1 /*===--------------------------------------------------------------------------
2  *              ATMI (Asynchronous Task and Memory Interface)
3  *
4  * This file is distributed under the MIT License. See LICENSE.txt for details.
5  *===------------------------------------------------------------------------*/
6 #include <gelf.h>
7 #include <libelf.h>
8 
9 #include <cassert>
10 #include <cstdarg>
11 #include <fstream>
12 #include <iomanip>
13 #include <iostream>
14 #include <set>
15 #include <string>
16 
17 #include "internal.h"
18 #include "machine.h"
19 #include "rt.h"
20 
21 #include "msgpack.h"
22 
23 #define msgpackErrorCheck(msg, status)                                         \
24   if (status != 0) {                                                           \
25     printf("[%s:%d] %s failed\n", __FILE__, __LINE__, #msg);                   \
26     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;                               \
27   } else {                                                                     \
28   }
29 
30 typedef unsigned char *address;
31 /*
32  * Note descriptors.
33  */
34 typedef struct {
35   uint32_t n_namesz; /* Length of note's name. */
36   uint32_t n_descsz; /* Length of note's value. */
37   uint32_t n_type;   /* Type of note. */
38   // then name
39   // then padding, optional
40   // then desc, at 4 byte alignment (not 8, despite being elf64)
41 } Elf_Note;
42 
43 // The following include file and following structs/enums
44 // have been replicated on a per-use basis below. For example,
45 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
46 // but we may care only about kernargSegmentSize_ for now, so
47 // we just include that field in our KernelMD implementation. We
48 // chose this approach to replicate in order to avoid forcing
49 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
50 // #include "llvm/Support/AMDGPUMetadata.h"
51 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
52 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
53 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
54 // using llvm::AMDGPU::HSAMD::AccessQualifier;
55 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
56 // using llvm::AMDGPU::HSAMD::ValueKind;
57 // using llvm::AMDGPU::HSAMD::ValueType;
58 
59 class KernelArgMD {
60 public:
61   enum class ValueKind {
62     HiddenGlobalOffsetX,
63     HiddenGlobalOffsetY,
64     HiddenGlobalOffsetZ,
65     HiddenNone,
66     HiddenPrintfBuffer,
67     HiddenDefaultQueue,
68     HiddenCompletionAction,
69     HiddenMultiGridSyncArg,
70     HiddenHostcallBuffer,
71     Unknown
72   };
73 
KernelArgMD()74   KernelArgMD()
75       : name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
76         align_(0), valueKind_(ValueKind::Unknown) {}
77 
78   // fields
79   std::string name_;
80   std::string typeName_;
81   uint32_t size_;
82   uint32_t offset_;
83   uint32_t align_;
84   ValueKind valueKind_;
85 };
86 
87 class KernelMD {
88 public:
KernelMD()89   KernelMD() : kernargSegmentSize_(0ull) {}
90 
91   // fields
92   uint64_t kernargSegmentSize_;
93 };
94 
95 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
96     //    Including only those fields that are relevant to the runtime.
97     //    {"ByValue", KernelArgMD::ValueKind::ByValue},
98     //    {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
99     //    {"DynamicSharedPointer",
100     //    KernelArgMD::ValueKind::DynamicSharedPointer},
101     //    {"Sampler", KernelArgMD::ValueKind::Sampler},
102     //    {"Image", KernelArgMD::ValueKind::Image},
103     //    {"Pipe", KernelArgMD::ValueKind::Pipe},
104     //    {"Queue", KernelArgMD::ValueKind::Queue},
105     {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
106     {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
107     {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
108     {"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
109     {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
110     {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
111     {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
112     {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
113     {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
114     // v3
115     //    {"by_value", KernelArgMD::ValueKind::ByValue},
116     //    {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
117     //    {"dynamic_shared_pointer",
118     //    KernelArgMD::ValueKind::DynamicSharedPointer},
119     //    {"sampler", KernelArgMD::ValueKind::Sampler},
120     //    {"image", KernelArgMD::ValueKind::Image},
121     //    {"pipe", KernelArgMD::ValueKind::Pipe},
122     //    {"queue", KernelArgMD::ValueKind::Queue},
123     {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
124     {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
125     {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
126     {"hidden_none", KernelArgMD::ValueKind::HiddenNone},
127     {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
128     {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
129     {"hidden_completion_action",
130      KernelArgMD::ValueKind::HiddenCompletionAction},
131     {"hidden_multigrid_sync_arg",
132      KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
133     {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
134 };
135 
136 // public variables -- TODO(ashwinma) move these to a runtime object?
137 atmi_machine_t g_atmi_machine;
138 ATLMachine g_atl_machine;
139 
140 hsa_region_t atl_gpu_kernarg_region;
141 std::vector<hsa_amd_memory_pool_t> atl_gpu_kernarg_pools;
142 hsa_region_t atl_cpu_kernarg_region;
143 
144 static std::vector<hsa_executable_t> g_executables;
145 
146 std::map<std::string, std::string> KernelNameMap;
147 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable;
148 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable;
149 
150 bool g_atmi_initialized = false;
151 bool g_atmi_hostcall_required = false;
152 
153 struct timespec context_init_time;
154 int context_init_time_init = 0;
155 
156 /*
157    atlc is all internal global values.
