1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/SymbolTable.h"
10 #include "mlir/IR/Builders.h"
11 #include "mlir/IR/OpImplementation.h"
12 #include "llvm/ADT/SetVector.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallString.h"
15 #include "llvm/ADT/StringSwitch.h"
16 
17 using namespace mlir;
18 
19 /// Return true if the given operation is unknown and may potentially define a
20 /// symbol table.
isPotentiallyUnknownSymbolTable(Operation * op)21 static bool isPotentiallyUnknownSymbolTable(Operation *op) {
22   return op->getNumRegions() == 1 && !op->getDialect();
23 }
24 
25 /// Returns the string name of the given symbol, or None if this is not a
26 /// symbol.
getNameIfSymbol(Operation * symbol)27 static Optional<StringRef> getNameIfSymbol(Operation *symbol) {
28   auto nameAttr =
29       symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
30   return nameAttr ? nameAttr.getValue() : Optional<StringRef>();
31 }
getNameIfSymbol(Operation * symbol,Identifier symbolAttrNameId)32 static Optional<StringRef> getNameIfSymbol(Operation *symbol,
33                                            Identifier symbolAttrNameId) {
34   auto nameAttr = symbol->getAttrOfType<StringAttr>(symbolAttrNameId);
35   return nameAttr ? nameAttr.getValue() : Optional<StringRef>();
36 }
37 
38 /// Computes the nested symbol reference attribute for the symbol 'symbolName'
39 /// that are usable within the symbol table operations from 'symbol' as far up
40 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'.
41 /// Returns success if all references up to 'within' could be computed.
42 static LogicalResult
collectValidReferencesFor(Operation * symbol,StringRef symbolName,Operation * within,SmallVectorImpl<SymbolRefAttr> & results)43 collectValidReferencesFor(Operation *symbol, StringRef symbolName,
44                           Operation *within,
45                           SmallVectorImpl<SymbolRefAttr> &results) {
46   assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor");
47   MLIRContext *ctx = symbol->getContext();
48 
49   auto leafRef = FlatSymbolRefAttr::get(symbolName, ctx);
50   results.push_back(leafRef);
51 
52   // Early exit for when 'within' is the parent of 'symbol'.
53   Operation *symbolTableOp = symbol->getParentOp();
54   if (within == symbolTableOp)
55     return success();
56 
57   // Collect references until 'symbolTableOp' reaches 'within'.
58   SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef);
59   Identifier symbolNameId =
60       Identifier::get(SymbolTable::getSymbolAttrName(), ctx);
61   do {
62     // Each parent of 'symbol' should define a symbol table.
63     if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
64       return failure();
65     // Each parent of 'symbol' should also be a symbol.
66     Optional<StringRef> symbolTableName =
67         getNameIfSymbol(symbolTableOp, symbolNameId);
68     if (!symbolTableName)
69       return failure();
70     results.push_back(SymbolRefAttr::get(*symbolTableName, nestedRefs, ctx));
71 
72     symbolTableOp = symbolTableOp->getParentOp();
73     if (symbolTableOp == within)
74       break;
75     nestedRefs.insert(nestedRefs.begin(),
76                       FlatSymbolRefAttr::get(*symbolTableName, ctx));
77   } while (true);
78   return success();
79 }
80 
81 /// Walk all of the operations within the given set of regions, without
82 /// traversing into any nested symbol tables. Stops walking if the result of the
83 /// callback is anything other than `WalkResult::advance`.
84 static Optional<WalkResult>
walkSymbolTable(MutableArrayRef<Region> regions,function_ref<Optional<WalkResult> (Operation *)> callback)85 walkSymbolTable(MutableArrayRef<Region> regions,
86                 function_ref<Optional<WalkResult>(Operation *)> callback) {
87   SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions));
88   while (!worklist.empty()) {
89     for (Operation &op : worklist.pop_back_val()->getOps()) {
90       Optional<WalkResult> result = callback(&op);
91       if (result != WalkResult::advance())
92         return result;
93 
94       // If this op defines a new symbol table scope, we can't traverse. Any
95       // symbol references nested within 'op' are different semantically.
