1 //! Fix-point analyses on the IR using the "monotone framework".
2 //!
3 //! A lattice is a set with a partial ordering between elements, where there is
4 //! a single least upper bound and a single greatest least bound for every
5 //! subset. We are dealing with finite lattices, which means that it has a
6 //! finite number of elements, and it follows that there exists a single top and
7 //! a single bottom member of the lattice. For example, the power set of a
8 //! finite set forms a finite lattice where partial ordering is defined by set
9 //! inclusion, that is `a <= b` if `a` is a subset of `b`. Here is the finite
10 //! lattice constructed from the set {0,1,2}:
11 //!
12 //! ```text
13 //!                    .----- Top = {0,1,2} -----.
14 //!                   /            |              \
15 //!                  /             |               \
16 //!                 /              |                \
17 //!              {0,1} -------.  {0,2}  .--------- {1,2}
18 //!                |           \ /   \ /             |
19 //!                |            /     \              |
20 //!                |           / \   / \             |
21 //!               {0} --------'   {1}   `---------- {2}
22 //!                 \              |                /
23 //!                  \             |               /
24 //!                   \            |              /
25 //!                    `------ Bottom = {} ------'
26 //! ```
27 //!
28 //! A monotone function `f` is a function where if `x <= y`, then it holds that
29 //! `f(x) <= f(y)`. It should be clear that running a monotone function to a
30 //! fix-point on a finite lattice will always terminate: `f` can only "move"
31 //! along the lattice in a single direction, and therefore can only either find
32 //! a fix-point in the middle of the lattice or continue to the top or bottom
33 //! depending if it is ascending or descending the lattice respectively.
34 //!
35 //! For a deeper introduction to the general form of this kind of analysis, see
36 //! [Static Program Analysis by Anders Møller and Michael I. Schwartzbach][spa].
37 //!
38 //! [spa]: https://cs.au.dk/~amoeller/spa/spa.pdf
39 
40 // Re-export individual analyses.
41 mod template_params;
42 pub use self::template_params::UsedTemplateParameters;
43 mod derive;
44 pub use self::derive::{as_cannot_derive_set, CannotDerive, DeriveTrait};
45 mod has_vtable;
46 pub use self::has_vtable::{HasVtable, HasVtableAnalysis, HasVtableResult};
47 mod has_destructor;
48 pub use self::has_destructor::HasDestructorAnalysis;
49 mod has_type_param_in_array;
50 pub use self::has_type_param_in_array::HasTypeParameterInArray;
51 mod has_float;
52 pub use self::has_float::HasFloat;
53 mod sizedness;
54 pub use self::sizedness::{Sizedness, SizednessAnalysis, SizednessResult};
55 
56 use crate::ir::context::{BindgenContext, ItemId};
57 
58 use crate::ir::traversal::{EdgeKind, Trace};
59 use crate::HashMap;
60 use std::fmt;
61 use std::ops;
62 
63 /// An analysis in the monotone framework.
64 ///
65 /// Implementors of this trait must maintain the following two invariants:
66 ///
67 /// 1. The concrete data must be a member of a finite-height lattice.
68 /// 2. The concrete `constrain` method must be monotone: that is,
69 ///    if `x <= y`, then `constrain(x) <= constrain(y)`.
70 ///
71 /// If these invariants do not hold, iteration to a fix-point might never
72 /// complete.
73 ///
74 /// For a simple example analysis, see the `ReachableFrom` type in the `tests`
75 /// module below.
76 pub trait MonotoneFramework: Sized + fmt::Debug {
77     /// The type of node in our dependency graph.
78     ///
79     /// This is just generic (and not `ItemId`) so that we can easily unit test
80     /// without constructing real `Item`s and their `ItemId`s.
81     type Node: Copy;
82 
83     /// Any extra data that is needed during computation.
84     ///
85     /// Again, this is just generic (and not `&BindgenContext`) so that we can
86     /// easily unit test without constructing real `BindgenContext`s full of
87     /// real `Item`s and real `ItemId`s.