158    The structure atl_context_t is defined in atl_internal.h
159    Most references will use the global structure prefix atlc.
160    However the pointer value atlc_p-> is equivalent to atlc.
161 
162 */
163 
164 atl_context_t atlc = {.struct_initialized = false};
165 atl_context_t *atlc_p = NULL;
166 
167 namespace core {
168 /* Machine Info */
GetMachineInfo()169 atmi_machine_t *Runtime::GetMachineInfo() {
170   if (!atlc.g_hsa_initialized)
171     return NULL;
172   return &g_atmi_machine;
173 }
174 
atl_set_atmi_initialized()175 void atl_set_atmi_initialized() {
176   // FIXME: thread safe? locks?
177   g_atmi_initialized = true;
178 }
179 
atl_reset_atmi_initialized()180 void atl_reset_atmi_initialized() {
181   // FIXME: thread safe? locks?
182   g_atmi_initialized = false;
183 }
184 
atl_is_atmi_initialized()185 bool atl_is_atmi_initialized() { return g_atmi_initialized; }
186 
allow_access_to_all_gpu_agents(void * ptr)187 void allow_access_to_all_gpu_agents(void *ptr) {
188   hsa_status_t err;
189   std::vector<ATLGPUProcessor> &gpu_procs =
190       g_atl_machine.processors<ATLGPUProcessor>();
191   std::vector<hsa_agent_t> agents;
192   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
193     agents.push_back(gpu_procs[i].agent());
194   }
195   err = hsa_amd_agents_allow_access(agents.size(), &agents[0], NULL, ptr);
196   ErrorCheck(Allow agents ptr access, err);
197 }
198 
Initialize()199 atmi_status_t Runtime::Initialize() {
200   atmi_devtype_t devtype = ATMI_DEVTYPE_GPU;
201   if (atl_is_atmi_initialized())
202     return ATMI_STATUS_SUCCESS;
203 
204   if (devtype == ATMI_DEVTYPE_ALL || devtype & ATMI_DEVTYPE_GPU) {
205     ATMIErrorCheck(GPU context init, atl_init_gpu_context());
206   }
207 
208   atl_set_atmi_initialized();
209   return ATMI_STATUS_SUCCESS;
210 }
211 
Finalize()212 atmi_status_t Runtime::Finalize() {
213   // TODO(ashwinma): Finalize all processors, queues, signals, kernarg memory
214   // regions
215   hsa_status_t err;
216 
217   for (uint32_t i = 0; i < g_executables.size(); i++) {
218     err = hsa_executable_destroy(g_executables[i]);
219     ErrorCheck(Destroying executable, err);
220   }
221 
222   for (uint32_t i = 0; i < SymbolInfoTable.size(); i++) {
223     SymbolInfoTable[i].clear();
224   }
225   SymbolInfoTable.clear();
226   for (uint32_t i = 0; i < KernelInfoTable.size(); i++) {
227     KernelInfoTable[i].clear();
228   }
229   KernelInfoTable.clear();
230 
231   atl_reset_atmi_initialized();
232   err = hsa_shut_down();
233   ErrorCheck(Shutting down HSA, err);
234 
235   return ATMI_STATUS_SUCCESS;
236 }
237 
atmi_init_context_structs()238 void atmi_init_context_structs() {
239   atlc_p = &atlc;
240   atlc.struct_initialized = true; /* This only gets called one time */
241   atlc.g_hsa_initialized = false;
242   atlc.g_gpu_initialized = false;
243   atlc.g_tasks_initialized = false;
244 }
245 
246 // Implement memory_pool iteration function
get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,void * data)247 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,
248                                          void *data) {
249   ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data);
250   hsa_status_t err = HSA_STATUS_SUCCESS;
251   // Check if the memory_pool is allowed to allocate, i.e. do not return group
252   // memory
253   bool alloc_allowed = false;
254   err = hsa_amd_memory_pool_get_info(
255       memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
256       &alloc_allowed);
257   ErrorCheck(Alloc allowed in memory pool check, err);
258   if (alloc_allowed) {
259     uint32_t global_flag = 0;
260     err = hsa_amd_memory_pool_get_info(
261         memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag);
262     ErrorCheck(Get memory pool info, err);
263     if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) {
264       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED);
265       proc->addMemory(new_mem);
266       if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT & global_flag) {
267         DEBUG_PRINT("GPU kernel args pool handle: %lu\n", memory_pool.handle);
268         atl_gpu_kernarg_pools.push_back(memory_pool);
269       }
270     } else {
271       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED);
272       proc->addMemory(new_mem);
273     }
