
1703         }
1704         // Now proceed with other bind mounts on top of /data.
1705         for (const auto& entry : proc_mounts) {
1706             std::string block_device;
1707             if (StartsWith(entry.blk_device, "/dev/block") &&
1708                 !Realpath(entry.blk_device, &block_device)) {
1709                 PWARNING << __FUNCTION__ << "(): failed to realpath " << entry.blk_device;
1710                 block_device = entry.blk_device;
1711             }
1712             if (data_block_device == block_device) {
1713                 if (umount2(entry.mount_point.c_str(), 0) != 0) {
1714                     PERROR << __FUNCTION__ << "(): Failed to umount " << entry.mount_point;
1715                     umount_done = false;
1716                 }
1717             }
1718         }
1719         if (umount_done) {
1720             LINFO << __FUNCTION__ << "(): Unmounting /data took " << t;
1721             return true;
1722         }
1723         if (t.duration() > timeout) {
1724             LERROR << __FUNCTION__ << "(): Timed out unmounting all mounts on "
1725                    << data_block_device;
1726             Fstab remaining_mounts;
1727             if (!ReadFstabFromFile("/proc/mounts", &remaining_mounts)) {
1728                 LERROR << __FUNCTION__ << "(): Can't read /proc/mounts";
1729             } else {
1730                 LERROR << __FUNCTION__ << "(): Following mounts remaining";
1731                 for (const auto& e : remaining_mounts) {
1732                     LERROR << __FUNCTION__ << "(): mount point: " << e.mount_point
1733                            << " block device: " << e.blk_device;
1734                 }
1735             }
1736             return false;
1737         }
1738         std::this_thread::sleep_for(50ms);
1739     }
1740 }
1741 
UnwindDmDeviceStack(const std::string & block_device,std::vector<std::string> * dm_stack)1742 static bool UnwindDmDeviceStack(const std::string& block_device,
1743                                 std::vector<std::string>* dm_stack) {
1744     if (!StartsWith(block_device, "/dev/block/")) {
1745         LWARNING << block_device << " is not a block device";
1746         return false;
1747     }
1748     std::string current = block_device;
1749     DeviceMapper& dm = DeviceMapper::Instance();
1750     while (true) {
1751         dm_stack->push_back(current);
1752         if (!dm.IsDmBlockDevice(current)) {
1753             break;
1754         }
1755         auto parent = dm.GetParentBlockDeviceByPath(current);
1756         if (!parent) {
1757             return false;
1758         }
1759         current = *parent;
1760     }
1761     return true;
1762 }
1763 
fs_mgr_get_mounted_entry_for_userdata(Fstab * fstab,const std::string & data_block_device)1764 FstabEntry* fs_mgr_get_mounted_entry_for_userdata(Fstab* fstab,
1765                                                   const std::string& data_block_device) {
1766     std::vector<std::string> dm_stack;
1767     if (!UnwindDmDeviceStack(data_block_device, &dm_stack)) {
1768         LERROR << "Failed to unwind dm-device stack for " << data_block_device;
1769         return nullptr;
1770     }
1771     for (auto& entry : *fstab) {
1772         if (entry.mount_point != "/data") {
1773             continue;
1774         }
1775         std::string block_device;
1776         if (entry.fs_mgr_flags.logical) {
1777             if (!fs_mgr_update_logical_partition(&entry)) {
1778                 LERROR << "Failed to update logic partition " << entry.blk_device;
1779                 continue;
1780             }
1781             block_device = entry.blk_device;
1782         } else if (!Realpath(entry.blk_device, &block_device)) {
1783             PWARNING << "Failed to realpath " << entry.blk_device;
1784             block_device = entry.blk_device;
1785         }
1786         if (std::find(dm_stack.begin(), dm_stack.end(), block_device) != dm_stack.end()) {
1787             return &entry;
1788         }
1789     }
1790     LERROR << "Didn't find entry that was used to mount /data onto " << data_block_device;
1791     return nullptr;
1792 }
1793 
1794 // TODO(b/143970043): return different error codes based on which step failed.