96       if (!op.hasTrait<OpTrait::SymbolTable>()) {
97         for (Region &region : op.getRegions())
98           worklist.push_back(&region);
99       }
100     }
101   }
102   return WalkResult::advance();
103 }
104 
105 //===----------------------------------------------------------------------===//
106 // SymbolTable
107 //===----------------------------------------------------------------------===//
108 
109 /// Build a symbol table with the symbols within the given operation.
SymbolTable(Operation * symbolTableOp)110 SymbolTable::SymbolTable(Operation *symbolTableOp)
111     : symbolTableOp(symbolTableOp) {
112   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() &&
113          "expected operation to have SymbolTable trait");
114   assert(symbolTableOp->getNumRegions() == 1 &&
115          "expected operation to have a single region");
116   assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) &&
117          "expected operation to have a single block");
118 
119   Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(),
120                                             symbolTableOp->getContext());
121   for (auto &op : symbolTableOp->getRegion(0).front()) {
122     Optional<StringRef> name = getNameIfSymbol(&op, symbolNameId);
123     if (!name)
124       continue;
125 
126     auto inserted = symbolTable.insert({*name, &op});
127     (void)inserted;
128     assert(inserted.second &&
129            "expected region to contain uniquely named symbol operations");
130   }
131 }
132 
133 /// Look up a symbol with the specified name, returning null if no such name
134 /// exists. Names never include the @ on them.
lookup(StringRef name) const135 Operation *SymbolTable::lookup(StringRef name) const {
136   return symbolTable.lookup(name);
137 }
138 
139 /// Erase the given symbol from the table.
erase(Operation * symbol)140 void SymbolTable::erase(Operation *symbol) {
141   Optional<StringRef> name = getNameIfSymbol(symbol);
142   assert(name && "expected valid 'name' attribute");
143   assert(symbol->getParentOp() == symbolTableOp &&
144          "expected this operation to be inside of the operation with this "
145          "SymbolTable");
146 
147   auto it = symbolTable.find(*name);
148   if (it != symbolTable.end() && it->second == symbol) {
149     symbolTable.erase(it);
150     symbol->erase();
151   }
152 }
153 
154 /// Insert a new symbol into the table and associated operation, and rename it
155 /// as necessary to avoid collisions.
insert(Operation * symbol,Block::iterator insertPt)156 void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) {
157   auto &body = symbolTableOp->getRegion(0).front();
158   if (insertPt == Block::iterator() || insertPt == body.end())
159     insertPt = Block::iterator(body.getTerminator());
160 
161   assert(insertPt->getParentOp() == symbolTableOp &&
162          "expected insertPt to be in the associated module operation");
163 
164   body.getOperations().insert(insertPt, symbol);
165 
166   // Add this symbol to the symbol table, uniquing the name if a conflict is
167   // detected.
168   StringRef name = getSymbolName(symbol);
169   if (symbolTable.insert({name, symbol}).second)
170     return;
171   // If a conflict was detected, then the symbol will not have been added to
172   // the symbol table. Try suffixes until we get to a unique name that works.
173   SmallString<128> nameBuffer(name);
174   unsigned originalLength = nameBuffer.size();
175 
176   // Iteratively try suffixes until we find one that isn't used.
177   do {
178     nameBuffer.resize(originalLength);
179     nameBuffer += '_';
180     nameBuffer += std::to_string(uniquingCounter++);
181   } while (!symbolTable.insert({nameBuffer, symbol}).second);
182   setSymbolName(symbol, nameBuffer);
183 }
184 
185 /// Returns the name of the given symbol operation.
getSymbolName(Operation * symbol)186 StringRef SymbolTable::getSymbolName(Operation *symbol) {
187   Optional<StringRef> name = getNameIfSymbol(symbol);
188   assert(name && "expected valid symbol name");
189   return *name;
190 }
191 /// Sets the name of the given symbol operation.
setSymbolName(Operation * symbol,StringRef name)192 void SymbolTable::setSymbolName(Operation *symbol, StringRef name) {
193   symbol->setAttr(getSymbolAttrName(),
194                   StringAttr::get(name, symbol->getContext()));
195 }
196 
197 /// Returns the visibility of the given symbol operation.
getSymbolVisibility(Operation * symbol)198 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) {
199   // If the attribute doesn't exist, assume public.