274   }
275 
276   return err;
277 }
278 
get_agent_info(hsa_agent_t agent,void * data)279 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) {
280   hsa_status_t err = HSA_STATUS_SUCCESS;
281   hsa_device_type_t device_type;
282   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
283   ErrorCheck(Get device type info, err);
284   switch (device_type) {
285   case HSA_DEVICE_TYPE_CPU: {
286     ;
287     ATLCPUProcessor new_proc(agent);
288     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
289                                              &new_proc);
290     ErrorCheck(Iterate all memory pools, err);
291     g_atl_machine.addProcessor(new_proc);
292   } break;
293   case HSA_DEVICE_TYPE_GPU: {
294     ;
295     hsa_profile_t profile;
296     err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile);
297     ErrorCheck(Query the agent profile, err);
298     atmi_devtype_t gpu_type;
299     gpu_type =
300         (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU;
301     ATLGPUProcessor new_proc(agent, gpu_type);
302     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
303                                              &new_proc);
304     ErrorCheck(Iterate all memory pools, err);
305     g_atl_machine.addProcessor(new_proc);
306   } break;
307   case HSA_DEVICE_TYPE_DSP: {
308     err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
309   } break;
310   }
311 
312   return err;
313 }
314 
get_fine_grained_region(hsa_region_t region,void * data)315 hsa_status_t get_fine_grained_region(hsa_region_t region, void *data) {
316   hsa_region_segment_t segment;
317   hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
318   if (segment != HSA_REGION_SEGMENT_GLOBAL) {
319     return HSA_STATUS_SUCCESS;
320   }
321   hsa_region_global_flag_t flags;
322   hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
323   if (flags & HSA_REGION_GLOBAL_FLAG_FINE_GRAINED) {
324     hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
325     *ret = region;
326     return HSA_STATUS_INFO_BREAK;
327   }
328   return HSA_STATUS_SUCCESS;
329 }
330 
331 /* Determines if a memory region can be used for kernarg allocations.  */
get_kernarg_memory_region(hsa_region_t region,void * data)332 static hsa_status_t get_kernarg_memory_region(hsa_region_t region, void *data) {
333   hsa_region_segment_t segment;
334   hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
335   if (HSA_REGION_SEGMENT_GLOBAL != segment) {
336     return HSA_STATUS_SUCCESS;
337   }
338 
339   hsa_region_global_flag_t flags;
340   hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
341   if (flags & HSA_REGION_GLOBAL_FLAG_KERNARG) {
342     hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
343     *ret = region;
344     return HSA_STATUS_INFO_BREAK;
345   }
346 
347   return HSA_STATUS_SUCCESS;
348 }
349 
init_compute_and_memory()350 static hsa_status_t init_compute_and_memory() {
351   hsa_status_t err;
352 
353   /* Iterate over the agents and pick the gpu agent */
354   err = hsa_iterate_agents(get_agent_info, NULL);
355   if (err == HSA_STATUS_INFO_BREAK) {
356     err = HSA_STATUS_SUCCESS;
357   }
358   ErrorCheck(Getting a gpu agent, err);
359   if (err != HSA_STATUS_SUCCESS)
360     return err;
361 
362   /* Init all devices or individual device types? */
363   std::vector<ATLCPUProcessor> &cpu_procs =
364       g_atl_machine.processors<ATLCPUProcessor>();
365   std::vector<ATLGPUProcessor> &gpu_procs =
366       g_atl_machine.processors<ATLGPUProcessor>();
367   /* For CPU memory pools, add other devices that can access them directly
368    * or indirectly */
369   for (auto &cpu_proc : cpu_procs) {
370     for (auto &cpu_mem : cpu_proc.memories()) {
371       hsa_amd_memory_pool_t pool = cpu_mem.memory();
372       for (auto &gpu_proc : gpu_procs) {
373         hsa_agent_t agent = gpu_proc.agent();
374         hsa_amd_memory_pool_access_t access;
375         hsa_amd_agent_memory_pool_get_info(
376             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
377         if (access != 0) {
378           // this means not NEVER, but could be YES or NO
379           // add this memory pool to the proc
380           gpu_proc.addMemory(cpu_mem);
381         }
382       }
383     }
384   }
385 
386   /* FIXME: are the below combinations of procs and memory pools needed?