88     type Extra: Sized;
89 
90     /// The final output of this analysis. Once we have reached a fix-point, we
91     /// convert `self` into this type, and return it as the final result of the
92     /// analysis.
93     type Output: From<Self> + fmt::Debug;
94 
95     /// Construct a new instance of this analysis.
new(extra: Self::Extra) -> Self96     fn new(extra: Self::Extra) -> Self;
97 
98     /// Get the initial set of nodes from which to start the analysis. Unless
99     /// you are sure of some domain-specific knowledge, this should be the
100     /// complete set of nodes.
initial_worklist(&self) -> Vec<Self::Node>101     fn initial_worklist(&self) -> Vec<Self::Node>;
102 
103     /// Update the analysis for the given node.
104     ///
105     /// If this results in changing our internal state (ie, we discovered that
106     /// we have not reached a fix-point and iteration should continue), return
107     /// `ConstrainResult::Changed`. Otherwise, return `ConstrainResult::Same`.
108     /// When `constrain` returns `ConstrainResult::Same` for all nodes in the
109     /// set, we have reached a fix-point and the analysis is complete.
constrain(&mut self, node: Self::Node) -> ConstrainResult110     fn constrain(&mut self, node: Self::Node) -> ConstrainResult;
111 
112     /// For each node `d` that depends on the given `node`'s current answer when
113     /// running `constrain(d)`, call `f(d)`. This informs us which new nodes to
114     /// queue up in the worklist when `constrain(node)` reports updated
115     /// information.
each_depending_on<F>(&self, node: Self::Node, f: F) where F: FnMut(Self::Node)116     fn each_depending_on<F>(&self, node: Self::Node, f: F)
117     where
118         F: FnMut(Self::Node);
119 }
120 
121 /// Whether an analysis's `constrain` function modified the incremental results
122 /// or not.
123 #[derive(Debug, Copy, Clone, PartialEq, Eq)]
124 pub enum ConstrainResult {
125     /// The incremental results were updated, and the fix-point computation
126     /// should continue.
127     Changed,
128 
129     /// The incremental results were not updated.
130     Same,
131 }
132 
133 impl Default for ConstrainResult {
default() -> Self134     fn default() -> Self {
135         ConstrainResult::Same
136     }
137 }
138 
139 impl ops::BitOr for ConstrainResult {
140     type Output = Self;
141 
bitor(self, rhs: ConstrainResult) -> Self::Output142     fn bitor(self, rhs: ConstrainResult) -> Self::Output {
143         if self == ConstrainResult::Changed || rhs == ConstrainResult::Changed {
144             ConstrainResult::Changed
145         } else {
146             ConstrainResult::Same
147         }
148     }
149 }
150 
151 impl ops::BitOrAssign for ConstrainResult {
bitor_assign(&mut self, rhs: ConstrainResult)152     fn bitor_assign(&mut self, rhs: ConstrainResult) {
153         *self = *self | rhs;
154     }
155 }
156 
157 /// Run an analysis in the monotone framework.
analyze<Analysis>(extra: Analysis::Extra) -> Analysis::Output where Analysis: MonotoneFramework,158 pub fn analyze<Analysis>(extra: Analysis::Extra) -> Analysis::Output
159 where
160     Analysis: MonotoneFramework,
161 {
162     let mut analysis = Analysis::new(extra);
163     let mut worklist = analysis.initial_worklist();
164 
165     while let Some(node) = worklist.pop() {
166         if let ConstrainResult::Changed = analysis.constrain(node) {
167             analysis.each_depending_on(node, |needs_work| {
168                 worklist.push(needs_work);
169             });
170         }
171     }
172 
173     analysis.into()
174 }
175 
176 /// Generate the dependency map for analysis
generate_dependencies<F>( ctx: &BindgenContext, consider_edge: F, ) -> HashMap<ItemId, Vec<ItemId>> where F: Fn(EdgeKind) -> bool,177 pub fn generate_dependencies<F>(
178     ctx: &BindgenContext,
179     consider_edge: F,
180 ) -> HashMap<ItemId, Vec<ItemId>>
181 where
182     F: Fn(EdgeKind) -> bool,
183 {
184     let mut dependencies = HashMap::default();
185 
186     for &item in ctx.allowlisted_items() {
187         dependencies.entry(item).or_insert(vec![]);
188 
189         {
190             // We reverse our natural IR graph edges to find dependencies
191             // between nodes.
