1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// @file 10 /// This file contains the declarations for the subclasses of Constant, 11 /// which represent the different flavors of constant values that live in LLVM. 12 /// Note that Constants are immutable (once created they never change) and are 13 /// fully shared by structural equivalence. This means that two structurally 14 /// equivalent constants will always have the same address. Constants are 15 /// created on demand as needed and never deleted: thus clients don't have to 16 /// worry about the lifetime of the objects. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #ifndef LLVM_IR_CONSTANTS_H 21 #define LLVM_IR_CONSTANTS_H 22 23 #include "llvm/ADT/APFloat.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/None.h" 27 #include "llvm/ADT/Optional.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/OperandTraits.h" 33 #include "llvm/IR/User.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include <cassert> 39 #include <cstddef> 40 #include <cstdint> 41 42 namespace llvm { 43 44 template <class ConstantClass> struct ConstantAggrKeyType; 45 46 /// Base class for constants with no operands. 47 /// 48 /// These constants have no operands; they represent their data directly. 49 /// Since they can be in use by unrelated modules (and are never based on 50 /// GlobalValues), it never makes sense to RAUW them. 51 class ConstantData : public Constant { 52 friend class Constant; 53 handleOperandChangeImpl(Value * From,Value * To)54 Value *handleOperandChangeImpl(Value *From, Value *To) { 55 llvm_unreachable("Constant data does not have operands!"); 56 } 57 58 protected: ConstantData(Type * Ty,ValueTy VT)59 explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {} 60 new(size_t s)61 void *operator new(size_t s) { return User::operator new(s, 0); } 62 63 public: 64 ConstantData(const ConstantData &) = delete; 65 66 /// Methods to support type inquiry through isa, cast, and dyn_cast. classof(const Value * V)67 static bool classof(const Value *V) { 68 return V->getValueID() >= ConstantDataFirstVal && 69 V->getValueID() <= ConstantDataLastVal; 70 } 71 }; 72 73 //===----------------------------------------------------------------------===// 74 /// This is the shared class of boolean and integer constants. This class 75 /// represents both boolean and integral constants. 76 /// Class for constant integers. 77 class ConstantInt final : public ConstantData { 78 friend class Constant; 79 80 APInt Val; 81 82 ConstantInt(IntegerType *Ty, const APInt& V); 83 84 void destroyConstantImpl(); 85 86 public: 87 ConstantInt(const ConstantInt &) = delete; 88 89 static ConstantInt *getTrue(LLVMContext &Context); 90 static ConstantInt *getFalse(LLVMContext &Context); 91 static Constant *getTrue(Type *Ty); 92 static Constant *getFalse(Type *Ty); 93 94 /// If Ty is a vector type, return a Constant with a splat of the given 95 /// value. Otherwise return a ConstantInt for the given value. 96 static Constant *get(Type *Ty, uint64_t V, bool isSigned = false); 97 98 /// Return a ConstantInt with the specified integer value for the specified 99 /// type. If the type is wider than 64 bits, the value will be zero-extended 100 /// to fit the type, unless isSigned is true, in which case the value will 101 /// be interpreted as a 64-bit signed integer and sign-extended to fit 102 /// the type. 103 /// Get a ConstantInt for a specific value. 104 static ConstantInt *get(IntegerType *Ty, uint64_t V, 105 bool isSigned = false); 106 107 /// Return a ConstantInt with the specified value for the specified type. The 108 /// value V will be canonicalized to a an unsigned APInt. Accessing it with 109 /// either getSExtValue() or getZExtValue() will yield a correctly sized and 110 /// signed value for the type Ty. 111 /// Get a ConstantInt for a specific signed value. 112 static ConstantInt *getSigned(IntegerType *Ty, int64_t V); 113 static Constant *getSigned(Type *Ty, int64_t V); 114 115 /// Return a ConstantInt with the specified value and an implied Type. The 116 /// type is the integer type that corresponds to the bit width of the value. 117 static ConstantInt *get(LLVMContext &Context, const APInt &V); 118 119 /// Return a ConstantInt constructed from the string strStart with the given 120 /// radix. 121 static ConstantInt *get(IntegerType *Ty, StringRef Str, 122 uint8_t radix); 123 124 /// If Ty is a vector type, return a Constant with a splat of the given 125 /// value. Otherwise return a ConstantInt for the given value. 126 static Constant *get(Type* Ty, const APInt& V); 127 128 /// Return the constant as an APInt value reference. This allows clients to 129 /// obtain a full-precision copy of the value. 130 /// Return the constant's value. getValue()131 inline const APInt &getValue() const { 132 return Val; 133 } 134 135 /// getBitWidth - Return the bitwidth of this constant. getBitWidth()136 unsigned getBitWidth() const { return Val.getBitWidth(); } 137 138 /// Return the constant as a 64-bit unsigned integer value after it 139 /// has been zero extended as appropriate for the type of this constant. Note 140 /// that this method can assert if the value does not fit in 64 bits. 141 /// Return the zero extended value. getZExtValue()142 inline uint64_t getZExtValue() const { 143 return Val.getZExtValue(); 144 } 145 146 /// Return the constant as a 64-bit integer value after it has been sign 147 /// extended as appropriate for the type of this constant. Note that 148 /// this method can assert if the value does not fit in 64 bits. 149 /// Return the sign extended value. getSExtValue()150 inline int64_t getSExtValue() const { 151 return Val.getSExtValue(); 152 } 153 154 /// Return the constant as an llvm::MaybeAlign. 155 /// Note that this method can assert if the value does not fit in 64 bits or 156 /// is not a power of two. getMaybeAlignValue()157 inline MaybeAlign getMaybeAlignValue() const { 158 return MaybeAlign(getZExtValue()); 159 } 160 161 /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`. 162 /// Note that this method can assert if the value does not fit in 64 bits or 163 /// is not a power of two. getAlignValue()164 inline Align getAlignValue() const { 165 return getMaybeAlignValue().valueOrOne(); 166 } 167 168 /// A helper method that can be used to determine if the constant contained 169 /// within is equal to a constant. This only works for very small values, 170 /// because this is all that can be represented with all types. 171 /// Determine if this constant's value is same as an unsigned char. equalsInt(uint64_t V)172 bool equalsInt(uint64_t V) const { 173 return Val == V; 174 } 175 176 /// getType - Specialize the getType() method to always return an IntegerType, 177 /// which reduces the amount of casting needed in parts of the compiler. 178 /// getType()179 inline IntegerType *getType() const { 180 return cast<IntegerType>(Value::getType()); 181 } 182 183 /// This static method returns true if the type Ty is big enough to 184 /// represent the value V. This can be used to avoid having the get method 185 /// assert when V is larger than Ty can represent. Note that there are two 186 /// versions of this method, one for unsigned and one for signed integers. 