200   StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName());
201   if (!vis)
202     return Visibility::Public;
203 
204   // Otherwise, switch on the string value.
205   return StringSwitch<Visibility>(vis.getValue())
206       .Case("private", Visibility::Private)
207       .Case("nested", Visibility::Nested)
208       .Case("public", Visibility::Public);
209 }
210 /// Sets the visibility of the given symbol operation.
setSymbolVisibility(Operation * symbol,Visibility vis)211 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) {
212   MLIRContext *ctx = symbol->getContext();
213 
214   // If the visibility is public, just drop the attribute as this is the
215   // default.
216   if (vis == Visibility::Public) {
217     symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx));
218     return;
219   }
220 
221   // Otherwise, update the attribute.
222   assert((vis == Visibility::Private || vis == Visibility::Nested) &&
223          "unknown symbol visibility kind");
224 
225   StringRef visName = vis == Visibility::Private ? "private" : "nested";
226   symbol->setAttr(getVisibilityAttrName(), StringAttr::get(visName, ctx));
227 }
228 
229 /// Returns the nearest symbol table from a given operation `from`. Returns
230 /// nullptr if no valid parent symbol table could be found.
getNearestSymbolTable(Operation * from)231 Operation *SymbolTable::getNearestSymbolTable(Operation *from) {
232   assert(from && "expected valid operation");
233   if (isPotentiallyUnknownSymbolTable(from))
234     return nullptr;
235 
236   while (!from->hasTrait<OpTrait::SymbolTable>()) {
237     from = from->getParentOp();
238 
239     // Check that this is a valid op and isn't an unknown symbol table.
240     if (!from || isPotentiallyUnknownSymbolTable(from))
241       return nullptr;
242   }
243   return from;
244 }
245 
246 /// Walks all symbol table operations nested within, and including, `op`. For
247 /// each symbol table operation, the provided callback is invoked with the op
248 /// and a boolean signifying if the symbols within that symbol table can be
249 /// treated as if all uses are visible. `allSymUsesVisible` identifies whether
250 /// all of the symbol uses of symbols within `op` are visible.
walkSymbolTables(Operation * op,bool allSymUsesVisible,function_ref<void (Operation *,bool)> callback)251 void SymbolTable::walkSymbolTables(
252     Operation *op, bool allSymUsesVisible,
253     function_ref<void(Operation *, bool)> callback) {
254   bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>();
255   if (isSymbolTable) {
256     SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op);
257     allSymUsesVisible |= !symbol || symbol.isPrivate();
258   } else {
259     // Otherwise if 'op' is not a symbol table, any nested symbols are
260     // guaranteed to be hidden.
261     allSymUsesVisible = true;
262   }
263 
264   for (Region &region : op->getRegions())
265     for (Block &block : region)
266       for (Operation &nestedOp : block)
267         walkSymbolTables(&nestedOp, allSymUsesVisible, callback);
268 
269   // If 'op' had the symbol table trait, visit it after any nested symbol
270   // tables.
271   if (isSymbolTable)
272     callback(op, allSymUsesVisible);
273 }
274 
275 /// Returns the operation registered with the given symbol name with the
276 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
277 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
278 /// was found.
lookupSymbolIn(Operation * symbolTableOp,StringRef symbol)279 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
280                                        StringRef symbol) {
281   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
282 
283   // Look for a symbol with the given name.