fs_mgr_remount_userdata_into_checkpointing(Fstab * fstab)1795 int fs_mgr_remount_userdata_into_checkpointing(Fstab* fstab) {
1796     Fstab proc_mounts;
1797     if (!ReadFstabFromFile("/proc/mounts", &proc_mounts)) {
1798         LERROR << "Can't read /proc/mounts";
1799         return -1;
1800     }
1801     auto mounted_entry = GetEntryForMountPoint(&proc_mounts, "/data");
1802     if (mounted_entry == nullptr) {
1803         LERROR << "/data is not mounted";
1804         return -1;
1805     }
1806     std::string block_device;
1807     if (!Realpath(mounted_entry->blk_device, &block_device)) {
1808         PERROR << "Failed to realpath " << mounted_entry->blk_device;
1809         return -1;
1810     }
1811     auto fstab_entry = fs_mgr_get_mounted_entry_for_userdata(fstab, block_device);
1812     if (fstab_entry == nullptr) {
1813         LERROR << "Can't find /data in fstab";
1814         return -1;
1815     }
1816     bool force_umount = GetBoolProperty("sys.init.userdata_remount.force_umount", false);
1817     if (force_umount) {
1818         LINFO << "Will force an umount of userdata even if it's not required";
1819     }
1820     if (!force_umount && !SupportsCheckpoint(fstab_entry)) {
1821         LINFO << "Userdata doesn't support checkpointing. Nothing to do";
1822         return 0;
1823     }
1824     CheckpointManager checkpoint_manager;
1825     if (!force_umount && !checkpoint_manager.NeedsCheckpoint()) {
1826         LINFO << "Checkpointing not needed. Don't remount";
1827         return 0;
1828     }
1829     if (!force_umount && fstab_entry->fs_mgr_flags.checkpoint_fs) {
1830         // Userdata is f2fs, simply remount it.
1831         if (!checkpoint_manager.Update(fstab_entry)) {
1832             LERROR << "Failed to remount userdata in checkpointing mode";
1833             return -1;
1834         }
1835         if (mount(block_device.c_str(), fstab_entry->mount_point.c_str(), "none",
1836                   MS_REMOUNT | fstab_entry->flags, fstab_entry->fs_options.c_str()) != 0) {
1837             PERROR << "Failed to remount userdata in checkpointing mode";
1838             return -1;
1839         }
1840     } else {
1841         LINFO << "Unmounting /data before remounting into checkpointing mode";
1842         if (!fs_mgr_unmount_all_data_mounts(block_device)) {
1843             LERROR << "Failed to umount /data";
1844             return -1;
1845         }
1846         DeviceMapper& dm = DeviceMapper::Instance();
1847         while (dm.IsDmBlockDevice(block_device)) {
1848             auto next_device = dm.GetParentBlockDeviceByPath(block_device);
1849             auto name = dm.GetDmDeviceNameByPath(block_device);
1850             if (!name) {
1851                 LERROR << "Failed to get dm-name for " << block_device;
1852                 return -1;
1853             }
1854             LINFO << "Deleting " << block_device << " named " << *name;
1855             if (!dm.DeleteDevice(*name, 3s)) {
1856                 return -1;
1857             }
1858             if (!next_device) {
1859                 LERROR << "Failed to find parent device for " << block_device;
1860             }
1861             block_device = *next_device;
1862         }
1863         LINFO << "Remounting /data";
1864         // TODO(b/143970043): remove this hack after fs_mgr_mount_all is refactored.
1865         auto result = fs_mgr_mount_all(fstab, MOUNT_MODE_ONLY_USERDATA);
1866         return result.code == FS_MGR_MNTALL_FAIL ? -1 : 0;
1867     }
1868     return 0;
1869 }
1870 
1871 // wrapper to __mount() and expects a fully prepared fstab_rec,
1872 // unlike fs_mgr_do_mount which does more things with avb / verity etc.
fs_mgr_do_mount_one(const FstabEntry & entry,const std::string & alt_mount_point)1873 int fs_mgr_do_mount_one(const FstabEntry& entry, const std::string& alt_mount_point) {
1874     // First check the filesystem if requested.