387    * all to all compare procs with their memory pools and add those memory
388    * pools that are accessible by the target procs */
389   for (auto &gpu_proc : gpu_procs) {
390     for (auto &gpu_mem : gpu_proc.memories()) {
391       hsa_amd_memory_pool_t pool = gpu_mem.memory();
392       for (auto &cpu_proc : cpu_procs) {
393         hsa_agent_t agent = cpu_proc.agent();
394         hsa_amd_memory_pool_access_t access;
395         hsa_amd_agent_memory_pool_get_info(
396             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
397         if (access != 0) {
398           // this means not NEVER, but could be YES or NO
399           // add this memory pool to the proc
400           cpu_proc.addMemory(gpu_mem);
401         }
402       }
403     }
404   }
405 
406   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_CPU] = cpu_procs.size();
407   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_GPU] = gpu_procs.size();
408 
409   size_t num_procs = cpu_procs.size() + gpu_procs.size();
410   // g_atmi_machine.devices = (atmi_device_t *)malloc(num_procs *
411   // sizeof(atmi_device_t));
412   atmi_device_t *all_devices = reinterpret_cast<atmi_device_t *>(
413       malloc(num_procs * sizeof(atmi_device_t)));
414   int num_iGPUs = 0;
415   int num_dGPUs = 0;
416   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
417     if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU)
418       num_iGPUs++;
419     else
420       num_dGPUs++;
421   }
422   assert(num_iGPUs + num_dGPUs == gpu_procs.size() &&
423          "Number of dGPUs and iGPUs do not add up");
424   DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size());
425   DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs);
426   DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs);
427   DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size());
428 
429   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_iGPU] = num_iGPUs;
430   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_dGPU] = num_dGPUs;
431 
432   int cpus_begin = 0;
433   int cpus_end = cpu_procs.size();
434   int gpus_begin = cpu_procs.size();
435   int gpus_end = cpu_procs.size() + gpu_procs.size();
436   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_CPU] = &all_devices[cpus_begin];
437   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_GPU] = &all_devices[gpus_begin];
438   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_iGPU] = &all_devices[gpus_begin];
439   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_dGPU] = &all_devices[gpus_begin];
440   int proc_index = 0;
441   for (int i = cpus_begin; i < cpus_end; i++) {
442     all_devices[i].type = cpu_procs[proc_index].type();
443 
444     std::vector<ATLMemory> memories = cpu_procs[proc_index].memories();
445     int fine_memories_size = 0;
446     int coarse_memories_size = 0;
447     DEBUG_PRINT("CPU memory types:\t");
448     for (auto &memory : memories) {
449       atmi_memtype_t type = memory.type();
450       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
451         fine_memories_size++;
452         DEBUG_PRINT("Fine\t");
453       } else {
454         coarse_memories_size++;
455         DEBUG_PRINT("Coarse\t");
456       }
457     }
458     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
459     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
460     proc_index++;
461   }
462   proc_index = 0;
463   for (int i = gpus_begin; i < gpus_end; i++) {
464     all_devices[i].type = gpu_procs[proc_index].type();
465 
466     std::vector<ATLMemory> memories = gpu_procs[proc_index].memories();
467     int fine_memories_size = 0;
468     int coarse_memories_size = 0;
469     DEBUG_PRINT("GPU memory types:\t");
470     for (auto &memory : memories) {
471       atmi_memtype_t type = memory.type();
472       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
473         fine_memories_size++;
474         DEBUG_PRINT("Fine\t");
475       } else {
476         coarse_memories_size++;
477         DEBUG_PRINT("Coarse\t");
478       }
479     }
480     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
481     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
482     proc_index++;
483   }
484   proc_index = 0;
485   atl_cpu_kernarg_region.handle = (uint64_t)-1;
486   if (cpu_procs.size() > 0) {
487     err = hsa_agent_iterate_regions(
488         cpu_procs[0].agent(), get_fine_grained_region, &atl_cpu_kernarg_region);
489     if (err == HSA_STATUS_INFO_BREAK) {
490       err = HSA_STATUS_SUCCESS;
491     }
492     err = (atl_cpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
493                                                           : HSA_STATUS_SUCCESS;
494     ErrorCheck(Finding a CPU kernarg memory region handle, err);
495   }
496   /* Find a memory region that supports kernel arguments.  */
497   atl_gpu_kernarg_region.handle = (uint64_t)-1;
498   if (gpu_procs.size() > 0) {
499     hsa_agent_iterate_regions(gpu_procs[0].agent(), get_kernarg_memory_region,
500                               &atl_gpu_kernarg_region);
501     err = (atl_gpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
502                                                           : HSA_STATUS_SUCCESS;
503     ErrorCheck(Finding a kernarg memory region, err);
504   }
505   if (num_procs > 0)
506     return HSA_STATUS_SUCCESS;
507   else
508     return HSA_STATUS_ERROR_NOT_INITIALIZED;
509 }
510 
init_hsa()511 hsa_status_t init_hsa() {
512   if (atlc.g_hsa_initialized == false) {
513     DEBUG_PRINT("Initializing HSA...");
514     hsa_status_t err = hsa_init();
515     ErrorCheck(Initializing the hsa runtime, err);
516     if (err != HSA_STATUS_SUCCESS)
517       return err;
518 
519     err = init_compute_and_memory();
520     if (err != HSA_STATUS_SUCCESS)
521       return err;
522     ErrorCheck(After initializing compute and memory, err);
523 
524     int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>();
525     KernelInfoTable.resize(gpu_count);
526     SymbolInfoTable.resize(gpu_count);
527     for (uint32_t i = 0; i < SymbolInfoTable.size(); i++)