192             item.trace(
193                 ctx,
194                 &mut |sub_item: ItemId, edge_kind| {
195                     if ctx.allowlisted_items().contains(&sub_item) &&
196                         consider_edge(edge_kind)
197                     {
198                         dependencies
199                             .entry(sub_item)
200                             .or_insert(vec![])
201                             .push(item);
202                     }
203                 },
204                 &(),
205             );
206         }
207     }
208     dependencies
209 }
210 
211 #[cfg(test)]
212 mod tests {
213     use super::*;
214     use crate::{HashMap, HashSet};
215 
216     // Here we find the set of nodes that are reachable from any given
217     // node. This is a lattice mapping nodes to subsets of all nodes. Our join
218     // function is set union.
219     //
220     // This is our test graph:
221     //
222     //     +---+                    +---+
223     //     |   |                    |   |
224     //     | 1 |               .----| 2 |
225     //     |   |               |    |   |
226     //     +---+               |    +---+
227     //       |                 |      ^
228     //       |                 |      |
229     //       |      +---+      '------'
230     //       '----->|   |
231     //              | 3 |
232     //       .------|   |------.
233     //       |      +---+      |
234     //       |        ^        |
235     //       v        |        v
236     //     +---+      |      +---+    +---+
237     //     |   |      |      |   |    |   |
238     //     | 4 |      |      | 5 |--->| 6 |
239     //     |   |      |      |   |    |   |
240     //     +---+      |      +---+    +---+
241     //       |        |        |        |
242     //       |        |        |        v
243     //       |      +---+      |      +---+
244     //       |      |   |      |      |   |
245     //       '----->| 7 |<-----'      | 8 |
246     //              |   |             |   |
247     //              +---+             +---+
248     //
249     // And here is the mapping from a node to the set of nodes that are
250     // reachable from it within the test graph:
251     //
252     //     1: {3,4,5,6,7,8}
253     //     2: {2}
254     //     3: {3,4,5,6,7,8}
255     //     4: {3,4,5,6,7,8}
256     //     5: {3,4,5,6,7,8}
257     //     6: {8}
258     //     7: {3,4,5,6,7,8}
259     //     8: {}
260 
261     #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
262     struct Node(usize);
263 
264     #[derive(Clone, Debug, Default, PartialEq, Eq)]
265     struct Graph(HashMap<Node, Vec<Node>>);
266 
267     impl Graph {
make_test_graph() -> Graph268         fn make_test_graph() -> Graph {
269             let mut g = Graph::default();
270             g.0.insert(Node(1), vec![Node(3)]);
271             g.0.insert(Node(2), vec![Node(2)]);
272             g.0.insert(Node(3), vec![Node(4), Node(5)]);
273             g.0.insert(Node(4), vec![Node(7)]);
274             g.0.insert(Node(5), vec![Node(6), Node(7)]);
275             g.0.insert(Node(6), vec![Node(8)]);
276             g.0.insert(Node(7), vec![Node(3)]);
277             g.0.insert(Node(8), vec![]);
278             g
279         }
280 
reverse(&self) -> Graph281         fn reverse(&self) -> Graph {
282             let mut reversed = Graph::default();
283             for (node, edges) in self.0.iter() {
284                 reversed.0.entry(*node).or_insert(vec![]);
285                 for referent in edges.iter() {
286                     reversed.0.entry(*referent).or_insert(vec![]).push(*node);
287                 }
288             }
289             reversed
290         }
291     }
292 
293     #[derive(Clone, Debug, PartialEq, Eq)]
294     struct ReachableFrom<'a> {
295         reachable: HashMap<Node, HashSet<Node>>,
296         graph: &'a Graph,
297         reversed: Graph,
298     }
299 
300     impl<'a> MonotoneFramework for ReachableFrom<'a> {
301         type Node = Node;
302         type Extra = &'a Graph;
303         type Output = HashMap<Node, HashSet<Node>>;
304 
new(graph: &'a Graph) -> ReachableFrom305         fn new(graph: &'a Graph) -> ReachableFrom {
306             let reversed = graph.reverse();
307             ReachableFrom {
308                 reachable: Default::default(),
309                 graph: graph,
310                 reversed: reversed,
311             }
312         }
313 
initial_worklist(&self) -> Vec<Node>314         fn initial_worklist(&self) -> Vec<Node> {
315             self.graph.0.keys().cloned().collect()
316         }
317 
constrain(&mut self, node: Node) -> ConstrainResult318         fn constrain(&mut self, node: Node) -> ConstrainResult {
319             // The set of nodes reachable from a node `x` is
320             //
321             //     reachable(x) = s_0 U s_1 U ... U reachable(s_0) U reachable(s_1) U ...
