1 //===- PredicateTree.cpp - Predicate tree merging -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "PredicateTree.h"
10 #include "mlir/Dialect/PDL/IR/PDL.h"
11 #include "mlir/Dialect/PDL/IR/PDLTypes.h"
12 #include "mlir/Dialect/PDLInterp/IR/PDLInterp.h"
13 #include "mlir/IR/BuiltinOps.h"
14 #include "mlir/Interfaces/InferTypeOpInterface.h"
15
16 using namespace mlir;
17 using namespace mlir::pdl_to_pdl_interp;
18
19 //===----------------------------------------------------------------------===//
20 // Predicate List Building
21 //===----------------------------------------------------------------------===//
22
23 /// Compares the depths of two positions.
comparePosDepth(Position * lhs,Position * rhs)24 static bool comparePosDepth(Position *lhs, Position *rhs) {
25 return lhs->getIndex().size() < rhs->getIndex().size();
26 }
27
28 /// Collect the tree predicates anchored at the given value.
getTreePredicates(std::vector<PositionalPredicate> & predList,Value val,PredicateBuilder & builder,DenseMap<Value,Position * > & inputs,Position * pos)29 static void getTreePredicates(std::vector<PositionalPredicate> &predList,
30 Value val, PredicateBuilder &builder,
31 DenseMap<Value, Position *> &inputs,
32 Position *pos) {
33 // Make sure this input value is accessible to the rewrite.
34 auto it = inputs.try_emplace(val, pos);
35
36 // If this is an input value that has been visited in the tree, add a
37 // constraint to ensure that both instances refer to the same value.
38 if (!it.second &&
39 isa<pdl::AttributeOp, pdl::InputOp, pdl::TypeOp>(val.getDefiningOp())) {
40 auto minMaxPositions = std::minmax(pos, it.first->second, comparePosDepth);
41 predList.emplace_back(minMaxPositions.second,
42 builder.getEqualTo(minMaxPositions.first));
43 return;
44 }
45
46 // Check for a per-position predicate to apply.
47 switch (pos->getKind()) {
48 case Predicates::AttributePos: {
49 assert(val.getType().isa<pdl::AttributeType>() &&
50 "expected attribute type");
51 pdl::AttributeOp attr = cast<pdl::AttributeOp>(val.getDefiningOp());
52 predList.emplace_back(pos, builder.getIsNotNull());
53
54 // If the attribute has a type, add a type constraint.
55 if (Value type = attr.type()) {
56 getTreePredicates(predList, type, builder, inputs, builder.getType(pos));
57
58 // Check for a constant value of the attribute.
59 } else if (Optional<Attribute> value = attr.value()) {
60 predList.emplace_back(pos, builder.getAttributeConstraint(*value));
61 }
62 break;
63 }
64 case Predicates::OperandPos: {
65 assert(val.getType().isa<pdl::ValueType>() && "expected value type");
66
67 // Prevent traversal into a null value.
68 predList.emplace_back(pos, builder.getIsNotNull());
69
70 // If this is a typed input, add a type constraint.
71 if (auto in = val.getDefiningOp<pdl::InputOp>()) {
72 if (Value type = in.type()) {
73 getTreePredicates(predList, type, builder, inputs,
74 builder.getType(pos));
75 }
76
77 // Otherwise, recurse into the parent node.
78 } else if (auto parentOp = val.getDefiningOp<pdl::OperationOp>()) {
79 getTreePredicates(predList, parentOp.op(), builder, inputs,
80 builder.getParent(cast<OperandPosition>(pos)));
81 }
82 break;
83 }
84 case Predicates::OperationPos: {
85 assert(val.getType().isa<pdl::OperationType>() && "expected operation");
86 pdl::OperationOp op = cast<pdl::OperationOp>(val.getDefiningOp());
87 OperationPosition *opPos = cast<OperationPosition>(pos);
88
89 // Ensure getDefiningOp returns a non-null operation.
90 if (!opPos->isRoot())
91 predList.emplace_back(pos, builder.getIsNotNull());
92
93 // Check that this is the correct root operation.
94 if (Optional<StringRef> opName = op.name())
95 predList.emplace_back(pos, builder.getOperationName(*opName));
96
97 // Check that the operation has the proper number of operands and results.
98 OperandRange operands = op.operands();
99 ResultRange results = op.results();
100 predList.emplace_back(pos, builder.getOperandCount(operands.size()));
101 predList.emplace_back(pos, builder.getResultCount(results.size()));
102
103 // Recurse into any attributes, operands, or results.
