1 /*
2  * This file derives from SFMT 1.3.3
3  * (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
4  * released under the terms of the following license:
5  *
6  *   Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
7  *   University. All rights reserved.
8  *
9  *   Redistribution and use in source and binary forms, with or without
10  *   modification, are permitted provided that the following conditions are
11  *   met:
12  *
13  *       * Redistributions of source code must retain the above copyright
14  *         notice, this list of conditions and the following disclaimer.
15  *       * Redistributions in binary form must reproduce the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer in the documentation and/or other materials provided
18  *         with the distribution.
19  *       * Neither the name of the Hiroshima University nor the names of
20  *         its contributors may be used to endorse or promote products
21  *         derived from this software without specific prior written
22  *         permission.
23  *
24  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
29  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
30  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 /**
37  * @file  SFMT.c
38  * @brief SIMD oriented Fast Mersenne Twister(SFMT)
39  *
40  * @author Mutsuo Saito (Hiroshima University)
41  * @author Makoto Matsumoto (Hiroshima University)
42  *
43  * Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
44  * University. All rights reserved.
45  *
46  * The new BSD License is applied to this software, see LICENSE.txt
47  */
48 #define SFMT_C_
49 #include "test/jemalloc_test.h"
50 #include "test/SFMT-params.h"
51 
52 #if defined(JEMALLOC_BIG_ENDIAN) && !defined(BIG_ENDIAN64)
53 #define BIG_ENDIAN64 1
54 #endif
55 #if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64)
56 #define BIG_ENDIAN64 1
57 #endif
58 #if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64)
59 #define BIG_ENDIAN64 1
60 #endif
61 #if defined(ONLY64) && !defined(BIG_ENDIAN64)
62   #if defined(__GNUC__)
63     #error "-DONLY64 must be specified with -DBIG_ENDIAN64"
64   #endif
65 #undef ONLY64
66 #endif
67 /*------------------------------------------------------
68   128-bit SIMD data type for Altivec, SSE2 or standard C
69   ------------------------------------------------------*/
70 #if defined(HAVE_ALTIVEC)
71 /** 128-bit data structure */
72 union W128_T {
73     vector unsigned int s;
74     uint32_t u[4];
75 };
76 /** 128-bit data type */
77 typedef union W128_T w128_t;
78 
79 #elif defined(HAVE_SSE2)
80 /** 128-bit data structure */
81 union W128_T {
82     __m128i si;
83     uint32_t u[4];
84 };
85 /** 128-bit data type */
86 typedef union W128_T w128_t;
87 
88 #else
89 
90 /** 128-bit data structure */
91 struct W128_T {
92     uint32_t u[4];
93 };
94 /** 128-bit data type */
95 typedef struct W128_T w128_t;
96 
97 #endif
98 
99 struct sfmt_s {
100     /** the 128-bit internal state array */
101     w128_t sfmt[N];
102     /** index counter to the 32-bit internal state array */
103     int idx;
104     /** a flag: it is 0 if and only if the internal state is not yet
105      * initialized. */
106     int initialized;
107 };
108 
109 /*--------------------------------------
110   FILE GLOBAL VARIABLES
111   internal state, index counter and flag
112   --------------------------------------*/
113 
114 /** a parity check vector which certificate the period of 2^{MEXP} */
115 static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4};
116 
117 /*----------------
118   STATIC FUNCTIONS
119   ----------------*/
120 static inline int idxof(int i);
121 #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
122 static inline void rshift128(w128_t *out,  w128_t const *in, int shift);
123 static inline void lshift128(w128_t *out,  w128_t const *in, int shift);
124 #endif
125 static inline void gen_rand_all(sfmt_t *ctx);
126 static inline void gen_rand_array(sfmt_t *ctx, w128_t *array, int size);
127 static inline uint32_t func1(uint32_t x);
128 static inline uint32_t func2(uint32_t x);
129 static void period_certification(sfmt_t *ctx);
130 #if defined(BIG_ENDIAN64) && !defined(ONLY64)
131 static inline void swap(w128_t *array, int size);
132 #endif
133 
134 #if defined(HAVE_ALTIVEC)
135   #include "test/SFMT-alti.h"
136 #elif defined(HAVE_SSE2)
137   #include "test/SFMT-sse2.h"
138 #endif
139 
140 /**
141  * This function simulate a 64-bit index of LITTLE ENDIAN
142  * in BIG ENDIAN machine.