528       SymbolInfoTable[i].clear();
529     for (uint32_t i = 0; i < KernelInfoTable.size(); i++)
530       KernelInfoTable[i].clear();
531     atlc.g_hsa_initialized = true;
532     DEBUG_PRINT("done\n");
533   }
534   return HSA_STATUS_SUCCESS;
535 }
536 
init_tasks()537 void init_tasks() {
538   if (atlc.g_tasks_initialized != false)
539     return;
540   std::vector<hsa_agent_t> gpu_agents;
541   int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>();
542   for (int gpu = 0; gpu < gpu_count; gpu++) {
543     atmi_place_t place = ATMI_PLACE_GPU(0, gpu);
544     ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place);
545     gpu_agents.push_back(proc.agent());
546   }
547   atlc.g_tasks_initialized = true;
548 }
549 
callbackEvent(const hsa_amd_event_t * event,void * data)550 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
551 #if (ROCM_VERSION_MAJOR >= 3) ||                                               \
552     (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3)
553   if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
554 #else
555   if (event->event_type == GPU_MEMORY_FAULT_EVENT) {
556 #endif
557     hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
558     // memory_fault.agent
559     // memory_fault.virtual_address
560     // memory_fault.fault_reason_mask
561     // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
562     std::stringstream stream;
563     stream << std::hex << (uintptr_t)memory_fault.virtual_address;
564     std::string addr("0x" + stream.str());
565 
566     std::string err_string = "[GPU Memory Error] Addr: " + addr;
567     err_string += " Reason: ";
568     if (!(memory_fault.fault_reason_mask & 0x00111111)) {
569       err_string += "No Idea! ";
570     } else {
571       if (memory_fault.fault_reason_mask & 0x00000001)
572         err_string += "Page not present or supervisor privilege. ";
573       if (memory_fault.fault_reason_mask & 0x00000010)
574         err_string += "Write access to a read-only page. ";
575       if (memory_fault.fault_reason_mask & 0x00000100)
576         err_string += "Execute access to a page marked NX. ";
577       if (memory_fault.fault_reason_mask & 0x00001000)
578         err_string += "Host access only. ";
579       if (memory_fault.fault_reason_mask & 0x00010000)
580         err_string += "ECC failure (if supported by HW). ";
581       if (memory_fault.fault_reason_mask & 0x00100000)
582         err_string += "Can't determine the exact fault address. ";
583     }
584     fprintf(stderr, "%s\n", err_string.c_str());
585     return HSA_STATUS_ERROR;
586   }
587   return HSA_STATUS_SUCCESS;
588 }
589 
590 atmi_status_t atl_init_gpu_context() {
591   if (atlc.struct_initialized == false)
592     atmi_init_context_structs();
593   if (atlc.g_gpu_initialized != false)
594     return ATMI_STATUS_SUCCESS;
595 
596   hsa_status_t err;
597   err = init_hsa();
598   if (err != HSA_STATUS_SUCCESS)
599     return ATMI_STATUS_ERROR;
600 
601   if (context_init_time_init == 0) {
602     clock_gettime(CLOCK_MONOTONIC_RAW, &context_init_time);
603     context_init_time_init = 1;
604   }
605 
606   err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
607     ErrorCheck(Registering the system for memory faults, err);
608 
609     init_tasks();
610     atlc.g_gpu_initialized = true;
611     return ATMI_STATUS_SUCCESS;
612 }
613 
614 bool isImplicit(KernelArgMD::ValueKind value_kind) {
615   switch (value_kind) {
616   case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
617   case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
618   case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
619   case KernelArgMD::ValueKind::HiddenNone:
620   case KernelArgMD::ValueKind::HiddenPrintfBuffer:
621   case KernelArgMD::ValueKind::HiddenDefaultQueue:
622   case KernelArgMD::ValueKind::HiddenCompletionAction:
623   case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
624   case KernelArgMD::ValueKind::HiddenHostcallBuffer:
625     return true;
626   default:
627     return false;
628   }
629 }
630 
631 static std::pair<unsigned char *, unsigned char *>
632 find_metadata(void *binary, size_t binSize) {
633   std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
634 
635   Elf *e = elf_memory(static_cast<char *>(binary), binSize);
636   if (elf_kind(e) != ELF_K_ELF) {
637     return failure;
638   }
639 
640   size_t numpHdrs;
641   if (elf_getphdrnum(e, &numpHdrs) != 0) {
642     return failure;
643   }
644 
645   for (size_t i = 0; i < numpHdrs; ++i) {
646     GElf_Phdr pHdr;
647     if (gelf_getphdr(e, i, &pHdr) != &pHdr) {
648       continue;
649     }
650     // Look for the runtime metadata note
651     if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
652       // Iterate over the notes in this segment
653       address ptr = (address)binary + pHdr.p_offset;
654       address segmentEnd = ptr + pHdr.p_filesz;
655 
656       while (ptr < segmentEnd) {
657         Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
658         address name = (address)&note[1];
659 
660         if (note->n_type == 7 || note->n_type == 8) {
661           return failure;
662         } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
663                    note->n_namesz == sizeof "AMD" &&
664                    !memcmp(name, "AMD", note->n_namesz)) {
665           // code object v2 uses yaml metadata, no longer supported
666           return failure;
667         } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
668                    note->n_namesz == sizeof "AMDGPU" &&
669                    !memcmp(name, "AMDGPU", note->n_namesz)) {
670 
671           // n_descsz = 485
672           // value is padded to 4 byte alignment, may want to move end up to
673           // match
674           size_t offset = sizeof(uint32_t) * 3 /* fields */
675                           + sizeof("AMDGPU")   /* name */
676                           + 1 /* padding to 4 byte alignment */;
677 
678           // Including the trailing padding means both pointers are 4 bytes
679           // aligned, which may be useful later.