104 for (auto it : llvm::zip(op.attributeNames(), op.attributes())) {
105 getTreePredicates(
106 predList, std::get<1>(it), builder, inputs,
107 builder.getAttribute(opPos,
108 std::get<0>(it).cast<StringAttr>().getValue()));
109 }
110 for (auto operandIt : llvm::enumerate(operands))
111 getTreePredicates(predList, operandIt.value(), builder, inputs,
112 builder.getOperand(opPos, operandIt.index()));
113
114 // Only recurse into results that are not referenced in the source tree.
115 for (auto resultIt : llvm::enumerate(results)) {
116 getTreePredicates(predList, resultIt.value(), builder, inputs,
117 builder.getResult(opPos, resultIt.index()));
118 }
119 break;
120 }
121 case Predicates::ResultPos: {
122 assert(val.getType().isa<pdl::ValueType>() && "expected value type");
123 pdl::OperationOp parentOp = cast<pdl::OperationOp>(val.getDefiningOp());
124
125 // Prevent traversing a null value.
126 predList.emplace_back(pos, builder.getIsNotNull());
127
128 // Traverse the type constraint.
129 unsigned resultNo = cast<ResultPosition>(pos)->getResultNumber();
130 getTreePredicates(predList, parentOp.types()[resultNo], builder, inputs,
131 builder.getType(pos));
132 break;
133 }
134 case Predicates::TypePos: {
135 assert(val.getType().isa<pdl::TypeType>() && "expected value type");
136 pdl::TypeOp typeOp = cast<pdl::TypeOp>(val.getDefiningOp());
137
138 // Check for a constraint on a constant type.
139 if (Optional<Type> type = typeOp.type())
140 predList.emplace_back(pos, builder.getTypeConstraint(*type));
141 break;
142 }
143 default:
144 llvm_unreachable("unknown position kind");
145 }
146 }
147
148 /// Collect all of the predicates related to constraints within the given
149 /// pattern operation.
collectConstraintPredicates(pdl::PatternOp pattern,std::vector<PositionalPredicate> & predList,PredicateBuilder & builder,DenseMap<Value,Position * > & inputs)150 static void collectConstraintPredicates(
151 pdl::PatternOp pattern, std::vector<PositionalPredicate> &predList,
152 PredicateBuilder &builder, DenseMap<Value, Position *> &inputs) {
153 for (auto op : pattern.body().getOps<pdl::ApplyConstraintOp>()) {
154 OperandRange arguments = op.args();
155 ArrayAttr parameters = op.constParamsAttr();
156
157 std::vector<Position *> allPositions;
158 allPositions.reserve(arguments.size());
159 for (Value arg : arguments)
160 allPositions.push_back(inputs.lookup(arg));
161
162 // Push the constraint to the furthest position.
163 Position *pos = *std::max_element(allPositions.begin(), allPositions.end(),
164 comparePosDepth);
165 PredicateBuilder::Predicate pred =
166 builder.getConstraint(op.name(), std::move(allPositions), parameters);
167 predList.emplace_back(pos, pred);
168 }
169 }
170
171 /// Given a pattern operation, build the set of matcher predicates necessary to
172 /// match this pattern.
buildPredicateList(pdl::PatternOp pattern,PredicateBuilder & builder,std::vector<PositionalPredicate> & predList,DenseMap<Value,Position * > & valueToPosition)173 static void buildPredicateList(pdl::PatternOp pattern,
174 PredicateBuilder &builder,
175 std::vector<PositionalPredicate> &predList,
176 DenseMap<Value, Position *> &valueToPosition) {
177 getTreePredicates(predList, pattern.getRewriter().root(), builder,
178 valueToPosition, builder.getRoot());
179 collectConstraintPredicates(pattern, predList, builder, valueToPosition);
180 }
181
182 //===----------------------------------------------------------------------===//
183 // Pattern Predicate Tree Merging
184 //===----------------------------------------------------------------------===//
185
186 namespace {
187
188 /// This class represents a specific predicate applied to a position, and
189 /// provides hashing and ordering operators. This class allows for computing a
190 /// frequence sum and ordering predicates based on a cost model.