187 /// Although ConstantInt canonicalizes everything to an unsigned integer, 188 /// the signed version avoids callers having to convert a signed quantity 189 /// to the appropriate unsigned type before calling the method. 190 /// @returns true if V is a valid value for type Ty 191 /// Determine if the value is in range for the given type. 192 static bool isValueValidForType(Type *Ty, uint64_t V); 193 static bool isValueValidForType(Type *Ty, int64_t V); 194 isNegative()195 bool isNegative() const { return Val.isNegative(); } 196 197 /// This is just a convenience method to make client code smaller for a 198 /// common code. It also correctly performs the comparison without the 199 /// potential for an assertion from getZExtValue(). isZero()200 bool isZero() const { 201 return Val.isNullValue(); 202 } 203 204 /// This is just a convenience method to make client code smaller for a 205 /// common case. It also correctly performs the comparison without the 206 /// potential for an assertion from getZExtValue(). 207 /// Determine if the value is one. isOne()208 bool isOne() const { 209 return Val.isOneValue(); 210 } 211 212 /// This function will return true iff every bit in this constant is set 213 /// to true. 214 /// @returns true iff this constant's bits are all set to true. 215 /// Determine if the value is all ones. isMinusOne()216 bool isMinusOne() const { 217 return Val.isAllOnesValue(); 218 } 219 220 /// This function will return true iff this constant represents the largest 221 /// value that may be represented by the constant's type. 222 /// @returns true iff this is the largest value that may be represented 223 /// by this type. 224 /// Determine if the value is maximal. isMaxValue(bool isSigned)225 bool isMaxValue(bool isSigned) const { 226 if (isSigned) 227 return Val.isMaxSignedValue(); 228 else 229 return Val.isMaxValue(); 230 } 231 232 /// This function will return true iff this constant represents the smallest 233 /// value that may be represented by this constant's type. 234 /// @returns true if this is the smallest value that may be represented by 235 /// this type. 236 /// Determine if the value is minimal. isMinValue(bool isSigned)237 bool isMinValue(bool isSigned) const { 238 if (isSigned) 239 return Val.isMinSignedValue(); 240 else 241 return Val.isMinValue(); 242 } 243 244 /// This function will return true iff this constant represents a value with 245 /// active bits bigger than 64 bits or a value greater than the given uint64_t 246 /// value. 247 /// @returns true iff this constant is greater or equal to the given number. 248 /// Determine if the value is greater or equal to the given number. uge(uint64_t Num)249 bool uge(uint64_t Num) const { 250 return Val.uge(Num); 251 } 252 253 /// getLimitedValue - If the value is smaller than the specified limit, 254 /// return it, otherwise return the limit value. This causes the value 255 /// to saturate to the limit. 256 /// @returns the min of the value of the constant and the specified value 257 /// Get the constant's value with a saturation limit 258 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { 259 return Val.getLimitedValue(Limit); 260 } 261 262 /// Methods to support type inquiry through isa, cast, and dyn_cast. classof(const Value * V)263 static bool classof(const Value *V) { 264 return V->getValueID() == ConstantIntVal; 265 } 266 }; 267 268 //===----------------------------------------------------------------------===// 269 /// ConstantFP - Floating Point Values [float, double] 270 /// 271 class ConstantFP final : public ConstantData { 272 friend class Constant; 273 274 APFloat Val; 275 276 ConstantFP(Type *Ty, const APFloat& V); 277 278 void destroyConstantImpl(); 279 280 public: 281 ConstantFP(const ConstantFP &) = delete; 282 283 /// Floating point negation must be implemented with f(x) = -0.0 - x. This 284 /// method returns the negative zero constant for floating point or vector 285 /// floating point types; for all other types, it returns the null value. 286 static Constant *getZeroValueForNegation(Type *Ty); 287 288 /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP, 289 /// for the specified value in the specified type. This should only be used 290 /// for simple constant values like 2.0/1.0 etc, that are known-valid both as 291 /// host double and as the target format. 292 static Constant *get(Type* Ty, double V); 293 294 /// If Ty is a vector type, return a Constant with a splat of the given 295 /// value. Otherwise return a ConstantFP for the given value. 296 static Constant *get(Type *Ty, const APFloat &V); 297 298 static Constant *get(Type* Ty, StringRef Str); 299 static ConstantFP *get(LLVMContext &Context, const APFloat &V); 300 static Constant *getNaN(Type *Ty, bool Negative = false, uint64_t Payload = 0); 301 static Constant *getQNaN(Type *Ty, bool Negative = false, 302 APInt *Payload = nullptr); 303 static Constant *getSNaN(Type *Ty, bool Negative = false, 304 APInt *Payload = nullptr); 305 static Constant *getNegativeZero(Type *Ty); 306 static Constant *getInfinity(Type *Ty, bool Negative = false); 307 308 /// Return true if Ty is big enough to represent V. 309 static bool isValueValidForType(Type *Ty, const APFloat &V); getValueAPF()310 inline const APFloat &getValueAPF() const { return Val; } getValue()311 inline const APFloat &getValue() const { return Val; } 312 313 /// Return true if the value is positive or negative zero. isZero()314 bool isZero() const { return Val.isZero(); } 315 316 /// Return true if the sign bit is set. isNegative()317 bool isNegative() const { return Val.isNegative(); } 318 319 /// Return true if the value is infinity isInfinity()320 bool isInfinity() const { return Val.isInfinity(); } 321 322 /// Return true if the value is a NaN. isNaN()323 bool isNaN() const { return Val.isNaN(); } 324 325 /// We don't rely on operator== working on double values, as it returns true 326 /// for things that are clearly not equal, like -0.0 and 0.0. 327 /// As such, this method can be used to do an exact bit-for-bit comparison of 328 /// two floating point values. The version with a double operand is retained 329 /// because it's so convenient to write isExactlyValue(2.0), but please use 330 /// it only for simple constants. 331 bool isExactlyValue(const APFloat &V) const; 332 isExactlyValue(double V)333 bool isExactlyValue(double V) const { 334 bool ignored; 335 APFloat FV(V); 336 FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); 337 return isExactlyValue(FV); 338 } 339 340 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const Value * V)341 static bool classof(const Value *V) { 342 return V->getValueID() == ConstantFPVal; 343 } 344 }; 345 346 //===----------------------------------------------------------------------===// 347 /// All zero aggregate value 348 /// 349 class ConstantAggregateZero final : public ConstantData { 350 friend class Constant; 351 ConstantAggregateZero(Type * Ty)352 explicit ConstantAggregateZero(Type *Ty) 353 : ConstantData(Ty, ConstantAggregateZeroVal) {} 354 355 void destroyConstantImpl(); 356 357 public: 358 ConstantAggregateZero(const ConstantAggregateZero &) = delete; 359 360 static ConstantAggregateZero *get(Type *Ty); 361 362 /// If this CAZ has array or vector type, return a zero with the right element 363 /// type. 364 Constant *getSequentialElement() const; 365 366 /// If this CAZ has struct type, return a zero with the right element type for 367 /// the specified element. 