680           unsigned char *metadata_start = (unsigned char *)ptr + offset;
681           unsigned char *metadata_end =
682               metadata_start + core::alignUp(note->n_descsz, 4);
683           return {metadata_start, metadata_end};
684         }
685         ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
686                core::alignUp(note->n_descsz, sizeof(int));
687       }
688     }
689   }
690 
691   return failure;
692 }
693 
694 namespace {
695 int map_lookup_array(msgpack::byte_range message, const char *needle,
696                      msgpack::byte_range *res, uint64_t *size) {
697   unsigned count = 0;
698   struct s : msgpack::functors_defaults<s> {
699     s(unsigned &count, uint64_t *size) : count(count), size(size) {}
700     unsigned &count;
701     uint64_t *size;
702     const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
703       count++;
704       *size = N;
705       return bytes.end;
706     }
707   };
708 
709   msgpack::foreach_map(message,
710                        [&](msgpack::byte_range key, msgpack::byte_range value) {
711                          if (msgpack::message_is_string(key, needle)) {
712                            // If the message is an array, record number of
713                            // elements in *size
714                            msgpack::handle_msgpack<s>(value, {count, size});
715                            // return the whole array
716                            *res = value;
717                          }
718                        });
719   // Only claim success if exactly one key/array pair matched
720   return count != 1;
721 }
722 
723 int map_lookup_string(msgpack::byte_range message, const char *needle,
724                       std::string *res) {
725   unsigned count = 0;
726   struct s : public msgpack::functors_defaults<s> {
727     s(unsigned &count, std::string *res) : count(count), res(res) {}
728     unsigned &count;
729     std::string *res;
730     void handle_string(size_t N, const unsigned char *str) {
731       count++;
732       *res = std::string(str, str + N);
733     }
734   };
735   msgpack::foreach_map(message,
736                        [&](msgpack::byte_range key, msgpack::byte_range value) {
737                          if (msgpack::message_is_string(key, needle)) {
738                            msgpack::handle_msgpack<s>(value, {count, res});
739                          }
740                        });
741   return count != 1;
742 }
743 
744 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
745                         uint64_t *res) {
746   unsigned count = 0;
747   msgpack::foreach_map(message,
748                        [&](msgpack::byte_range key, msgpack::byte_range value) {
749                          if (msgpack::message_is_string(key, needle)) {
750                            msgpack::foronly_unsigned(value, [&](uint64_t x) {
751                              count++;
752                              *res = x;
753                            });
754                          }
755                        });
756   return count != 1;
757 }
758 
759 int array_lookup_element(msgpack::byte_range message, uint64_t elt,
760                          msgpack::byte_range *res) {
761   int rc = 1;
762   uint64_t i = 0;
763   msgpack::foreach_array(message, [&](msgpack::byte_range value) {
764     if (i == elt) {
765       *res = value;
766       rc = 0;
767     }
768     i++;
769   });
770   return rc;
771 }
772 
773 int populate_kernelArgMD(msgpack::byte_range args_element,
774                          KernelArgMD *kernelarg) {
775   using namespace msgpack;
776   int error = 0;
777   foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
778     if (message_is_string(key, ".name")) {
779       foronly_string(value, [&](size_t N, const unsigned char *str) {
780         kernelarg->name_ = std::string(str, str + N);
781       });
782     } else if (message_is_string(key, ".type_name")) {
783       foronly_string(value, [&](size_t N, const unsigned char *str) {
784         kernelarg->typeName_ = std::string(str, str + N);
785       });
786     } else if (message_is_string(key, ".size")) {
787       foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
788     } else if (message_is_string(key, ".offset")) {
789       foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
790     } else if (message_is_string(key, ".value_kind")) {
791       foronly_string(value, [&](size_t N, const unsigned char *str) {
792         std::string s = std::string(str, str + N);
793         auto itValueKind = ArgValueKind.find(s);
794         if (itValueKind != ArgValueKind.end()) {
795           kernelarg->valueKind_ = itValueKind->second;
796         }
797       });
798     }
799   });
800   return error;
801 }
802 } // namespace
803 
804 static hsa_status_t get_code_object_custom_metadata(void *binary,
805                                                     size_t binSize, int gpu) {
806   // parse code object with different keys from v2
807   // also, the kernel name is not the same as the symbol name -- so a
808   // symbol->name map is needed
809 
810   std::pair<unsigned char *, unsigned char *> metadata =
811       find_metadata(binary, binSize);
812   if (!metadata.first) {
813     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
814   }
815 
816   uint64_t kernelsSize = 0;
817   int msgpack_errors = 0;
818   msgpack::byte_range kernel_array;
819   msgpack_errors =
820       map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
821                        &kernel_array, &kernelsSize);
822   msgpackErrorCheck(kernels lookup in program metadata, msgpack_errors);
823 
824   for (size_t i = 0; i < kernelsSize; i++) {
825     assert(msgpack_errors == 0);
826     std::string kernelName;
827     std::string languageName;
828     std::string symbolName;
829 
830     msgpack::byte_range element;