191 struct OrderedPredicate {
OrderedPredicate__anon966670330111::OrderedPredicate192 OrderedPredicate(const std::pair<Position *, Qualifier *> &ip)
193 : position(ip.first), question(ip.second) {}
OrderedPredicate__anon966670330111::OrderedPredicate194 OrderedPredicate(const PositionalPredicate &ip)
195 : position(ip.position), question(ip.question) {}
196
197 /// The position this predicate is applied to.
198 Position *position;
199
200 /// The question that is applied by this predicate onto the position.
201 Qualifier *question;
202
203 /// The first and second order benefit sums.
204 /// The primary sum is the number of occurrences of this predicate among all
205 /// of the patterns.
206 unsigned primary = 0;
207 /// The secondary sum is a squared summation of the primary sum of all of the
208 /// predicates within each pattern that contains this predicate. This allows
209 /// for favoring predicates that are more commonly shared within a pattern, as
210 /// opposed to those shared across patterns.
211 unsigned secondary = 0;
212
213 /// A map between a pattern operation and the answer to the predicate question
214 /// within that pattern.
215 DenseMap<Operation *, Qualifier *> patternToAnswer;
216
217 /// Returns true if this predicate is ordered before `other`, based on the
218 /// cost model.
operator <__anon966670330111::OrderedPredicate219 bool operator<(const OrderedPredicate &other) const {
220 // Sort by:
221 // * first and secondary order sums
222 // * lower depth
223 // * position dependency
224 // * predicate dependency.
225 auto *otherPos = other.position;
226 return std::make_tuple(other.primary, other.secondary,
227 otherPos->getIndex().size(), otherPos->getKind(),
228 other.question->getKind()) >
229 std::make_tuple(primary, secondary, position->getIndex().size(),
230 position->getKind(), question->getKind());
231 }
232 };
233
234 /// A DenseMapInfo for OrderedPredicate based solely on the position and
235 /// question.
236 struct OrderedPredicateDenseInfo {
237 using Base = DenseMapInfo<std::pair<Position *, Qualifier *>>;
238
getEmptyKey__anon966670330111::OrderedPredicateDenseInfo239 static OrderedPredicate getEmptyKey() { return Base::getEmptyKey(); }
getTombstoneKey__anon966670330111::OrderedPredicateDenseInfo240 static OrderedPredicate getTombstoneKey() { return Base::getTombstoneKey(); }
isEqual__anon966670330111::OrderedPredicateDenseInfo241 static bool isEqual(const OrderedPredicate &lhs,
242 const OrderedPredicate &rhs) {
243 return lhs.position == rhs.position && lhs.question == rhs.question;
244 }
getHashValue__anon966670330111::OrderedPredicateDenseInfo245 static unsigned getHashValue(const OrderedPredicate &p) {
246 return llvm::hash_combine(p.position, p.question);
247 }
248 };
249
250 /// This class wraps a set of ordered predicates that are used within a specific
251 /// pattern operation.
252 struct OrderedPredicateList {
OrderedPredicateList__anon966670330111::OrderedPredicateList253 OrderedPredicateList(pdl::PatternOp pattern) : pattern(pattern) {}
254
255 pdl::PatternOp pattern;
256 DenseSet<OrderedPredicate *> predicates;
257 };
258 } // end anonymous namespace
259
260 /// Returns true if the given matcher refers to the same predicate as the given
261 /// ordered predicate. This means that the position and questions of the two
262 /// match.
isSamePredicate(MatcherNode * node,OrderedPredicate * predicate)263 static bool isSamePredicate(MatcherNode *node, OrderedPredicate *predicate) {
264 return node->getPosition() == predicate->position &&
265 node->getQuestion() == predicate->question;
266 }
267
268 /// Get or insert a child matcher for the given parent switch node, given a
269 /// predicate and parent pattern.
getOrCreateChild(SwitchNode * node,OrderedPredicate * predicate,pdl::PatternOp pattern)270 std::unique_ptr<MatcherNode> &getOrCreateChild(SwitchNode *node,
271 OrderedPredicate *predicate,
272 pdl::PatternOp pattern) {
273 assert(isSamePredicate(node, predicate) &&
274 "expected matcher to equal the given predicate");
275
276 auto it = predicate->patternToAnswer.find(pattern);
277 assert(it != predicate->patternToAnswer.end() &&
278 "expected pattern to exist in predicate");
279 return node->getChildren().insert({it->second, nullptr}).first->second;
280 }
281
282 /// Build the matcher CFG by "pushing" patterns through by sorted predicate
283 /// order. A pattern will traverse as far as possible using common predicates
284 /// and then either diverge from the CFG or reach the end of a branch and start
285 /// creating new nodes.