368 Constant *getStructElement(unsigned Elt) const; 369 370 /// Return a zero of the right value for the specified GEP index if we can, 371 /// otherwise return null (e.g. if C is a ConstantExpr). 372 Constant *getElementValue(Constant *C) const; 373 374 /// Return a zero of the right value for the specified GEP index. 375 Constant *getElementValue(unsigned Idx) const; 376 377 /// Return the number of elements in the array, vector, or struct. 378 unsigned getNumElements() const; 379 380 /// Methods for support type inquiry through isa, cast, and dyn_cast: 381 /// classof(const Value * V)382 static bool classof(const Value *V) { 383 return V->getValueID() == ConstantAggregateZeroVal; 384 } 385 }; 386 387 /// Base class for aggregate constants (with operands). 388 /// 389 /// These constants are aggregates of other constants, which are stored as 390 /// operands. 391 /// 392 /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a 393 /// ConstantVector. 394 /// 395 /// \note Some subclasses of \a ConstantData are semantically aggregates -- 396 /// such as \a ConstantDataArray -- but are not subclasses of this because they 397 /// use operands. 398 class ConstantAggregate : public Constant { 399 protected: 400 ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V); 401 402 public: 403 /// Transparently provide more efficient getOperand methods. 404 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); 405 406 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const Value * V)407 static bool classof(const Value *V) { 408 return V->getValueID() >= ConstantAggregateFirstVal && 409 V->getValueID() <= ConstantAggregateLastVal; 410 } 411 }; 412 413 template <> 414 struct OperandTraits<ConstantAggregate> 415 : public VariadicOperandTraits<ConstantAggregate> {}; 416 417 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant) 418 419 //===----------------------------------------------------------------------===// 420 /// ConstantArray - Constant Array Declarations 421 /// 422 class ConstantArray final : public ConstantAggregate { 423 friend struct ConstantAggrKeyType<ConstantArray>; 424 friend class Constant; 425 426 ConstantArray(ArrayType *T, ArrayRef<Constant *> Val); 427 428 void destroyConstantImpl(); 429 Value *handleOperandChangeImpl(Value *From, Value *To); 430 431 public: 432 // ConstantArray accessors 433 static Constant *get(ArrayType *T, ArrayRef<Constant*> V); 434 435 private: 436 static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V); 437 438 public: 439 /// Specialize the getType() method to always return an ArrayType, 440 /// which reduces the amount of casting needed in parts of the compiler. 441 inline ArrayType *getType() const { 442 return cast<ArrayType>(Value::getType()); 443 } 444 445 /// Methods for support type inquiry through isa, cast, and dyn_cast: 446 static bool classof(const Value *V) { 447 return V->getValueID() == ConstantArrayVal; 448 } 449 }; 450 451 //===----------------------------------------------------------------------===// 452 // Constant Struct Declarations 453 // 454 class ConstantStruct final : public ConstantAggregate { 455 friend struct ConstantAggrKeyType<ConstantStruct>; 456 friend class Constant; 457 458 ConstantStruct(StructType *T, ArrayRef<Constant *> Val); 459 460 void destroyConstantImpl(); 461 Value *handleOperandChangeImpl(Value *From, Value *To); 462 463 public: 464 // ConstantStruct accessors 465 static Constant *get(StructType *T, ArrayRef<Constant*> V); 466 467 template <typename... Csts> 468 static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *> 469 get(StructType *T, Csts *... Vs) { 470 SmallVector<Constant *, 8> Values({Vs...}); 471 return get(T, Values); 472 } 473 474 /// Return an anonymous struct that has the specified elements. 475 /// If the struct is possibly empty, then you must specify a context. 476 static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) { 477 return get(getTypeForElements(V, Packed), V); 478 } 479 static Constant *getAnon(LLVMContext &Ctx, 480 ArrayRef<Constant*> V, bool Packed = false) { 481 return get(getTypeForElements(Ctx, V, Packed), V); 482 } 483 484 /// Return an anonymous struct type to use for a constant with the specified 485 /// set of elements. The list must not be empty. 486 static StructType *getTypeForElements(ArrayRef<Constant*> V, 487 bool Packed = false); 488 /// This version of the method allows an empty list. 489 static StructType *getTypeForElements(LLVMContext &Ctx, 490 ArrayRef<Constant*> V, 491 bool Packed = false); 492 493 /// Specialization - reduce amount of casting. 494 inline StructType *getType() const { 495 return cast<StructType>(Value::getType()); 496 } 497 498 /// Methods for support type inquiry through isa, cast, and dyn_cast: 499 static bool classof(const Value *V) { 500 return V->getValueID() == ConstantStructVal; 501 } 502 }; 503 504 //===----------------------------------------------------------------------===// 505 /// Constant Vector Declarations 506 /// 507 class ConstantVector final : public ConstantAggregate { 508 friend struct ConstantAggrKeyType<ConstantVector>; 509 friend class Constant; 510 511 ConstantVector(VectorType *T, ArrayRef<Constant *> Val); 512 513 void destroyConstantImpl(); 514 Value *handleOperandChangeImpl(Value *From, Value *To); 515 516 public: 517 // ConstantVector accessors 518 static Constant *get(ArrayRef<Constant*> V); 519 520 private: 521 static Constant *getImpl(ArrayRef<Constant *> V); 522 523 public: 524 /// Return a ConstantVector with the specified constant in each element. 525 /// Note that this might not return an instance of ConstantVector 526 static Constant *getSplat(ElementCount EC, Constant *Elt); 527 528 /// Specialize the getType() method to always return a FixedVectorType, 529 /// which reduces the amount of casting needed in parts of the compiler. 530 inline FixedVectorType *getType() const { 531 return cast<FixedVectorType>(Value::getType()); 532 } 533 534 /// If all elements of the vector constant have the same value, return that 535 /// value. Otherwise, return nullptr. Ignore undefined elements by setting 536 /// AllowUndefs to true. 537 Constant *getSplatValue(bool AllowUndefs = false) const; 538 539 /// Methods for support type inquiry through isa, cast, and dyn_cast: 540 static bool classof(const Value *V) { 541 return V->getValueID() == ConstantVectorVal; 542 } 543 }; 544 545 //===----------------------------------------------------------------------===// 546 /// A constant pointer value that points to null 547 /// 548 class ConstantPointerNull final : public ConstantData { 549 friend class Constant; 550 551 explicit ConstantPointerNull(PointerType *T) 552 : ConstantData(T, Value::ConstantPointerNullVal) {} 553 554 void destroyConstantImpl(); 555 556 public: 557 ConstantPointerNull(const ConstantPointerNull &) = delete; 558 559 /// Static factory methods - Return objects of the specified value 560 static ConstantPointerNull *get(PointerType *T); 561 562 /// Specialize the getType() method to always return an PointerType, 563 /// which reduces the amount of casting needed in parts of the compiler. 