831     msgpack_errors += array_lookup_element(kernel_array, i, &element);
832     msgpackErrorCheck(element lookup in kernel metadata, msgpack_errors);
833 
834     msgpack_errors += map_lookup_string(element, ".name", &kernelName);
835     msgpack_errors += map_lookup_string(element, ".language", &languageName);
836     msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
837     msgpackErrorCheck(strings lookup in kernel metadata, msgpack_errors);
838 
839     atl_kernel_info_t info = {0, 0, 0, 0, 0, {}, {}, {}};
840     size_t kernel_explicit_args_size = 0;
841     uint64_t kernel_segment_size;
842     msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
843                                           &kernel_segment_size);
844     msgpackErrorCheck(kernarg segment size metadata lookup in kernel metadata,
845                       msgpack_errors);
846 
847     // create a map from symbol to name
848     DEBUG_PRINT("Kernel symbol %s; Name: %s; Size: %lu\n", symbolName.c_str(),
849                 kernelName.c_str(), kernel_segment_size);
850     KernelNameMap[symbolName] = kernelName;
851 
852     bool hasHiddenArgs = false;
853     if (kernel_segment_size > 0) {
854       uint64_t argsSize;
855       size_t offset = 0;
856 
857       msgpack::byte_range args_array;
858       msgpack_errors +=
859           map_lookup_array(element, ".args", &args_array, &argsSize);
860       msgpackErrorCheck(kernel args metadata lookup in kernel metadata,
861                         msgpack_errors);
862 
863       info.num_args = argsSize;
864 
865       for (size_t i = 0; i < argsSize; ++i) {
866         KernelArgMD lcArg;
867 
868         msgpack::byte_range args_element;
869         msgpack_errors += array_lookup_element(args_array, i, &args_element);
870         msgpackErrorCheck(iterate args map in kernel args metadata,
871                           msgpack_errors);
872 
873         msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
874         msgpackErrorCheck(iterate args map in kernel args metadata,
875                           msgpack_errors);
876 
877         // TODO(ashwinma): should the below population actions be done only for
878         // non-implicit args?
879         // populate info with sizes and offsets
880         info.arg_sizes.push_back(lcArg.size_);
881         // v3 has offset field and not align field
882         size_t new_offset = lcArg.offset_;
883         size_t padding = new_offset - offset;
884         offset = new_offset;
885         info.arg_offsets.push_back(lcArg.offset_);
886         DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(),
887                     lcArg.size_, lcArg.offset_);
888         offset += lcArg.size_;
889 
890         // check if the arg is a hidden/implicit arg
891         // this logic assumes that all hidden args are 8-byte aligned
892         if (!isImplicit(lcArg.valueKind_)) {
893           kernel_explicit_args_size += lcArg.size_;
894         } else {
895           hasHiddenArgs = true;
896         }
897         kernel_explicit_args_size += padding;
898       }
899     }
900 
901     // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
902     // in ATMI, do not count the compiler set implicit args, but set your own
903     // implicit args by discounting the compiler set implicit args
904     info.kernel_segment_size =
905         (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
906         sizeof(atmi_implicit_args_t);
907     DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
908                 kernel_segment_size, info.kernel_segment_size);
909 
910     // kernel received, now add it to the kernel info table
911     KernelInfoTable[gpu][kernelName] = info;
912   }
913 
914   return HSA_STATUS_SUCCESS;
915 }
916 
917 static hsa_status_t populate_InfoTables(hsa_executable_t executable,
918                                         hsa_executable_symbol_t symbol,
919                                         void *data) {
920   int gpu = *static_cast<int *>(data);
921   hsa_symbol_kind_t type;
922 
923   uint32_t name_length;
924   hsa_status_t err;
925   err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
926                                        &type);
927   ErrorCheck(Symbol info extraction, err);
928   DEBUG_PRINT("Exec Symbol type: %d\n", type);
929   if (type == HSA_SYMBOL_KIND_KERNEL) {
930     err = hsa_executable_symbol_get_info(
931         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
932     ErrorCheck(Symbol info extraction, err);
933     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
934     err = hsa_executable_symbol_get_info(symbol,
935                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
936     ErrorCheck(Symbol info extraction, err);
937     name[name_length] = 0;
938 
939     if (KernelNameMap.find(std::string(name)) == KernelNameMap.end()) {
940       // did not find kernel name in the kernel map; this can happen only
941       // if the ROCr API for getting symbol info (name) is different from
942       // the comgr method of getting symbol info
943       ErrorCheck(Invalid kernel name, HSA_STATUS_ERROR_INVALID_CODE_OBJECT);
944     }
945     atl_kernel_info_t info;
946     std::string kernelName = KernelNameMap[std::string(name)];
947     // by now, the kernel info table should already have an entry
948     // because the non-ROCr custom code object parsing is called before
949     // iterating over the code object symbols using ROCr
950     if (KernelInfoTable[gpu].find(kernelName) == KernelInfoTable[gpu].end()) {
951       ErrorCheck(Finding the entry kernel info table,
952                  HSA_STATUS_ERROR_INVALID_CODE_OBJECT);
953     }
954     // found, so assign and update
955     info = KernelInfoTable[gpu][kernelName];
956 
957     /* Extract dispatch information from the symbol */
958     err = hsa_executable_symbol_get_info(