143  */
144 #ifdef ONLY64
idxof(int i)145 static inline int idxof(int i) {
146     return i ^ 1;
147 }
148 #else
idxof(int i)149 static inline int idxof(int i) {
150     return i;
151 }
152 #endif
153 /**
154  * This function simulates SIMD 128-bit right shift by the standard C.
155  * The 128-bit integer given in in is shifted by (shift * 8) bits.
156  * This function simulates the LITTLE ENDIAN SIMD.
157  * @param out the output of this function
158  * @param in the 128-bit data to be shifted
159  * @param shift the shift value
160  */
161 #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
162 #ifdef ONLY64
rshift128(w128_t * out,w128_t const * in,int shift)163 static inline void rshift128(w128_t *out, w128_t const *in, int shift) {
164     uint64_t th, tl, oh, ol;
165 
166     th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
167     tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
168 
169     oh = th >> (shift * 8);
170     ol = tl >> (shift * 8);
171     ol |= th << (64 - shift * 8);
172     out->u[0] = (uint32_t)(ol >> 32);
173     out->u[1] = (uint32_t)ol;
174     out->u[2] = (uint32_t)(oh >> 32);
175     out->u[3] = (uint32_t)oh;
176 }
177 #else
rshift128(w128_t * out,w128_t const * in,int shift)178 static inline void rshift128(w128_t *out, w128_t const *in, int shift) {
179     uint64_t th, tl, oh, ol;
180 
181     th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
182     tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
183 
184     oh = th >> (shift * 8);
185     ol = tl >> (shift * 8);
186     ol |= th << (64 - shift * 8);
187     out->u[1] = (uint32_t)(ol >> 32);
188     out->u[0] = (uint32_t)ol;
189     out->u[3] = (uint32_t)(oh >> 32);
190     out->u[2] = (uint32_t)oh;
191 }
192 #endif
193 /**
194  * This function simulates SIMD 128-bit left shift by the standard C.
195  * The 128-bit integer given in in is shifted by (shift * 8) bits.
196  * This function simulates the LITTLE ENDIAN SIMD.
197  * @param out the output of this function
198  * @param in the 128-bit data to be shifted
199  * @param shift the shift value
200  */
201 #ifdef ONLY64
lshift128(w128_t * out,w128_t const * in,int shift)202 static inline void lshift128(w128_t *out, w128_t const *in, int shift) {
203     uint64_t th, tl, oh, ol;
204 
205     th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
206     tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
207 
208     oh = th << (shift * 8);
209     ol = tl << (shift * 8);
210     oh |= tl >> (64 - shift * 8);
211     out->u[0] = (uint32_t)(ol >> 32);
212     out->u[1] = (uint32_t)ol;
213     out->u[2] = (uint32_t)(oh >> 32);
214     out->u[3] = (uint32_t)oh;
215 }
216 #else
lshift128(w128_t * out,w128_t const * in,int shift)217 static inline void lshift128(w128_t *out, w128_t const *in, int shift) {
218     uint64_t th, tl, oh, ol;
219 
220     th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
221     tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
222 
223     oh = th << (shift * 8);
224     ol = tl << (shift * 8);
225     oh |= tl >> (64 - shift * 8);
226     out->u[1] = (uint32_t)(ol >> 32);
227     out->u[0] = (uint32_t)ol;
228     out->u[3] = (uint32_t)(oh >> 32);
229     out->u[2] = (uint32_t)oh;
230 }
231 #endif
232 #endif
233 
234 /**
235  * This function represents the recursion formula.