564 inline PointerType *getType() const { 565 return cast<PointerType>(Value::getType()); 566 } 567 568 /// Methods for support type inquiry through isa, cast, and dyn_cast: 569 static bool classof(const Value *V) { 570 return V->getValueID() == ConstantPointerNullVal; 571 } 572 }; 573 574 //===----------------------------------------------------------------------===// 575 /// ConstantDataSequential - A vector or array constant whose element type is a 576 /// simple 1/2/4/8-byte integer or float/double, and whose elements are just 577 /// simple data values (i.e. ConstantInt/ConstantFP). This Constant node has no 578 /// operands because it stores all of the elements of the constant as densely 579 /// packed data, instead of as Value*'s. 580 /// 581 /// This is the common base class of ConstantDataArray and ConstantDataVector. 582 /// 583 class ConstantDataSequential : public ConstantData { 584 friend class LLVMContextImpl; 585 friend class Constant; 586 587 /// A pointer to the bytes underlying this constant (which is owned by the 588 /// uniquing StringMap). 589 const char *DataElements; 590 591 /// This forms a link list of ConstantDataSequential nodes that have 592 /// the same value but different type. For example, 0,0,0,1 could be a 4 593 /// element array of i8, or a 1-element array of i32. They'll both end up in 594 /// the same StringMap bucket, linked up. 595 std::unique_ptr<ConstantDataSequential> Next; 596 597 void destroyConstantImpl(); 598 599 protected: 600 explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data) 601 : ConstantData(ty, VT), DataElements(Data) {} 602 603 static Constant *getImpl(StringRef Bytes, Type *Ty); 604 605 public: 606 ConstantDataSequential(const ConstantDataSequential &) = delete; 607 608 /// Return true if a ConstantDataSequential can be formed with a vector or 609 /// array of the specified element type. 610 /// ConstantDataArray only works with normal float and int types that are 611 /// stored densely in memory, not with things like i42 or x86_f80. 612 static bool isElementTypeCompatible(Type *Ty); 613 614 /// If this is a sequential container of integers (of any size), return the 615 /// specified element in the low bits of a uint64_t. 616 uint64_t getElementAsInteger(unsigned i) const; 617 618 /// If this is a sequential container of integers (of any size), return the 619 /// specified element as an APInt. 620 APInt getElementAsAPInt(unsigned i) const; 621 622 /// If this is a sequential container of floating point type, return the 623 /// specified element as an APFloat. 624 APFloat getElementAsAPFloat(unsigned i) const; 625 626 /// If this is an sequential container of floats, return the specified element 627 /// as a float. 628 float getElementAsFloat(unsigned i) const; 629 630 /// If this is an sequential container of doubles, return the specified 631 /// element as a double. 632 double getElementAsDouble(unsigned i) const; 633 634 /// Return a Constant for a specified index's element. 635 /// Note that this has to compute a new constant to return, so it isn't as 636 /// efficient as getElementAsInteger/Float/Double. 637 Constant *getElementAsConstant(unsigned i) const; 638 639 /// Return the element type of the array/vector. 640 Type *getElementType() const; 641 642 /// Return the number of elements in the array or vector. 643 unsigned getNumElements() const; 644 645 /// Return the size (in bytes) of each element in the array/vector. 646 /// The size of the elements is known to be a multiple of one byte. 647 uint64_t getElementByteSize() const; 648 649 /// This method returns true if this is an array of \p CharSize integers. 650 bool isString(unsigned CharSize = 8) const; 651 652 /// This method returns true if the array "isString", ends with a null byte, 653 /// and does not contains any other null bytes. 654 bool isCString() const; 655 656 /// If this array is isString(), then this method returns the array as a 657 /// StringRef. Otherwise, it asserts out. 658 StringRef getAsString() const { 659 assert(isString() && "Not a string"); 660 return getRawDataValues(); 661 } 662 663 /// If this array is isCString(), then this method returns the array (without 664 /// the trailing null byte) as a StringRef. Otherwise, it asserts out. 665 StringRef getAsCString() const { 666 assert(isCString() && "Isn't a C string"); 667 StringRef Str = getAsString(); 668 return Str.substr(0, Str.size()-1); 669 } 670 671 /// Return the raw, underlying, bytes of this data. Note that this is an 672 /// extremely tricky thing to work with, as it exposes the host endianness of 673 /// the data elements. 674 StringRef getRawDataValues() const; 675 676 /// Methods for support type inquiry through isa, cast, and dyn_cast: 677 static bool classof(const Value *V) { 678 return V->getValueID() == ConstantDataArrayVal || 679 V->getValueID() == ConstantDataVectorVal; 680 } 681 682 private: 683 const char *getElementPointer(unsigned Elt) const; 684 }; 685 686 //===----------------------------------------------------------------------===// 687 /// An array constant whose element type is a simple 1/2/4/8-byte integer or 688 /// float/double, and whose elements are just simple data values 689 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it 690 /// stores all of the elements of the constant as densely packed data, instead 691 /// of as Value*'s. 692 class ConstantDataArray final : public ConstantDataSequential { 693 friend class ConstantDataSequential; 694 695 explicit ConstantDataArray(Type *ty, const char *Data) 696 : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {} 697 698 public: 699 ConstantDataArray(const ConstantDataArray &) = delete; 700 701 /// get() constructor - Return a constant with array type with an element 702 /// count and element type matching the ArrayRef passed in. Note that this 703 /// can return a ConstantAggregateZero object. 704 template <typename ElementTy> 705 static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) { 706 const char *Data = reinterpret_cast<const char *>(Elts.data()); 707 return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(), 708 Type::getScalarTy<ElementTy>(Context)); 709 } 710 711 /// get() constructor - ArrayTy needs to be compatible with 712 /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>). 713 template <typename ArrayTy> 714 static Constant *get(LLVMContext &Context, ArrayTy &Elts) { 715 return ConstantDataArray::get(Context, makeArrayRef(Elts)); 716 } 717 718 /// get() constructor - Return a constant with array type with an element 719 /// count and element type matching the NumElements and ElementTy parameters 720 /// passed in. Note that this can return a ConstantAggregateZero object. 721 /// ElementTy needs to be one of i8/i16/i32/i64/float/double. Data is the 722 /// buffer containing the elements. Be careful to make sure Data uses the 723 /// right endianness, the buffer will be used as-is. 724 static Constant *getRaw(StringRef Data, uint64_t NumElements, Type *ElementTy) { 725 Type *Ty = ArrayType::get(ElementTy, NumElements); 726 return getImpl(Data, Ty); 727 } 728 729 /// getFP() constructors - Return a constant of array type with a float 730 /// element type taken from argument `ElementType', and count taken from 731 /// argument `Elts'. The amount of bits of the contained type must match the 732 /// number of bits of the type contained in the passed in ArrayRef. 