284   Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(),
285                                             symbolTableOp->getContext());
286   for (auto &op : symbolTableOp->getRegion(0).front().without_terminator())
287     if (getNameIfSymbol(&op, symbolNameId) == symbol)
288       return &op;
289   return nullptr;
290 }
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr symbol)291 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
292                                        SymbolRefAttr symbol) {
293   SmallVector<Operation *, 4> resolvedSymbols;
294   if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols)))
295     return nullptr;
296   return resolvedSymbols.back();
297 }
298 
299 /// Internal implementation of `lookupSymbolIn` that allows for specialized
300 /// implementations of the lookup function.
lookupSymbolInImpl(Operation * symbolTableOp,SymbolRefAttr symbol,SmallVectorImpl<Operation * > & symbols,function_ref<Operation * (Operation *,StringRef)> lookupSymbolFn)301 static LogicalResult lookupSymbolInImpl(
302     Operation *symbolTableOp, SymbolRefAttr symbol,
303     SmallVectorImpl<Operation *> &symbols,
304     function_ref<Operation *(Operation *, StringRef)> lookupSymbolFn) {
305   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
306 
307   // Lookup the root reference for this symbol.
308   symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference());
309   if (!symbolTableOp)
310     return failure();
311   symbols.push_back(symbolTableOp);
312 
313   // If there are no nested references, just return the root symbol directly.
314   ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences();
315   if (nestedRefs.empty())
316     return success();
317 
318   // Verify that the root is also a symbol table.
319   if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
320     return failure();
321 
322   // Otherwise, lookup each of the nested non-leaf references and ensure that
323   // each corresponds to a valid symbol table.
324   for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) {
325     symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getValue());
326     if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>())
327       return failure();
328     symbols.push_back(symbolTableOp);
329   }
330   symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference()));
331   return success(symbols.back());
332 }
333 
334 LogicalResult
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr symbol,SmallVectorImpl<Operation * > & symbols)335 SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol,
336                             SmallVectorImpl<Operation *> &symbols) {
337   auto lookupFn = [](Operation *symbolTableOp, StringRef symbol) {
338     return lookupSymbolIn(symbolTableOp, symbol);
339   };
340   return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn);
341 }
342 
343 /// Returns the operation registered with the given symbol name within the
344 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
345 /// nullptr if no valid symbol was found.
lookupNearestSymbolFrom(Operation * from,StringRef symbol)346 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
347                                                 StringRef symbol) {
348   Operation *symbolTableOp = getNearestSymbolTable(from);
349   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
350 }
lookupNearestSymbolFrom(Operation * from,SymbolRefAttr symbol)351 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
352                                                 SymbolRefAttr symbol) {
353   Operation *symbolTableOp = getNearestSymbolTable(from);
354   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
355 }
356 
357 //===----------------------------------------------------------------------===//
358 // SymbolTable Trait Types
359 //===----------------------------------------------------------------------===//
360 
verifySymbolTable(Operation * op)361 LogicalResult detail::verifySymbolTable(Operation *op) {
362   if (op->getNumRegions() != 1)
363     return op->emitOpError()
364            << "Operations with a 'SymbolTable' must have exactly one region";
365   if (!llvm::hasSingleElement(op->getRegion(0)))
366     return op->emitOpError()
367            << "Operations with a 'SymbolTable' must have exactly one block";
368 
369   // Check that all symbols are uniquely named within child regions.
370   DenseMap<Attribute, Location> nameToOrigLoc;
371   for (auto &block : op->getRegion(0)) {
372     for (auto &op : block) {
373       // Check for a symbol name attribute.
374       auto nameAttr =
375           op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
376       if (!nameAttr)
377         continue;
378 
379       // Try to insert this symbol into the table.
380       auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc());
381       if (!it.second)
382         return op.emitError()
383             .append("redefinition of symbol named '", nameAttr.getValue(), "'")
384             .attachNote(it.first->second)
385             .append("see existing symbol definition here");
386     }
387   }
388 
389   // Verify any nested symbol user operations.
390   SymbolTableCollection symbolTable;
391   auto verifySymbolUserFn = [&](Operation *op) -> Optional<WalkResult> {
392     if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op))
393       return WalkResult(user.verifySymbolUses(symbolTable));
394     return WalkResult::advance();
395   };
396 
397   Optional<WalkResult> result =
398       walkSymbolTable(op->getRegions(), verifySymbolUserFn);
399   return success(result && !result->wasInterrupted());
400 }
401 
verifySymbol(Operation * op)402 LogicalResult detail::verifySymbol(Operation *op) {
403   // Verify the name attribute.