959         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
960         &(info.kernel_object));
961     ErrorCheck(Extracting the symbol from the executable, err);
962     err = hsa_executable_symbol_get_info(
963         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
964         &(info.group_segment_size));
965     ErrorCheck(Extracting the group segment size from the executable, err);
966     err = hsa_executable_symbol_get_info(
967         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
968         &(info.private_segment_size));
969     ErrorCheck(Extracting the private segment from the executable, err);
970 
971     DEBUG_PRINT(
972         "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
973         "kernarg\n",
974         kernelName.c_str(), info.kernel_object, info.group_segment_size,
975         info.private_segment_size, info.kernel_segment_size);
976 
977     // assign it back to the kernel info table
978     KernelInfoTable[gpu][kernelName] = info;
979     free(name);
980   } else if (type == HSA_SYMBOL_KIND_VARIABLE) {
981     err = hsa_executable_symbol_get_info(
982         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
983     ErrorCheck(Symbol info extraction, err);
984     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
985     err = hsa_executable_symbol_get_info(symbol,
986                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
987     ErrorCheck(Symbol info extraction, err);
988     name[name_length] = 0;
989 
990     atl_symbol_info_t info;
991 
992     err = hsa_executable_symbol_get_info(
993         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
994     ErrorCheck(Symbol info address extraction, err);
995 
996     err = hsa_executable_symbol_get_info(
997         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
998     ErrorCheck(Symbol info size extraction, err);
999 
1000     atmi_mem_place_t place = ATMI_MEM_PLACE(ATMI_DEVTYPE_GPU, gpu, 0);
1001     DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr,
1002                 info.size);
1003     register_allocation(reinterpret_cast<void *>(info.addr), (size_t)info.size,
1004                         place);
1005     SymbolInfoTable[gpu][std::string(name)] = info;
1006     if (strcmp(name, "needs_hostcall_buffer") == 0)
1007       g_atmi_hostcall_required = true;
1008     free(name);
1009   } else {
1010     DEBUG_PRINT("Symbol is an indirect function\n");
1011   }
1012   return HSA_STATUS_SUCCESS;
1013 }
1014 
1015 atmi_status_t Runtime::RegisterModuleFromMemory(
1016     void *module_bytes, size_t module_size, atmi_place_t place,
1017     atmi_status_t (*on_deserialized_data)(void *data, size_t size,
1018                                           void *cb_state),
1019     void *cb_state) {
1020   hsa_status_t err;
1021   int gpu = place.device_id;
1022   assert(gpu >= 0);
1023 
1024   DEBUG_PRINT("Trying to load module to GPU-%d\n", gpu);
1025   ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place);
1026   hsa_agent_t agent = proc.agent();
1027   hsa_executable_t executable = {0};
1028   hsa_profile_t agent_profile;
1029 
1030   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
1031   ErrorCheck(Query the agent profile, err);
1032   // FIXME: Assume that every profile is FULL until we understand how to build
1033   // GCN with base profile
1034   agent_profile = HSA_PROFILE_FULL;
1035   /* Create the empty executable.  */
1036   err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
1037                               &executable);
1038   ErrorCheck(Create the executable, err);
1039 
1040   bool module_load_success = false;
1041   do // Existing control flow used continue, preserve that for this patch
1042   {
1043     {
1044       // Some metadata info is not available through ROCr API, so use custom
1045       // code object metadata parsing to collect such metadata info
1046 
1047       err = get_code_object_custom_metadata(module_bytes, module_size, gpu);
1048       ErrorCheckAndContinue(Getting custom code object metadata, err);
1049 
1050       // Deserialize code object.
1051       hsa_code_object_t code_object = {0};
1052       err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
1053                                         &code_object);
1054       ErrorCheckAndContinue(Code Object Deserialization, err);
1055       assert(0 != code_object.handle);
1056 
1057       // Mutating the device image here avoids another allocation & memcpy
1058       void *code_object_alloc_data =
1059           reinterpret_cast<void *>(code_object.handle);
1060       atmi_status_t atmi_err =
1061           on_deserialized_data(code_object_alloc_data, module_size, cb_state);
1062       ATMIErrorCheck(Error in deserialized_data callback, atmi_err);
1063 
1064       /* Load the code object.  */
1065       err =
1066           hsa_executable_load_code_object(executable, agent, code_object, NULL);
1067       ErrorCheckAndContinue(Loading the code object, err);
1068 
1069       // cannot iterate over symbols until executable is frozen
1070     }
1071     module_load_success = true;
1072   } while (0);
1073   DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success);
1074   if (module_load_success) {
1075     /* Freeze the executable; it can now be queried for symbols.  */
1076     err = hsa_executable_freeze(executable, "");
1077     ErrorCheck(Freeze the executable, err);
1078 
1079     err = hsa_executable_iterate_symbols(executable, populate_InfoTables,
1080                                          static_cast<void *>(&gpu));
1081     ErrorCheck(Iterating over symbols for execuatable, err);
1082 
1083     // save the executable and destroy during finalize
1084     g_executables.push_back(executable);
1085     return ATMI_STATUS_SUCCESS;
1086   } else {
1087     return ATMI_STATUS_ERROR;
1088   }
1089 }
1090 
1091 } // namespace core
1092