propagatePattern(std::unique_ptr<MatcherNode> & node,OrderedPredicateList & list,std::vector<OrderedPredicate * >::iterator current,std::vector<OrderedPredicate * >::iterator end)286 static void propagatePattern(std::unique_ptr<MatcherNode> &node,
287 OrderedPredicateList &list,
288 std::vector<OrderedPredicate *>::iterator current,
289 std::vector<OrderedPredicate *>::iterator end) {
290 if (current == end) {
291 // We've hit the end of a pattern, so create a successful result node.
292 node = std::make_unique<SuccessNode>(list.pattern, std::move(node));
293
294 // If the pattern doesn't contain this predicate, ignore it.
295 } else if (list.predicates.find(*current) == list.predicates.end()) {
296 propagatePattern(node, list, std::next(current), end);
297
298 // If the current matcher node is invalid, create a new one for this
299 // position and continue propagation.
300 } else if (!node) {
301 // Create a new node at this position and continue
302 node = std::make_unique<SwitchNode>((*current)->position,
303 (*current)->question);
304 propagatePattern(
305 getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern),
306 list, std::next(current), end);
307
308 // If the matcher has already been created, and it is for this predicate we
309 // continue propagation to the child.
310 } else if (isSamePredicate(node.get(), *current)) {
311 propagatePattern(
312 getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern),
313 list, std::next(current), end);
314
315 // If the matcher doesn't match the current predicate, insert a branch as
316 // the common set of matchers has diverged.
317 } else {
318 propagatePattern(node->getFailureNode(), list, current, end);
319 }
320 }
321
322 /// Fold any switch nodes nested under `node` to boolean nodes when possible.
323 /// `node` is updated in-place if it is a switch.
foldSwitchToBool(std::unique_ptr<MatcherNode> & node)324 static void foldSwitchToBool(std::unique_ptr<MatcherNode> &node) {
325 if (!node)
326 return;
327
328 if (SwitchNode *switchNode = dyn_cast<SwitchNode>(&*node)) {
329 SwitchNode::ChildMapT &children = switchNode->getChildren();
330 for (auto &it : children)
331 foldSwitchToBool(it.second);
332
333 // If the node only contains one child, collapse it into a boolean predicate
334 // node.
335 if (children.size() == 1) {
336 auto childIt = children.begin();
337 node = std::make_unique<BoolNode>(
338 node->getPosition(), node->getQuestion(), childIt->first,
339 std::move(childIt->second), std::move(node->getFailureNode()));
340 }
341 } else if (BoolNode *boolNode = dyn_cast<BoolNode>(&*node)) {
342 foldSwitchToBool(boolNode->getSuccessNode());
343 }
344
345 foldSwitchToBool(node->getFailureNode());
346 }
347
348 /// Insert an exit node at the end of the failure path of the `root`.
insertExitNode(std::unique_ptr<MatcherNode> * root)349 static void insertExitNode(std::unique_ptr<MatcherNode> *root) {
350 while (*root)
351 root = &(*root)->getFailureNode();
352 *root = std::make_unique<ExitNode>();
353 }
354
355 /// Given a module containing PDL pattern operations, generate a matcher tree
356 /// using the patterns within the given module and return the root matcher node.
357 std::unique_ptr<MatcherNode>
generateMatcherTree(ModuleOp module,PredicateBuilder & builder,DenseMap<Value,Position * > & valueToPosition)358 MatcherNode::generateMatcherTree(ModuleOp module, PredicateBuilder &builder,
359 DenseMap<Value, Position *> &valueToPosition) {
360 // Collect the set of predicates contained within the pattern operations of
361 // the module.
362 SmallVector<std::pair<pdl::PatternOp, std::vector<PositionalPredicate>>, 16>
363 patternsAndPredicates;
364 for (pdl::PatternOp pattern : module.getOps<pdl::PatternOp>()) {
365 std::vector<PositionalPredicate> predicateList;
366 buildPredicateList(pattern, builder, predicateList, valueToPosition);
367 patternsAndPredicates.emplace_back(pattern, std::move(predicateList));
368 }
369
370 // Associate a pattern result with each unique predicate.