236  * @param r output
237  * @param a a 128-bit part of the internal state array
238  * @param b a 128-bit part of the internal state array
239  * @param c a 128-bit part of the internal state array
240  * @param d a 128-bit part of the internal state array
241  */
242 #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
243 #ifdef ONLY64
do_recursion(w128_t * r,w128_t * a,w128_t * b,w128_t * c,w128_t * d)244 static inline void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
245 				w128_t *d) {
246     w128_t x;
247     w128_t y;
248 
249     lshift128(&x, a, SL2);
250     rshift128(&y, c, SR2);
251     r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0]
252 	^ (d->u[0] << SL1);
253     r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1]
254 	^ (d->u[1] << SL1);
255     r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2]
256 	^ (d->u[2] << SL1);
257     r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3]
258 	^ (d->u[3] << SL1);
259 }
260 #else
do_recursion(w128_t * r,w128_t * a,w128_t * b,w128_t * c,w128_t * d)261 static inline void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
262 				w128_t *d) {
263     w128_t x;
264     w128_t y;
265 
266     lshift128(&x, a, SL2);
267     rshift128(&y, c, SR2);
268     r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0]
269 	^ (d->u[0] << SL1);
270     r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1]
271 	^ (d->u[1] << SL1);
272     r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2]
273 	^ (d->u[2] << SL1);
274     r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3]
275 	^ (d->u[3] << SL1);
276 }
277 #endif
278 #endif
279 
280 #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
281 /**
282  * This function fills the internal state array with pseudorandom
283  * integers.
284  */
gen_rand_all(sfmt_t * ctx)285 static inline void gen_rand_all(sfmt_t *ctx) {
286     int i;
287     w128_t *r1, *r2;
288 
289     r1 = &ctx->sfmt[N - 2];
290     r2 = &ctx->sfmt[N - 1];
291     for (i = 0; i < N - POS1; i++) {
292 	do_recursion(&ctx->sfmt[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1], r1,
293 	  r2);
294 	r1 = r2;
295 	r2 = &ctx->sfmt[i];
296     }
297     for (; i < N; i++) {
298 	do_recursion(&ctx->sfmt[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1 - N], r1,
299 	  r2);
300 	r1 = r2;
301 	r2 = &ctx->sfmt[i];
302     }
303 }
304 
305 /**
306  * This function fills the user-specified array with pseudorandom
307  * integers.
308  *
309  * @param array an 128-bit array to be filled by pseudorandom numbers.
310  * @param size number of 128-bit pseudorandom numbers to be generated.
311  */
gen_rand_array(sfmt_t * ctx,w128_t * array,int size)312 static inline void gen_rand_array(sfmt_t *ctx, w128_t *array, int size) {
313     int i, j;
314     w128_t *r1, *r2;
315 
316     r1 = &ctx->sfmt[N - 2];
317     r2 = &ctx->sfmt[N - 1];
318     for (i = 0; i < N - POS1; i++) {
319 	do_recursion(&array[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1], r1, r2);
320 	r1 = r2;
321 	r2 = &array[i];
322     }
323     for (; i < N; i++) {
324 	do_recursion(&array[i], &ctx->sfmt[i], &array[i + POS1 - N], r1, r2);
325 	r1 = r2;
326 	r2 = &array[i];
327     }
328     for (; i < size - N; i++) {
329 	do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
330 	r1 = r2;
331 	r2 = &array[i];
332     }
333     for (j = 0; j < 2 * N - size; j++) {
334 	ctx->sfmt[j] = array[j + size - N];
335     }
336     for (; i < size; i++, j++) {
337 	do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
338 	r1 = r2;
339 	r2 = &array[i];
340 	ctx->sfmt[j] = array[i];
341     }
342 }
343 #endif
344 
345 #if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC)
swap(w128_t * array,int size)346 static inline void swap(w128_t *array, int size) {