1875     if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) {
1876         LERROR << "Skipping mounting '" << entry.blk_device << "'";
1877     }
1878 
1879     auto& mount_point = alt_mount_point.empty() ? entry.mount_point : alt_mount_point;
1880 
1881     // Run fsck if needed
1882     prepare_fs_for_mount(entry.blk_device, entry, mount_point);
1883 
1884     int ret = __mount(entry.blk_device, mount_point, entry);
1885     if (ret) {
1886       ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED;
1887     }
1888 
1889     return ret;
1890 }
1891 
1892 // If tmp_mount_point is non-null, mount the filesystem there.  This is for the
1893 // tmp mount we do to check the user password
1894 // If multiple fstab entries are to be mounted on "n_name", it will try to mount each one
1895 // in turn, and stop on 1st success, or no more match.
fs_mgr_do_mount_helper(Fstab * fstab,const std::string & n_name,const std::string & n_blk_device,const char * tmp_mount_point,int needs_checkpoint,bool metadata_encrypted)1896 static int fs_mgr_do_mount_helper(Fstab* fstab, const std::string& n_name,
1897                                   const std::string& n_blk_device, const char* tmp_mount_point,
1898                                   int needs_checkpoint, bool metadata_encrypted) {
1899     int mount_errors = 0;
1900     int first_mount_errno = 0;
1901     std::string mount_point;
1902     CheckpointManager checkpoint_manager(needs_checkpoint, metadata_encrypted);
1903     AvbUniquePtr avb_handle(nullptr);
1904 
1905     if (!fstab) {
1906         return FS_MGR_DOMNT_FAILED;
1907     }
1908 
1909     for (auto& fstab_entry : *fstab) {
1910         if (!fs_match(fstab_entry.mount_point, n_name)) {
1911             continue;
1912         }
1913 
1914         // We found our match.
1915         // If this swap or a raw partition, report an error.
1916         if (fstab_entry.fs_type == "swap" || fstab_entry.fs_type == "emmc" ||
1917             fstab_entry.fs_type == "mtd") {
1918             LERROR << "Cannot mount filesystem of type " << fstab_entry.fs_type << " on "
1919                    << n_blk_device;
1920             return FS_MGR_DOMNT_FAILED;
1921         }
1922 
1923         if (fstab_entry.fs_mgr_flags.logical) {
1924             if (!fs_mgr_update_logical_partition(&fstab_entry)) {
1925                 LERROR << "Could not set up logical partition, skipping!";
1926                 continue;
1927             }
1928         }
1929 
1930         WrapUserdataIfNeeded(&fstab_entry, n_blk_device);
1931 
1932         if (!checkpoint_manager.Update(&fstab_entry, n_blk_device)) {
1933             LERROR << "Could not set up checkpoint partition, skipping!";
1934             continue;
1935         }
1936 
1937         // First check the filesystem if requested.
1938         if (fstab_entry.fs_mgr_flags.wait && !WaitForFile(n_blk_device, 20s)) {
1939             LERROR << "Skipping mounting '" << n_blk_device << "'";
1940             continue;
1941         }
1942 
1943         // Now mount it where requested */
1944         if (tmp_mount_point) {
1945             mount_point = tmp_mount_point;
1946         } else {
1947             mount_point = fstab_entry.mount_point;
1948         }
1949 
1950         int fs_stat = prepare_fs_for_mount(n_blk_device, fstab_entry, mount_point);
1951 
1952         if (fstab_entry.fs_mgr_flags.avb) {
1953             if (!avb_handle) {
1954                 avb_handle = AvbHandle::Open();
1955                 if (!avb_handle) {
1956                     LERROR << "Failed to open AvbHandle";
1957                     return FS_MGR_DOMNT_FAILED;
1958                 }
1959             }
1960             if (avb_handle->SetUpAvbHashtree(&fstab_entry, true /* wait_for_verity_dev */) ==
1961                 AvbHashtreeResult::kFail) {
1962                 LERROR << "Failed to set up AVB on partition: " << fstab_entry.mount_point
1963                        << ", skipping!";
1964                 // Skips mounting the device.