733 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 734 /// that this can return a ConstantAggregateZero object. 735 static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts); 736 static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts); 737 static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts); 738 739 /// This method constructs a CDS and initializes it with a text string. 740 /// The default behavior (AddNull==true) causes a null terminator to 741 /// be placed at the end of the array (increasing the length of the string by 742 /// one more than the StringRef would normally indicate. Pass AddNull=false 743 /// to disable this behavior. 744 static Constant *getString(LLVMContext &Context, StringRef Initializer, 745 bool AddNull = true); 746 747 /// Specialize the getType() method to always return an ArrayType, 748 /// which reduces the amount of casting needed in parts of the compiler. 749 inline ArrayType *getType() const { 750 return cast<ArrayType>(Value::getType()); 751 } 752 753 /// Methods for support type inquiry through isa, cast, and dyn_cast: 754 static bool classof(const Value *V) { 755 return V->getValueID() == ConstantDataArrayVal; 756 } 757 }; 758 759 //===----------------------------------------------------------------------===// 760 /// A vector constant whose element type is a simple 1/2/4/8-byte integer or 761 /// float/double, and whose elements are just simple data values 762 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it 763 /// stores all of the elements of the constant as densely packed data, instead 764 /// of as Value*'s. 765 class ConstantDataVector final : public ConstantDataSequential { 766 friend class ConstantDataSequential; 767 768 explicit ConstantDataVector(Type *ty, const char *Data) 769 : ConstantDataSequential(ty, ConstantDataVectorVal, Data), 770 IsSplatSet(false) {} 771 // Cache whether or not the constant is a splat. 772 mutable bool IsSplatSet : 1; 773 mutable bool IsSplat : 1; 774 bool isSplatData() const; 775 776 public: 777 ConstantDataVector(const ConstantDataVector &) = delete; 778 779 /// get() constructors - Return a constant with vector type with an element 780 /// count and element type matching the ArrayRef passed in. Note that this 781 /// can return a ConstantAggregateZero object. 782 static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts); 783 static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts); 784 static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts); 785 static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts); 786 static Constant *get(LLVMContext &Context, ArrayRef<float> Elts); 787 static Constant *get(LLVMContext &Context, ArrayRef<double> Elts); 788 789 /// getFP() constructors - Return a constant of vector type with a float 790 /// element type taken from argument `ElementType', and count taken from 791 /// argument `Elts'. The amount of bits of the contained type must match the 792 /// number of bits of the type contained in the passed in ArrayRef. 793 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 794 /// that this can return a ConstantAggregateZero object. 795 static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts); 796 static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts); 797 static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts); 798 799 /// Return a ConstantVector with the specified constant in each element. 800 /// The specified constant has to be a of a compatible type (i8/i16/ 801 /// i32/i64/float/double) and must be a ConstantFP or ConstantInt. 802 static Constant *getSplat(unsigned NumElts, Constant *Elt); 803 804 /// Returns true if this is a splat constant, meaning that all elements have 805 /// the same value. 806 bool isSplat() const; 807 808 /// If this is a splat constant, meaning that all of the elements have the 809 /// same value, return that value. Otherwise return NULL. 810 Constant *getSplatValue() const; 811 812 /// Specialize the getType() method to always return a FixedVectorType, 813 /// which reduces the amount of casting needed in parts of the compiler. 814 inline FixedVectorType *getType() const { 815 return cast<FixedVectorType>(Value::getType()); 816 } 817 818 /// Methods for support type inquiry through isa, cast, and dyn_cast: 819 static bool classof(const Value *V) { 820 return V->getValueID() == ConstantDataVectorVal; 821 } 822 }; 823 824 //===----------------------------------------------------------------------===// 825 /// A constant token which is empty 826 /// 827 class ConstantTokenNone final : public ConstantData { 828 friend class Constant; 829 830 explicit ConstantTokenNone(LLVMContext &Context) 831 : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {} 832 833 void destroyConstantImpl(); 834 835 public: 836 ConstantTokenNone(const ConstantTokenNone &) = delete; 837 838 /// Return the ConstantTokenNone. 839 static ConstantTokenNone *get(LLVMContext &Context); 840 841 /// Methods to support type inquiry through isa, cast, and dyn_cast. 842 static bool classof(const Value *V) { 843 return V->getValueID() == ConstantTokenNoneVal; 844 } 845 }; 846 847 /// The address of a basic block. 848 /// 849 class BlockAddress final : public Constant { 850 friend class Constant; 851 852 BlockAddress(Function *F, BasicBlock *BB); 853 854 void *operator new(size_t s) { return User::operator new(s, 2); } 855 856 void destroyConstantImpl(); 857 Value *handleOperandChangeImpl(Value *From, Value *To); 858 859 public: 860 /// Return a BlockAddress for the specified function and basic block. 861 static BlockAddress *get(Function *F, BasicBlock *BB); 862 863 /// Return a BlockAddress for the specified basic block. The basic 864 /// block must be embedded into a function. 865 static BlockAddress *get(BasicBlock *BB); 866 867 /// Lookup an existing \c BlockAddress constant for the given BasicBlock. 868 /// 869 /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress. 870 static BlockAddress *lookup(const BasicBlock *BB); 871 872 /// Transparently provide more efficient getOperand methods. 873 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 874 875 Function *getFunction() const { return (Function*)Op<0>().get(); } 876 BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); } 877 878 /// Methods for support type inquiry through isa, cast, and dyn_cast: 879 static bool classof(const Value *V) { 880 return V->getValueID() == BlockAddressVal; 881 } 882 }; 883 884 template <> 885 struct OperandTraits<BlockAddress> : 886 public FixedNumOperandTraits<BlockAddress, 2> { 887 }; 888 889 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value) 890 891 /// Wrapper for a function that represents a value that 892 /// functionally represents the original function. This can be a function, 893 /// global alias to a function, or an ifunc. 894 class DSOLocalEquivalent final : public Constant { 895 friend class Constant; 896 897 DSOLocalEquivalent(GlobalValue *GV); 898 899 void *operator new(size_t s) { return User::operator new(s, 1); } 900 901 void destroyConstantImpl(); 902 Value *handleOperandChangeImpl(Value *From, Value *To); 903 904 public: 905 /// Return a DSOLocalEquivalent for the specified global value. 