347     int i;
348     uint32_t x, y;
349 
350     for (i = 0; i < size; i++) {
351 	x = array[i].u[0];
352 	y = array[i].u[2];
353 	array[i].u[0] = array[i].u[1];
354 	array[i].u[2] = array[i].u[3];
355 	array[i].u[1] = x;
356 	array[i].u[3] = y;
357     }
358 }
359 #endif
360 /**
361  * This function represents a function used in the initialization
362  * by init_by_array
363  * @param x 32-bit integer
364  * @return 32-bit integer
365  */
func1(uint32_t x)366 static uint32_t func1(uint32_t x) {
367     return (x ^ (x >> 27)) * (uint32_t)1664525UL;
368 }
369 
370 /**
371  * This function represents a function used in the initialization
372  * by init_by_array
373  * @param x 32-bit integer
374  * @return 32-bit integer
375  */
func2(uint32_t x)376 static uint32_t func2(uint32_t x) {
377     return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
378 }
379 
380 /**
381  * This function certificate the period of 2^{MEXP}
382  */
period_certification(sfmt_t * ctx)383 static void period_certification(sfmt_t *ctx) {
384     int inner = 0;
385     int i, j;
386     uint32_t work;
387     uint32_t *psfmt32 = &ctx->sfmt[0].u[0];
388 
389     for (i = 0; i < 4; i++)
390 	inner ^= psfmt32[idxof(i)] & parity[i];
391     for (i = 16; i > 0; i >>= 1)
392 	inner ^= inner >> i;
393     inner &= 1;
394     /* check OK */
395     if (inner == 1) {
396 	return;
397     }
398     /* check NG, and modification */
399     for (i = 0; i < 4; i++) {
400 	work = 1;
401 	for (j = 0; j < 32; j++) {
402 	    if ((work & parity[i]) != 0) {
403 		psfmt32[idxof(i)] ^= work;
404 		return;
405 	    }
406 	    work = work << 1;
407 	}
408     }
409 }
410 
411 /*----------------
412   PUBLIC FUNCTIONS
413   ----------------*/
414 /**
415  * This function returns the identification string.
416  * The string shows the word size, the Mersenne exponent,
417  * and all parameters of this generator.
418  */
get_idstring(void)419 const char *get_idstring(void) {
420     return IDSTR;
421 }
422 
423 /**
424  * This function returns the minimum size of array used for \b
425  * fill_array32() function.
426  * @return minimum size of array used for fill_array32() function.
427  */
get_min_array_size32(void)428 int get_min_array_size32(void) {
429     return N32;
430 }
431 
432 /**
433  * This function returns the minimum size of array used for \b
434  * fill_array64() function.
435  * @return minimum size of array used for fill_array64() function.
436  */
get_min_array_size64(void)437 int get_min_array_size64(void) {
438     return N64;
439 }
440 
441 #ifndef ONLY64
442 /**
443  * This function generates and returns 32-bit pseudorandom number.
444  * init_gen_rand or init_by_array must be called before this function.
445  * @return 32-bit pseudorandom number
446  */
gen_rand32(sfmt_t * ctx)447 uint32_t gen_rand32(sfmt_t *ctx) {
448     uint32_t r;
449     uint32_t *psfmt32 = &ctx->sfmt[0].u[0];
450 
451     assert(ctx->initialized);
452     if (ctx->idx >= N32) {
453 	gen_rand_all(ctx);
454 	ctx->idx = 0;
455     }
456     r = psfmt32[ctx->idx++];
457     return r;
458 }
459 
460 /* Generate a random integer in [0..limit). */
gen_rand32_range(sfmt_t * ctx,uint32_t limit)461 uint32_t gen_rand32_range(sfmt_t *ctx, uint32_t limit) {
462     uint32_t ret, above;
463 
464     above = 0xffffffffU - (0xffffffffU % limit);
465     while (1) {
466 	ret = gen_rand32(ctx);
467 	if (ret < above) {
468 	    ret %= limit;
469 	    break;
470 	}
471     }
472     return ret;
473 }
474 #endif
475 /**
476  * This function generates and returns 64-bit pseudorandom number.
477  * init_gen_rand or init_by_array must be called before this function.
478  * The function gen_rand64 should not be called after gen_rand32,
479  * unless an initialization is again executed.