1965                 continue;
1966             }
1967         } else if (!fstab_entry.avb_keys.empty()) {
1968             if (AvbHandle::SetUpStandaloneAvbHashtree(&fstab_entry) == AvbHashtreeResult::kFail) {
1969                 LERROR << "Failed to set up AVB on standalone partition: "
1970                        << fstab_entry.mount_point << ", skipping!";
1971                 // Skips mounting the device.
1972                 continue;
1973             }
1974         } else if (fstab_entry.fs_mgr_flags.verify) {
1975             int rc = fs_mgr_setup_verity(&fstab_entry, true);
1976             if (rc == FS_MGR_SETUP_VERITY_DISABLED || rc == FS_MGR_SETUP_VERITY_SKIPPED) {
1977                 LINFO << "Verity disabled";
1978             } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) {
1979                 LERROR << "Could not set up verified partition, skipping!";
1980                 continue;
1981             }
1982         }
1983 
1984         int retry_count = 2;
1985         while (retry_count-- > 0) {
1986             if (!__mount(n_blk_device, mount_point, fstab_entry)) {
1987                 fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
1988                 return FS_MGR_DOMNT_SUCCESS;
1989             } else {
1990                 if (retry_count <= 0) break;  // run check_fs only once
1991                 if (!first_mount_errno) first_mount_errno = errno;
1992                 mount_errors++;
1993                 fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
1994                 // try again after fsck
1995                 check_fs(n_blk_device, fstab_entry.fs_type, mount_point, &fs_stat);
1996             }
1997         }
1998         log_fs_stat(fstab_entry.blk_device, fs_stat);
1999     }
2000 
2001     // Reach here means the mount attempt fails.
2002     if (mount_errors) {
2003         PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point;
2004         if (first_mount_errno == EBUSY) return FS_MGR_DOMNT_BUSY;
2005     } else {
2006         // We didn't find a match, say so and return an error.
2007         LERROR << "Cannot find mount point " << n_name << " in fstab";
2008     }
2009     return FS_MGR_DOMNT_FAILED;
2010 }
2011 
fs_mgr_do_mount(Fstab * fstab,const char * n_name,char * n_blk_device,char * tmp_mount_point)2012 int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point) {
2013     return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, -1, false);
2014 }
2015 
fs_mgr_do_mount(Fstab * fstab,const char * n_name,char * n_blk_device,char * tmp_mount_point,bool needs_checkpoint,bool metadata_encrypted)2016 int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point,
2017                     bool needs_checkpoint, bool metadata_encrypted) {
2018     return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, needs_checkpoint,
2019                                   metadata_encrypted);
2020 }
2021 
2022 /*
2023  * mount a tmpfs filesystem at the given point.
2024  * return 0 on success, non-zero on failure.
2025  */
fs_mgr_do_tmpfs_mount(const char * n_name)2026 int fs_mgr_do_tmpfs_mount(const char *n_name)
2027 {
2028     int ret;
2029 
2030     ret = mount("tmpfs", n_name, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV | MS_NOEXEC,
2031                 CRYPTO_TMPFS_OPTIONS);
2032     if (ret < 0) {
2033         LERROR << "Cannot mount tmpfs filesystem at " << n_name;
2034         return -1;
2035     }
2036 
2037     /* Success */
2038     return 0;
2039 }
2040 
InstallZramDevice(const std::string & device)2041 static bool InstallZramDevice(const std::string& device) {
2042     if (!android::base::WriteStringToFile(device, ZRAM_BACK_DEV)) {
2043         PERROR << "Cannot write " << device << " in: " << ZRAM_BACK_DEV;
2044         return false;
2045     }
2046     LINFO << "Success to set " << device << " to " << ZRAM_BACK_DEV;
2047     return true;
2048 }
2049 
PrepareZramBackingDevice(off64_t size)2050 static bool PrepareZramBackingDevice(off64_t size) {
2051 
2052     constexpr const char* file_path = "/data/per_boot/zram_swap";
2053     if (size == 0) return true;
2054 
2055     // Prepare target path
2056     unique_fd target_fd(TEMP_FAILURE_RETRY(open(file_path, O_RDWR | O_CREAT | O_CLOEXEC, 0600)));
2057     if (target_fd.get() == -1) {
2058         PERROR << "Cannot open target path: " << file_path;
2059         return false;
2060     }
2061     if (fallocate(target_fd.get(), 0, 0, size) < 0) {
2062         PERROR << "Cannot truncate target path: " << file_path;
2063         return false;
2064     }
2065 
2066     // Allocate loop device and attach it to file_path.