906 static DSOLocalEquivalent *get(GlobalValue *GV); 907 908 /// Transparently provide more efficient getOperand methods. 909 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 910 911 GlobalValue *getGlobalValue() const { 912 return cast<GlobalValue>(Op<0>().get()); 913 } 914 915 /// Methods for support type inquiry through isa, cast, and dyn_cast: 916 static bool classof(const Value *V) { 917 return V->getValueID() == DSOLocalEquivalentVal; 918 } 919 }; 920 921 template <> 922 struct OperandTraits<DSOLocalEquivalent> 923 : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {}; 924 925 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value) 926 927 //===----------------------------------------------------------------------===// 928 /// A constant value that is initialized with an expression using 929 /// other constant values. 930 /// 931 /// This class uses the standard Instruction opcodes to define the various 932 /// constant expressions. The Opcode field for the ConstantExpr class is 933 /// maintained in the Value::SubclassData field. 934 class ConstantExpr : public Constant { 935 friend struct ConstantExprKeyType; 936 friend class Constant; 937 938 void destroyConstantImpl(); 939 Value *handleOperandChangeImpl(Value *From, Value *To); 940 941 protected: 942 ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) 943 : Constant(ty, ConstantExprVal, Ops, NumOps) { 944 // Operation type (an Instruction opcode) is stored as the SubclassData. 945 setValueSubclassData(Opcode); 946 } 947 948 ~ConstantExpr() = default; 949 950 public: 951 // Static methods to construct a ConstantExpr of different kinds. Note that 952 // these methods may return a object that is not an instance of the 953 // ConstantExpr class, because they will attempt to fold the constant 954 // expression into something simpler if possible. 955 956 /// getAlignOf constant expr - computes the alignment of a type in a target 957 /// independent way (Note: the return type is an i64). 958 static Constant *getAlignOf(Type *Ty); 959 960 /// getSizeOf constant expr - computes the (alloc) size of a type (in 961 /// address-units, not bits) in a target independent way (Note: the return 962 /// type is an i64). 963 /// 964 static Constant *getSizeOf(Type *Ty); 965 966 /// getOffsetOf constant expr - computes the offset of a struct field in a 967 /// target independent way (Note: the return type is an i64). 968 /// 969 static Constant *getOffsetOf(StructType *STy, unsigned FieldNo); 970 971 /// getOffsetOf constant expr - This is a generalized form of getOffsetOf, 972 /// which supports any aggregate type, and any Constant index. 973 /// 974 static Constant *getOffsetOf(Type *Ty, Constant *FieldNo); 975 976 static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false); 977 static Constant *getFNeg(Constant *C); 978 static Constant *getNot(Constant *C); 979 static Constant *getAdd(Constant *C1, Constant *C2, 980 bool HasNUW = false, bool HasNSW = false); 981 static Constant *getFAdd(Constant *C1, Constant *C2); 982 static Constant *getSub(Constant *C1, Constant *C2, 983 bool HasNUW = false, bool HasNSW = false); 984 static Constant *getFSub(Constant *C1, Constant *C2); 985 static Constant *getMul(Constant *C1, Constant *C2, 986 bool HasNUW = false, bool HasNSW = false); 987 static Constant *getFMul(Constant *C1, Constant *C2); 988 static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false); 989 static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false); 990 static Constant *getFDiv(Constant *C1, Constant *C2); 991 static Constant *getURem(Constant *C1, Constant *C2); 992 static Constant *getSRem(Constant *C1, Constant *C2); 993 static Constant *getFRem(Constant *C1, Constant *C2); 994 static Constant *getAnd(Constant *C1, Constant *C2); 995 static Constant *getOr(Constant *C1, Constant *C2); 996 static Constant *getXor(Constant *C1, Constant *C2); 997 static Constant *getUMin(Constant *C1, Constant *C2); 998 static Constant *getShl(Constant *C1, Constant *C2, 999 bool HasNUW = false, bool HasNSW = false); 1000 static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false); 1001 static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false); 1002 static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false); 1003 static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); 1004 static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); 1005 static Constant *getFPTrunc(Constant *C, Type *Ty, 1006 bool OnlyIfReduced = false); 1007 static Constant *getFPExtend(Constant *C, Type *Ty, 1008 bool OnlyIfReduced = false); 1009 static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); 1010 static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); 1011 static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false); 1012 static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false); 1013 static Constant *getPtrToInt(Constant *C, Type *Ty, 1014 bool OnlyIfReduced = false); 1015 static Constant *getIntToPtr(Constant *C, Type *Ty, 1016 bool OnlyIfReduced = false); 1017 static Constant *getBitCast(Constant *C, Type *Ty, 1018 bool OnlyIfReduced = false); 1019 static Constant *getAddrSpaceCast(Constant *C, Type *Ty, 1020 bool OnlyIfReduced = false); 1021 1022 static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); } 1023 static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); } 1024 1025 static Constant *getNSWAdd(Constant *C1, Constant *C2) { 1026 return getAdd(C1, C2, false, true); 1027 } 1028 1029 static Constant *getNUWAdd(Constant *C1, Constant *C2) { 1030 return getAdd(C1, C2, true, false); 1031 } 1032 1033 static Constant *getNSWSub(Constant *C1, Constant *C2) { 1034 return getSub(C1, C2, false, true); 1035 } 1036 1037 static Constant *getNUWSub(Constant *C1, Constant *C2) { 1038 return getSub(C1, C2, true, false); 1039 } 1040 1041 static Constant *getNSWMul(Constant *C1, Constant *C2) { 1042 return getMul(C1, C2, false, true); 1043 } 1044 1045 static Constant *getNUWMul(Constant *C1, Constant *C2) { 1046 return getMul(C1, C2, true, false); 1047 } 1048 1049 static Constant *getNSWShl(Constant *C1, Constant *C2) { 1050 return getShl(C1, C2, false, true); 1051 } 1052 1053 static Constant *getNUWShl(Constant *C1, Constant *C2) { 1054 return getShl(C1, C2, true, false); 1055 } 1056 1057 static Constant *getExactSDiv(Constant *C1, Constant *C2) { 1058 return getSDiv(C1, C2, true); 1059 } 1060 1061 static Constant *getExactUDiv(Constant *C1, Constant *C2) { 1062 return getUDiv(C1, C2, true); 1063 } 1064 1065 static Constant *getExactAShr(Constant *C1, Constant *C2) { 1066 return getAShr(C1, C2, true); 1067 } 1068 1069 static Constant *getExactLShr(Constant *C1, Constant *C2) { 1070 return getLShr(C1, C2, true); 1071 } 1072 1073 /// If C is a scalar/fixed width vector of known powers of 2, then this 1074 /// function returns a new scalar/fixed width vector obtained from logBase2 1075 /// of C. Undef vector elements are set to zero. 1076 /// Return a null pointer otherwise. 1077 static Constant *getExactLogBase2(Constant *C); 1078 1079 /// Return the identity constant for a binary opcode. 