480  * @return 64-bit pseudorandom number
481  */
gen_rand64(sfmt_t * ctx)482 uint64_t gen_rand64(sfmt_t *ctx) {
483 #if defined(BIG_ENDIAN64) && !defined(ONLY64)
484     uint32_t r1, r2;
485     uint32_t *psfmt32 = &ctx->sfmt[0].u[0];
486 #else
487     uint64_t r;
488     uint64_t *psfmt64 = (uint64_t *)&ctx->sfmt[0].u[0];
489 #endif
490 
491     assert(ctx->initialized);
492     assert(ctx->idx % 2 == 0);
493 
494     if (ctx->idx >= N32) {
495 	gen_rand_all(ctx);
496 	ctx->idx = 0;
497     }
498 #if defined(BIG_ENDIAN64) && !defined(ONLY64)
499     r1 = psfmt32[ctx->idx];
500     r2 = psfmt32[ctx->idx + 1];
501     ctx->idx += 2;
502     return ((uint64_t)r2 << 32) | r1;
503 #else
504     r = psfmt64[ctx->idx / 2];
505     ctx->idx += 2;
506     return r;
507 #endif
508 }
509 
510 /* Generate a random integer in [0..limit). */
gen_rand64_range(sfmt_t * ctx,uint64_t limit)511 uint64_t gen_rand64_range(sfmt_t *ctx, uint64_t limit) {
512     uint64_t ret, above;
513 
514     above = KQU(0xffffffffffffffff) - (KQU(0xffffffffffffffff) % limit);
515     while (1) {
516 	ret = gen_rand64(ctx);
517 	if (ret < above) {
518 	    ret %= limit;
519 	    break;
520 	}
521     }
522     return ret;
523 }
524 
525 #ifndef ONLY64
526 /**
527  * This function generates pseudorandom 32-bit integers in the
528  * specified array[] by one call. The number of pseudorandom integers
529  * is specified by the argument size, which must be at least 624 and a
530  * multiple of four.  The generation by this function is much faster
531  * than the following gen_rand function.
532  *
533  * For initialization, init_gen_rand or init_by_array must be called
534  * before the first call of this function. This function can not be
535  * used after calling gen_rand function, without initialization.
536  *
537  * @param array an array where pseudorandom 32-bit integers are filled
538  * by this function.  The pointer to the array must be \b "aligned"
539  * (namely, must be a multiple of 16) in the SIMD version, since it
540  * refers to the address of a 128-bit integer.  In the standard C
541  * version, the pointer is arbitrary.
542  *
543  * @param size the number of 32-bit pseudorandom integers to be
544  * generated.  size must be a multiple of 4, and greater than or equal
545  * to (MEXP / 128 + 1) * 4.
546  *
547  * @note \b memalign or \b posix_memalign is available to get aligned
548  * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
549  * returns the pointer to the aligned memory block.
550  */
fill_array32(sfmt_t * ctx,uint32_t * array,int size)551 void fill_array32(sfmt_t *ctx, uint32_t *array, int size) {
552     assert(ctx->initialized);
553     assert(ctx->idx == N32);
554     assert(size % 4 == 0);
555     assert(size >= N32);
556 
557     gen_rand_array(ctx, (w128_t *)array, size / 4);
558     ctx->idx = N32;
559 }
560 #endif
561 
562 /**
563  * This function generates pseudorandom 64-bit integers in the
564  * specified array[] by one call. The number of pseudorandom integers
565  * is specified by the argument size, which must be at least 312 and a
566  * multiple of two.  The generation by this function is much faster
567  * than the following gen_rand function.
568  *
569  * For initialization, init_gen_rand or init_by_array must be called
570  * before the first call of this function. This function can not be
571  * used after calling gen_rand function, without initialization.
572  *
573  * @param array an array where pseudorandom 64-bit integers are filled
574  * by this function.  The pointer to the array must be "aligned"
575  * (namely, must be a multiple of 16) in the SIMD version, since it
576  * refers to the address of a 128-bit integer.  In the standard C
577  * version, the pointer is arbitrary.
578  *
579  * @param size the number of 64-bit pseudorandom integers to be
580  * generated.  size must be a multiple of 2, and greater than or equal
581  * to (MEXP / 128 + 1) * 2
582  *
583  * @note \b memalign or \b posix_memalign is available to get aligned
584  * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
585  * returns the pointer to the aligned memory block.
586  */
fill_array64(sfmt_t * ctx,uint64_t * array,int size)587 void fill_array64(sfmt_t *ctx, uint64_t *array, int size) {
588     assert(ctx->initialized);
589     assert(ctx->idx == N32);
590     assert(size % 2 == 0);
591     assert(size >= N64);
592 
593     gen_rand_array(ctx, (w128_t *)array, size / 2);
594     ctx->idx = N32;
595 
596 #if defined(BIG_ENDIAN64) && !defined(ONLY64)
597     swap((w128_t *)array, size /2);
598 #endif
599 }
600 
601 /**
602  * This function initializes the internal state array with a 32-bit
603  * integer seed.