371 DenseSet<OrderedPredicate, OrderedPredicateDenseInfo> uniqued;
372 for (auto &patternAndPredList : patternsAndPredicates) {
373 for (auto &predicate : patternAndPredList.second) {
374 auto it = uniqued.insert(predicate);
375 it.first->patternToAnswer.try_emplace(patternAndPredList.first,
376 predicate.answer);
377 }
378 }
379
380 // Associate each pattern to a set of its ordered predicates for later lookup.
381 std::vector<OrderedPredicateList> lists;
382 lists.reserve(patternsAndPredicates.size());
383 for (auto &patternAndPredList : patternsAndPredicates) {
384 OrderedPredicateList list(patternAndPredList.first);
385 for (auto &predicate : patternAndPredList.second) {
386 OrderedPredicate *orderedPredicate = &*uniqued.find(predicate);
387 list.predicates.insert(orderedPredicate);
388
389 // Increment the primary sum for each reference to a particular predicate.
390 ++orderedPredicate->primary;
391 }
392 lists.push_back(std::move(list));
393 }
394
395 // For a particular pattern, get the total primary sum and add it to the
396 // secondary sum of each predicate. Square the primary sums to emphasize
397 // shared predicates within rather than across patterns.
398 for (auto &list : lists) {
399 unsigned total = 0;
400 for (auto *predicate : list.predicates)
401 total += predicate->primary * predicate->primary;
402 for (auto *predicate : list.predicates)
403 predicate->secondary += total;
404 }
405
406 // Sort the set of predicates now that the cost primary and secondary sums
407 // have been computed.
408 std::vector<OrderedPredicate *> ordered;
409 ordered.reserve(uniqued.size());
410 for (auto &ip : uniqued)
411 ordered.push_back(&ip);
412 std::stable_sort(
413 ordered.begin(), ordered.end(),
414 [](OrderedPredicate *lhs, OrderedPredicate *rhs) { return *lhs < *rhs; });
415
416 // Build the matchers for each of the pattern predicate lists.
417 std::unique_ptr<MatcherNode> root;
418 for (OrderedPredicateList &list : lists)
419 propagatePattern(root, list, ordered.begin(), ordered.end());
420
421 // Collapse the graph and insert the exit node.
422 foldSwitchToBool(root);
423 insertExitNode(&root);
424 return root;
425 }
426
427 //===----------------------------------------------------------------------===//
428 // MatcherNode
429 //===----------------------------------------------------------------------===//
430
MatcherNode(TypeID matcherTypeID,Position * p,Qualifier * q,std::unique_ptr<MatcherNode> failureNode)431 MatcherNode::MatcherNode(TypeID matcherTypeID, Position *p, Qualifier *q,
432 std::unique_ptr<MatcherNode> failureNode)
433 : position(p), question(q), failureNode(std::move(failureNode)),
434 matcherTypeID(matcherTypeID) {}
435
436 //===----------------------------------------------------------------------===//
437 // BoolNode
438 //===----------------------------------------------------------------------===//
439
BoolNode(Position * position,Qualifier * question,Qualifier * answer,std::unique_ptr<MatcherNode> successNode,std::unique_ptr<MatcherNode> failureNode)440 BoolNode::BoolNode(Position *position, Qualifier *question, Qualifier *answer,
441 std::unique_ptr<MatcherNode> successNode,
442 std::unique_ptr<MatcherNode> failureNode)
443 : MatcherNode(TypeID::get<BoolNode>(), position, question,
444 std::move(failureNode)),
445 answer(answer), successNode(std::move(successNode)) {}
446
447 //===----------------------------------------------------------------------===//
448 // SuccessNode
449 //===----------------------------------------------------------------------===//
450
SuccessNode(pdl::PatternOp pattern,std::unique_ptr<MatcherNode> failureNode)451 SuccessNode::SuccessNode(pdl::PatternOp pattern,
452 std::unique_ptr<MatcherNode> failureNode)
453 : MatcherNode(TypeID::get<SuccessNode>(), /*position=*/nullptr,
454 /*question=*/nullptr, std::move(failureNode)),
455 pattern(pattern) {}
456
457 //===----------------------------------------------------------------------===//
458 // SwitchNode
459 //===----------------------------------------------------------------------===//
460
SwitchNode(Position * position,Qualifier * question)461 SwitchNode::SwitchNode(Position *position, Qualifier *question)
462 : MatcherNode(TypeID::get<SwitchNode>(), position, question) {}
463