2067     LoopControl loop_control;
2068     std::string device;
2069     if (!loop_control.Attach(target_fd.get(), 5s, &device)) {
2070         return false;
2071     }
2072 
2073     // set block size & direct IO
2074     unique_fd device_fd(TEMP_FAILURE_RETRY(open(device.c_str(), O_RDWR | O_CLOEXEC)));
2075     if (device_fd.get() == -1) {
2076         PERROR << "Cannot open " << device;
2077         return false;
2078     }
2079     if (!LoopControl::EnableDirectIo(device_fd.get())) {
2080         return false;
2081     }
2082 
2083     return InstallZramDevice(device);
2084 }
2085 
fs_mgr_swapon_all(const Fstab & fstab)2086 bool fs_mgr_swapon_all(const Fstab& fstab) {
2087     bool ret = true;
2088     for (const auto& entry : fstab) {
2089         // Skip non-swap entries.
2090         if (entry.fs_type != "swap") {
2091             continue;
2092         }
2093 
2094         if (entry.zram_size > 0) {
2095 	    if (!PrepareZramBackingDevice(entry.zram_backingdev_size)) {
2096                 LERROR << "Failure of zram backing device file for '" << entry.blk_device << "'";
2097             }
2098             // A zram_size was specified, so we need to configure the
2099             // device.  There is no point in having multiple zram devices
2100             // on a system (all the memory comes from the same pool) so
2101             // we can assume the device number is 0.
2102             if (entry.max_comp_streams >= 0) {
2103                 auto zram_mcs_fp = std::unique_ptr<FILE, decltype(&fclose)>{
2104                         fopen(ZRAM_CONF_MCS, "re"), fclose};
2105                 if (zram_mcs_fp == nullptr) {
2106                     LERROR << "Unable to open zram conf comp device " << ZRAM_CONF_MCS;
2107                     ret = false;
2108                     continue;
2109                 }
2110                 fprintf(zram_mcs_fp.get(), "%d\n", entry.max_comp_streams);
2111             }
2112 
2113             auto zram_fp =
2114                     std::unique_ptr<FILE, decltype(&fclose)>{fopen(ZRAM_CONF_DEV, "re+"), fclose};
2115             if (zram_fp == nullptr) {
2116                 LERROR << "Unable to open zram conf device " << ZRAM_CONF_DEV;
2117                 ret = false;
2118                 continue;
2119             }
2120             fprintf(zram_fp.get(), "%" PRId64 "\n", entry.zram_size);
2121         }
2122 
2123         if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) {
2124             LERROR << "Skipping mkswap for '" << entry.blk_device << "'";
2125             ret = false;
2126             continue;
2127         }
2128 
2129         // Initialize the swap area.