604  *
605  * @param seed a 32-bit integer used as the seed.
606  */
init_gen_rand(uint32_t seed)607 sfmt_t *init_gen_rand(uint32_t seed) {
608     void *p;
609     sfmt_t *ctx;
610     int i;
611     uint32_t *psfmt32;
612 
613     if (posix_memalign(&p, sizeof(w128_t), sizeof(sfmt_t)) != 0) {
614 	return NULL;
615     }
616     ctx = (sfmt_t *)p;
617     psfmt32 = &ctx->sfmt[0].u[0];
618 
619     psfmt32[idxof(0)] = seed;
620     for (i = 1; i < N32; i++) {
621 	psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
622 					    ^ (psfmt32[idxof(i - 1)] >> 30))
623 	    + i;
624     }
625     ctx->idx = N32;
626     period_certification(ctx);
627     ctx->initialized = 1;
628 
629     return ctx;
630 }
631 
632 /**
633  * This function initializes the internal state array,
634  * with an array of 32-bit integers used as the seeds
635  * @param init_key the array of 32-bit integers, used as a seed.
636  * @param key_length the length of init_key.
637  */
init_by_array(uint32_t * init_key,int key_length)638 sfmt_t *init_by_array(uint32_t *init_key, int key_length) {
639     void *p;
640     sfmt_t *ctx;
641     int i, j, count;
642     uint32_t r;
643     int lag;
644     int mid;
645     int size = N * 4;
646     uint32_t *psfmt32;
647 
648     if (posix_memalign(&p, sizeof(w128_t), sizeof(sfmt_t)) != 0) {
649 	return NULL;
650     }
651     ctx = (sfmt_t *)p;
652     psfmt32 = &ctx->sfmt[0].u[0];
653 
654     if (size >= 623) {
655 	lag = 11;
656     } else if (size >= 68) {
657 	lag = 7;
658     } else if (size >= 39) {
659 	lag = 5;
660     } else {
661 	lag = 3;
662     }
663     mid = (size - lag) / 2;
664 
665     memset(ctx->sfmt, 0x8b, sizeof(ctx->sfmt));
666     if (key_length + 1 > N32) {
667 	count = key_length + 1;
668     } else {
669 	count = N32;
670     }
671     r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
672 	      ^ psfmt32[idxof(N32 - 1)]);
673     psfmt32[idxof(mid)] += r;
674     r += key_length;
675     psfmt32[idxof(mid + lag)] += r;
676     psfmt32[idxof(0)] = r;
677 
678     count--;
679     for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
680 	r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
681 		  ^ psfmt32[idxof((i + N32 - 1) % N32)]);
682 	psfmt32[idxof((i + mid) % N32)] += r;
683 	r += init_key[j] + i;
684 	psfmt32[idxof((i + mid + lag) % N32)] += r;
685 	psfmt32[idxof(i)] = r;
686 	i = (i + 1) % N32;
687     }
688     for (; j < count; j++) {
689 	r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
690 		  ^ psfmt32[idxof((i + N32 - 1) % N32)]);
691 	psfmt32[idxof((i + mid) % N32)] += r;
692 	r += i;
693 	psfmt32[idxof((i + mid + lag) % N32)] += r;
694 	psfmt32[idxof(i)] = r;
695 	i = (i + 1) % N32;
696     }
697     for (j = 0; j < N32; j++) {
698 	r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)]
699 		  + psfmt32[idxof((i + N32 - 1) % N32)]);
700 	psfmt32[idxof((i + mid) % N32)] ^= r;
701 	r -= i;
702 	psfmt32[idxof((i + mid + lag) % N32)] ^= r;
703 	psfmt32[idxof(i)] = r;
704 	i = (i + 1) % N32;
705     }
706 
707     ctx->idx = N32;
708     period_certification(ctx);
709     ctx->initialized = 1;
710 
711     return ctx;
712 }
713 
fini_gen_rand(sfmt_t * ctx)714 void fini_gen_rand(sfmt_t *ctx) {
715     assert(ctx != NULL);
716 
717     ctx->initialized = 0;
718     free(ctx);
719 }
720