322             //
323             // where there exist edges from `x` to each of `s_0, s_1, ...`.
324             //
325             // Yes, what follows is a **terribly** inefficient set union
326             // implementation. Don't copy this code outside of this test!
327 
328             let original_size = self
329                 .reachable
330                 .entry(node)
331                 .or_insert(HashSet::default())
332                 .len();
333 
334             for sub_node in self.graph.0[&node].iter() {
335                 self.reachable.get_mut(&node).unwrap().insert(*sub_node);
336 
337                 let sub_reachable = self
338                     .reachable
339                     .entry(*sub_node)
340                     .or_insert(HashSet::default())
341                     .clone();
342 
343                 for transitive in sub_reachable {
344                     self.reachable.get_mut(&node).unwrap().insert(transitive);
345                 }
346             }
347 
348             let new_size = self.reachable[&node].len();
349             if original_size != new_size {
350                 ConstrainResult::Changed
351             } else {
352                 ConstrainResult::Same
353             }
354         }
355 
each_depending_on<F>(&self, node: Node, mut f: F) where F: FnMut(Node),356         fn each_depending_on<F>(&self, node: Node, mut f: F)
357         where
358             F: FnMut(Node),
359         {
360             for dep in self.reversed.0[&node].iter() {
361                 f(*dep);
362             }
363         }
364     }
365 
366     impl<'a> From<ReachableFrom<'a>> for HashMap<Node, HashSet<Node>> {
from(reachable: ReachableFrom<'a>) -> Self367         fn from(reachable: ReachableFrom<'a>) -> Self {
368             reachable.reachable
369         }
370     }
371 
372     #[test]
monotone()373     fn monotone() {
374         let g = Graph::make_test_graph();
375         let reachable = analyze::<ReachableFrom>(&g);
376         println!("reachable = {:#?}", reachable);
377 
378         fn nodes<A>(nodes: A) -> HashSet<Node>
379         where
380             A: AsRef<[usize]>,
381         {
382             nodes.as_ref().iter().cloned().map(Node).collect()
383         }
384 
385         let mut expected = HashMap::default();
386         expected.insert(Node(1), nodes([3, 4, 5, 6, 7, 8]));
387         expected.insert(Node(2), nodes([2]));
388         expected.insert(Node(3), nodes([3, 4, 5, 6, 7, 8]));
389         expected.insert(Node(4), nodes([3, 4, 5, 6, 7, 8]));
390         expected.insert(Node(5), nodes([3, 4, 5, 6, 7, 8]));
391         expected.insert(Node(6), nodes([8]));
392         expected.insert(Node(7), nodes([3, 4, 5, 6, 7, 8]));
393         expected.insert(Node(8), nodes([]));
394         println!("expected = {:#?}", expected);
395 
396         assert_eq!(reachable, expected);
397     }
398 }
399