2130         const char* mkswap_argv[2] = {
2131                 MKSWAP_BIN,
2132                 entry.blk_device.c_str(),
2133         };
2134         int err = logwrap_fork_execvp(ARRAY_SIZE(mkswap_argv), mkswap_argv, nullptr, false,
2135                                       LOG_KLOG, false, nullptr);
2136         if (err) {
2137             LERROR << "mkswap failed for " << entry.blk_device;
2138             ret = false;
2139             continue;
2140         }
2141 
2142         /* If -1, then no priority was specified in fstab, so don't set
2143          * SWAP_FLAG_PREFER or encode the priority */
2144         int flags = 0;
2145         if (entry.swap_prio >= 0) {
2146             flags = (entry.swap_prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK;
2147             flags |= SWAP_FLAG_PREFER;
2148         } else {
2149             flags = 0;
2150         }
2151         err = swapon(entry.blk_device.c_str(), flags);
2152         if (err) {
2153             LERROR << "swapon failed for " << entry.blk_device;
2154             ret = false;
2155         }
2156     }
2157 
2158     return ret;
2159 }
2160 
fs_mgr_is_verity_enabled(const FstabEntry & entry)2161 bool fs_mgr_is_verity_enabled(const FstabEntry& entry) {
2162     if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) {
2163         return false;
2164     }
2165 
2166     DeviceMapper& dm = DeviceMapper::Instance();
2167 
2168     std::string mount_point = GetVerityDeviceName(entry);
2169     if (dm.GetState(mount_point) == DmDeviceState::INVALID) {
2170         return false;
2171     }
2172 
2173     const char* status;
2174     std::vector<DeviceMapper::TargetInfo> table;
2175     if (!dm.GetTableStatus(mount_point, &table) || table.empty() || table[0].data.empty()) {
2176         if (!entry.fs_mgr_flags.verify_at_boot) {
2177             return false;
2178         }
2179         status = "V";
2180     } else {
2181         status = table[0].data.c_str();
2182     }
2183 
2184     if (*status == 'C' || *status == 'V') {
2185         return true;
2186     }
2187 
2188     return false;
2189 }
2190 
fs_mgr_get_hashtree_algorithm(const android::fs_mgr::FstabEntry & entry)2191 std::string fs_mgr_get_hashtree_algorithm(const android::fs_mgr::FstabEntry& entry) {
2192     if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) {
2193         return "";
2194     }
2195     DeviceMapper& dm = DeviceMapper::Instance();
2196     std::string device = GetVerityDeviceName(entry);
2197 
2198     std::vector<DeviceMapper::TargetInfo> table;
2199     if (dm.GetState(device) == DmDeviceState::INVALID || !dm.GetTableInfo(device, &table)) {
2200         return "";
2201     }
2202     for (const auto& target : table) {
2203         if (strcmp(target.spec.target_type, "verity") != 0) {
2204             continue;
2205         }
2206 
2207         // The format is stable for dm-verity version 0 & 1. And the data is expected to have
2208         // the fixed format:
2209         // <version> <dev> <hash_dev> <data_block_size> <hash_block_size> <num_data_blocks>
2210         // <hash_start_block> <algorithm> <digest> <salt>
2211         // Details in https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html
2212 
2213         std::vector<std::string> tokens = android::base::Split(target.data, " \t\r\n");
2214         if (tokens[0] != "0" && tokens[0] != "1") {
2215             LOG(WARNING) << "Unrecognized device mapper version in " << target.data;
2216             return "";
2217         }
2218 
2219         // Hashtree algorithm is the 8th token in the output
2220         return android::base::Trim(tokens[7]);
2221     }
2222 
2223     return "";
2224 }
2225 
fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry & entry)2226 bool fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry& entry) {
2227     if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) {
2228         return false;
2229     }
2230 
2231     DeviceMapper& dm = DeviceMapper::Instance();
2232     std::string device = GetVerityDeviceName(entry);
2233 
2234     std::vector<DeviceMapper::TargetInfo> table;
2235     if (dm.GetState(device) == DmDeviceState::INVALID || !dm.GetTableInfo(device, &table)) {
2236         return false;
2237     }
2238     for (const auto& target : table) {
2239         if (strcmp(target.spec.target_type, "verity") == 0 &&
2240             target.data.find("check_at_most_once") != std::string::npos) {
2241             return true;
2242         }
2243     }
2244     return false;
2245 }
2246 
fs_mgr_get_super_partition_name(int slot)2247 std::string fs_mgr_get_super_partition_name(int slot) {
2248     // Devices upgrading to dynamic partitions are allowed to specify a super
2249     // partition name. This includes cuttlefish, which is a non-A/B device.