1080 /// The identity constant C is defined as X op C = X and C op X = X for every 1081 /// X when the binary operation is commutative. If the binop is not 1082 /// commutative, callers can acquire the operand 1 identity constant by 1083 /// setting AllowRHSConstant to true. For example, any shift has a zero 1084 /// identity constant for operand 1: X shift 0 = X. 1085 /// Return nullptr if the operator does not have an identity constant. 1086 static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty, 1087 bool AllowRHSConstant = false); 1088 1089 /// Return the absorbing element for the given binary 1090 /// operation, i.e. a constant C such that X op C = C and C op X = C for 1091 /// every X. For example, this returns zero for integer multiplication. 1092 /// It returns null if the operator doesn't have an absorbing element. 1093 static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty); 1094 1095 /// Transparently provide more efficient getOperand methods. 1096 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); 1097 1098 /// Convenience function for getting a Cast operation. 1099 /// 1100 /// \param ops The opcode for the conversion 1101 /// \param C The constant to be converted 1102 /// \param Ty The type to which the constant is converted 1103 /// \param OnlyIfReduced see \a getWithOperands() docs. 1104 static Constant *getCast(unsigned ops, Constant *C, Type *Ty, 1105 bool OnlyIfReduced = false); 1106 1107 // Create a ZExt or BitCast cast constant expression 1108 static Constant *getZExtOrBitCast( 1109 Constant *C, ///< The constant to zext or bitcast 1110 Type *Ty ///< The type to zext or bitcast C to 1111 ); 1112 1113 // Create a SExt or BitCast cast constant expression 1114 static Constant *getSExtOrBitCast( 1115 Constant *C, ///< The constant to sext or bitcast 1116 Type *Ty ///< The type to sext or bitcast C to 1117 ); 1118 1119 // Create a Trunc or BitCast cast constant expression 1120 static Constant *getTruncOrBitCast( 1121 Constant *C, ///< The constant to trunc or bitcast 1122 Type *Ty ///< The type to trunc or bitcast C to 1123 ); 1124 1125 /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant 1126 /// expression. 1127 static Constant *getPointerCast( 1128 Constant *C, ///< The pointer value to be casted (operand 0) 1129 Type *Ty ///< The type to which cast should be made 1130 ); 1131 1132 /// Create a BitCast or AddrSpaceCast for a pointer type depending on 1133 /// the address space. 1134 static Constant *getPointerBitCastOrAddrSpaceCast( 1135 Constant *C, ///< The constant to addrspacecast or bitcast 1136 Type *Ty ///< The type to bitcast or addrspacecast C to 1137 ); 1138 1139 /// Create a ZExt, Bitcast or Trunc for integer -> integer casts 1140 static Constant *getIntegerCast( 1141 Constant *C, ///< The integer constant to be casted 1142 Type *Ty, ///< The integer type to cast to 1143 bool isSigned ///< Whether C should be treated as signed or not 1144 ); 1145 1146 /// Create a FPExt, Bitcast or FPTrunc for fp -> fp casts 1147 static Constant *getFPCast( 1148 Constant *C, ///< The integer constant to be casted 1149 Type *Ty ///< The integer type to cast to 1150 ); 1151 1152 /// Return true if this is a convert constant expression 1153 bool isCast() const; 1154 1155 /// Return true if this is a compare constant expression 1156 bool isCompare() const; 1157 1158 /// Return true if this is an insertvalue or extractvalue expression, 1159 /// and the getIndices() method may be used. 1160 bool hasIndices() const; 1161 1162 /// Return true if this is a getelementptr expression and all 1163 /// the index operands are compile-time known integers within the 1164 /// corresponding notional static array extents. Note that this is 1165 /// not equivalant to, a subset of, or a superset of the "inbounds" 1166 /// property. 1167 bool isGEPWithNoNotionalOverIndexing() const; 1168 1169 /// Select constant expr 1170 /// 1171 /// \param OnlyIfReducedTy see \a getWithOperands() docs. 1172 static Constant *getSelect(Constant *C, Constant *V1, Constant *V2, 1173 Type *OnlyIfReducedTy = nullptr); 1174 1175 /// get - Return a unary operator constant expression, 1176 /// folding if possible. 1177 /// 1178 /// \param OnlyIfReducedTy see \a getWithOperands() docs. 1179 static Constant *get(unsigned Opcode, Constant *C1, unsigned Flags = 0, 1180 Type *OnlyIfReducedTy = nullptr); 1181 1182 /// get - Return a binary or shift operator constant expression, 1183 /// folding if possible. 1184 /// 1185 /// \param OnlyIfReducedTy see \a getWithOperands() docs. 1186 static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, 1187 unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr); 1188 1189 /// Return an ICmp or FCmp comparison operator constant expression. 1190 /// 1191 /// \param OnlyIfReduced see \a getWithOperands() docs. 1192 static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2, 1193 bool OnlyIfReduced = false); 1194 1195 /// get* - Return some common constants without having to 1196 /// specify the full Instruction::OPCODE identifier. 1197 /// 1198 static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS, 1199 bool OnlyIfReduced = false); 1200 static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS, 1201 bool OnlyIfReduced = false); 1202 1203 /// Getelementptr form. Value* is only accepted for convenience; 1204 /// all elements must be Constants. 1205 /// 1206 /// \param InRangeIndex the inrange index if present or None. 1207 /// \param OnlyIfReducedTy see \a getWithOperands() docs. 1208 static Constant *getGetElementPtr(Type *Ty, Constant *C, 1209 ArrayRef<Constant *> IdxList, 1210 bool InBounds = false, 1211 Optional<unsigned> InRangeIndex = None, 1212 Type *OnlyIfReducedTy = nullptr) { 1213 return getGetElementPtr( 1214 Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()), 1215 InBounds, InRangeIndex, OnlyIfReducedTy); 1216 } 1217 static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, 1218 bool InBounds = false, 1219 Optional<unsigned> InRangeIndex = None, 1220 Type *OnlyIfReducedTy = nullptr) { 1221 // This form of the function only exists to avoid ambiguous overload 1222 // warnings about whether to convert Idx to ArrayRef<Constant *> or 1223 // ArrayRef<Value *>. 1224 return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex, 1225 OnlyIfReducedTy); 1226 } 1227 static Constant *getGetElementPtr(Type *Ty, Constant *C, 1228 ArrayRef<Value *> IdxList, 1229 bool InBounds = false, 1230 Optional<unsigned> InRangeIndex = None, 1231 Type *OnlyIfReducedTy = nullptr); 1232 1233 /// Create an "inbounds" getelementptr. See the documentation for the 1234 /// "inbounds" flag in LangRef.html for details. 1235 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1236 ArrayRef<Constant *> IdxList) { 1237 return getGetElementPtr(Ty, C, IdxList, true); 1238 } 1239 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1240 Constant *Idx) { 1241 // This form of the function only exists to avoid ambiguous overload 1242 // warnings about whether to convert Idx to ArrayRef<Constant *> or 1243 // ArrayRef<Value *>. 1244 return getGetElementPtr(Ty, C, Idx, true); 1245 } 1246 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1247 ArrayRef<Value *> IdxList) { 1248 return getGetElementPtr(Ty, C, IdxList, true); 1249 } 1250 1251 static Constant *getExtractElement(Constant *Vec, Constant *Idx, 1252 Type *OnlyIfReducedTy = nullptr); 1253 static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, 1254 Type *OnlyIfReducedTy = nullptr); 1255 static Constant *getShuffleVector(Constant *V1, Constant *V2, 1256 ArrayRef<int> Mask, 1257 Type *OnlyIfReducedTy = nullptr); 1258 static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, 1259 Type *OnlyIfReducedTy = nullptr); 1260 static Constant *getInsertValue(Constant *Agg, Constant *Val, 1261 ArrayRef<unsigned> Idxs, 1262 Type *OnlyIfReducedTy = nullptr); 1263 1264 /// Return the opcode at the root of this constant expression 1265 unsigned getOpcode() const { return getSubclassDataFromValue(); } 1266 1267 /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or 1268 /// FCMP constant expression. 1269 unsigned getPredicate() const; 1270 1271 /// Assert that this is an insertvalue or exactvalue 1272 /// expression and return the list of indices. 1273 ArrayRef<unsigned> getIndices() const; 1274 1275 /// Assert that this is a shufflevector and return the mask. See class 1276 /// ShuffleVectorInst for a description of the mask representation. 1277 ArrayRef<int> getShuffleMask() const; 1278 1279 /// Assert that this is a shufflevector and return the mask. 1280 /// 1281 /// TODO: This is a temporary hack until we update the bitcode format for 1282 /// shufflevector. 1283 Constant *getShuffleMaskForBitcode() const; 1284 1285 /// Return a string representation for an opcode. 1286 const char *getOpcodeName() const; 1287 1288 /// Return a constant expression identical to this one, but with the specified 1289 /// operand set to the specified value. 1290 Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const; 1291 1292 /// This returns the current constant expression with the operands replaced 1293 /// with the specified values. The specified array must have the same number 1294 /// of operands as our current one. 1295 Constant *getWithOperands(ArrayRef<Constant*> Ops) const { 1296 return getWithOperands(Ops, getType()); 1297 } 1298 1299 /// Get the current expression with the operands replaced. 1300 /// 1301 /// Return the current constant expression with the operands replaced with \c 1302 /// Ops and the type with \c Ty. The new operands must have the same number 1303 /// as the current ones. 1304 /// 1305 /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something 1306 /// gets constant-folded, the type changes, or the expression is otherwise 1307 /// canonicalized. This parameter should almost always be \c false. 1308 Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1309 bool OnlyIfReduced = false, 1310 Type *SrcTy = nullptr) const; 1311 1312 /// Returns an Instruction which implements the same operation as this 1313 /// ConstantExpr. The instruction is not linked to any basic block. 1314 /// 1315 /// A better approach to this could be to have a constructor for Instruction 1316 /// which would take a ConstantExpr parameter, but that would have spread 1317 /// implementation details of ConstantExpr outside of Constants.cpp, which 1318 /// would make it harder to remove ConstantExprs altogether. 1319 Instruction *getAsInstruction() const; 1320 1321 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1322 static bool classof(const Value *V) { 1323 return V->getValueID() == ConstantExprVal; 1324 } 1325 1326 private: 1327 // Shadow Value::setValueSubclassData with a private forwarding method so that 1328 // subclasses cannot accidentally use it. 1329 void setValueSubclassData(unsigned short D) { 1330 Value::setValueSubclassData(D); 1331 } 1332 }; 1333 1334 template <> 1335 struct OperandTraits<ConstantExpr> : 1336 public VariadicOperandTraits<ConstantExpr, 1> { 1337 }; 1338 1339 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant) 1340 1341 //===----------------------------------------------------------------------===// 1342 /// 'undef' values are things that do not have specified contents. 1343 /// These are used for a variety of purposes, including global variable 1344 /// initializers and operands to instructions. 'undef' values can occur with 1345 /// any first-class type. 1346 /// 1347 /// Undef values aren't exactly constants; if they have multiple uses, they 1348 /// can appear to have different bit patterns at each use. See 1349 /// LangRef.html#undefvalues for details. 1350 /// 1351 class UndefValue : public ConstantData { 1352 friend class Constant; 1353 1354 explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {} 1355 1356 void destroyConstantImpl(); 1357 1358 protected: 1359 explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {} 1360 1361 public: 1362 UndefValue(const UndefValue &) = delete; 1363 1364 /// Static factory methods - Return an 'undef' object of the specified type. 1365 static UndefValue *get(Type *T); 1366 1367 /// If this Undef has array or vector type, return a undef with the right 1368 /// element type. 1369 UndefValue *getSequentialElement() const; 1370 1371 /// If this undef has struct type, return a undef with the right element type 1372 /// for the specified element. 1373 UndefValue *getStructElement(unsigned Elt) const; 1374 1375 /// Return an undef of the right value for the specified GEP index if we can, 1376 /// otherwise return null (e.g. if C is a ConstantExpr). 1377 UndefValue *getElementValue(Constant *C) const; 1378 1379 /// Return an undef of the right value for the specified GEP index. 1380 UndefValue *getElementValue(unsigned Idx) const; 1381 1382 /// Return the number of elements in the array, vector, or struct. 1383 unsigned getNumElements() const; 1384 1385 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1386 static bool classof(const Value *V) { 1387 return V->getValueID() == UndefValueVal || 1388 V->getValueID() == PoisonValueVal; 1389 } 1390 }; 1391 1392 //===----------------------------------------------------------------------===// 1393 /// In order to facilitate speculative execution, many instructions do not 1394 /// invoke immediate undefined behavior when provided with illegal operands, 1395 /// and return a poison value instead. 1396 /// 1397 /// see LangRef.html#poisonvalues for details. 1398 /// 1399 class PoisonValue final : public UndefValue { 1400 friend class Constant; 1401 1402 explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {} 1403 1404 void destroyConstantImpl(); 1405 1406 public: 1407 PoisonValue(const PoisonValue &) = delete; 1408 1409 /// Static factory methods - Return an 'poison' object of the specified type. 1410 static PoisonValue *get(Type *T); 1411 1412 /// If this poison has array or vector type, return a poison with the right 1413 /// element type. 1414 PoisonValue *getSequentialElement() const; 1415 1416 /// If this poison has struct type, return a poison with the right element 1417 /// type for the specified element. 1418 PoisonValue *getStructElement(unsigned Elt) const; 1419 1420 /// Return an poison of the right value for the specified GEP index if we can, 1421 /// otherwise return null (e.g. if C is a ConstantExpr). 1422 PoisonValue *getElementValue(Constant *C) const; 1423 1424 /// Return an poison of the right value for the specified GEP index. 1425 PoisonValue *getElementValue(unsigned Idx) const; 1426 1427 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1428 static bool classof(const Value *V) { 1429 return V->getValueID() == PoisonValueVal; 1430 } 1431 }; 1432 1433 } // end namespace llvm 1434 1435 #endif // LLVM_IR_CONSTANTS_H 1436