2250     std::string super_partition;
2251     if (fs_mgr_get_boot_config_from_bootconfig_source("super_partition", &super_partition) ||
2252         fs_mgr_get_boot_config_from_kernel_cmdline("super_partition", &super_partition)) {
2253         if (fs_mgr_get_slot_suffix().empty()) {
2254             return super_partition;
2255         }
2256         std::string suffix;
2257         if (slot == 0) {
2258             suffix = "_a";
2259         } else if (slot == 1) {
2260             suffix = "_b";
2261         } else if (slot == -1) {
2262             suffix = fs_mgr_get_slot_suffix();
2263         }
2264         return super_partition + suffix;
2265     }
2266     return LP_METADATA_DEFAULT_PARTITION_NAME;
2267 }
2268 
fs_mgr_create_canonical_mount_point(const std::string & mount_point)2269 bool fs_mgr_create_canonical_mount_point(const std::string& mount_point) {
2270     auto saved_errno = errno;
2271     auto ok = true;
2272     auto created_mount_point = !mkdir(mount_point.c_str(), 0755);
2273     std::string real_mount_point;
2274     if (!Realpath(mount_point, &real_mount_point)) {
2275         ok = false;
2276         PERROR << "failed to realpath(" << mount_point << ")";
2277     } else if (mount_point != real_mount_point) {
2278         ok = false;
2279         LERROR << "mount point is not canonical: realpath(" << mount_point << ") -> "
2280                << real_mount_point;
2281     }
2282     if (!ok && created_mount_point) {
2283         rmdir(mount_point.c_str());
2284     }
2285     errno = saved_errno;
2286     return ok;
2287 }
2288 
fs_mgr_mount_overlayfs_fstab_entry(const FstabEntry & entry)2289 bool fs_mgr_mount_overlayfs_fstab_entry(const FstabEntry& entry) {
2290     auto overlayfs_valid_result = fs_mgr_overlayfs_valid();
2291     if (overlayfs_valid_result == OverlayfsValidResult::kNotSupported) {
2292         LERROR << __FUNCTION__ << "(): kernel does not support overlayfs";
2293         return false;
2294     }
2295 
2296 #if ALLOW_ADBD_DISABLE_VERITY == 0
2297     // Allowlist the mount point if user build.
2298     static const std::vector<const std::string> kAllowedPaths = {
2299             "/odm", "/odm_dlkm", "/oem", "/product", "/system_ext", "/vendor", "/vendor_dlkm",
2300     };
2301     static const std::vector<const std::string> kAllowedPrefixes = {
2302             "/mnt/product/",
2303             "/mnt/vendor/",
2304     };
2305     if (std::none_of(kAllowedPaths.begin(), kAllowedPaths.end(),
2306                      [&entry](const auto& path) -> bool {
2307                          return entry.mount_point == path ||
2308                                 StartsWith(entry.mount_point, path + "/");
2309                      }) &&
2310         std::none_of(kAllowedPrefixes.begin(), kAllowedPrefixes.end(),
2311                      [&entry](const auto& prefix) -> bool {
2312                          return entry.mount_point != prefix &&
2313                                 StartsWith(entry.mount_point, prefix);
2314                      })) {
2315         LERROR << __FUNCTION__
2316                << "(): mount point is forbidden on user build: " << entry.mount_point;
2317         return false;
2318     }
2319 #endif  // ALLOW_ADBD_DISABLE_VERITY == 0
2320 
2321     if (!fs_mgr_create_canonical_mount_point(entry.mount_point)) {
2322         return false;
2323     }
2324 
2325     auto options = "lowerdir=" + entry.lowerdir;
2326     if (overlayfs_valid_result == OverlayfsValidResult::kOverrideCredsRequired) {
2327         options += ",override_creds=off";
2328     }
2329 
2330     // Use "overlay-" + entry.blk_device as the mount() source, so that adb-remout-test don't
2331     // confuse this with adb remount overlay, whose device name is "overlay".
2332     // Overlayfs is a pseudo filesystem, so the source device is a symbolic value and isn't used to
2333     // back the filesystem. However the device name would be shown in /proc/mounts.
2334     auto source = "overlay-" + entry.blk_device;
2335     auto report = "__mount(source=" + source + ",target=" + entry.mount_point + ",type=overlay," +
2336                   options + ")=";
2337     auto ret = mount(source.c_str(), entry.mount_point.c_str(), "overlay", MS_RDONLY | MS_NOATIME,
2338                      options.c_str());
2339     if (ret) {
2340         PERROR << report << ret;
2341         return false;
2342     }
2343     LINFO << report << ret;
2344     return true;
2345 }
2346