404   if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()))
405     return op->emitOpError() << "requires string attribute '"
406                              << mlir::SymbolTable::getSymbolAttrName() << "'";
407 
408   // Verify the visibility attribute.
409   if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) {
410     StringAttr visStrAttr = vis.dyn_cast<StringAttr>();
411     if (!visStrAttr)
412       return op->emitOpError() << "requires visibility attribute '"
413                                << mlir::SymbolTable::getVisibilityAttrName()
414                                << "' to be a string attribute, but got " << vis;
415 
416     if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"},
417                             visStrAttr.getValue()))
418       return op->emitOpError()
419              << "visibility expected to be one of [\"public\", \"private\", "
420                 "\"nested\"], but got "
421              << visStrAttr;
422   }
423   return success();
424 }
425 
426 //===----------------------------------------------------------------------===//
427 // Symbol Use Lists
428 //===----------------------------------------------------------------------===//
429 
430 /// Walk all of the symbol references within the given operation, invoking the
431 /// provided callback for each found use. The callbacks takes as arguments: the
432 /// use of the symbol, and the nested access chain to the attribute within the
433 /// operation dictionary. An access chain is a set of indices into nested
434 /// container attributes. For example, a symbol use in an attribute dictionary
435 /// that looks like the following:
436 ///
437 ///    {use = [{other_attr, @symbol}]}
438 ///
439 /// May have the following access chain:
440 ///
441 ///     [0, 0, 1]
442 ///
walkSymbolRefs(Operation * op,function_ref<WalkResult (SymbolTable::SymbolUse,ArrayRef<int>)> callback)443 static WalkResult walkSymbolRefs(
444     Operation *op,
445     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
446   // Check to see if the operation has any attributes.
447   DictionaryAttr attrDict = op->getMutableAttrDict().getDictionaryOrNull();
448   if (!attrDict)
449     return WalkResult::advance();
450 
451   // A worklist of a container attribute and the current index into the held
452   // attribute list.
453   SmallVector<Attribute, 1> attrWorklist(1, attrDict);
454   SmallVector<int, 1> curAccessChain(1, /*Value=*/-1);
455 
456   // Process the symbol references within the given nested attribute range.
457   auto processAttrs = [&](int &index, auto attrRange) -> WalkResult {
458     for (Attribute attr : llvm::drop_begin(attrRange, index)) {
459       /// Check for a nested container attribute, these will also need to be
460       /// walked.
461       if (attr.isa<ArrayAttr, DictionaryAttr>()) {
462         attrWorklist.push_back(attr);
463         curAccessChain.push_back(-1);
464         return WalkResult::advance();
465       }
466 
467       // Invoke the provided callback if we find a symbol use and check for a
468       // requested interrupt.
469       if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>())
470         if (callback({op, symbolRef}, curAccessChain).wasInterrupted())
471           return WalkResult::interrupt();
472 
473       // Make sure to keep the index counter in sync.
474       ++index;
475     }
476 
477     // Pop this container attribute from the worklist.
478     attrWorklist.pop_back();
479     curAccessChain.pop_back();
480     return WalkResult::advance();
481   };
482 
483   WalkResult result = WalkResult::advance();
484   do {
485     Attribute attr = attrWorklist.back();
486     int &index = curAccessChain.back();
487     ++index;
488 
489     // Process the given attribute, which is guaranteed to be a container.
490     if (auto dict = attr.dyn_cast<DictionaryAttr>())
491       result = processAttrs(index, make_second_range(dict.getValue()));
492     else
493       result = processAttrs(index, attr.cast<ArrayAttr>().getValue());
494   } while (!attrWorklist.empty() && !result.wasInterrupted());
495   return result;
496 }
497 
498 /// Walk all of the uses, for any symbol, that are nested within the given
499 /// regions, invoking the provided callback for each. This does not traverse
500 /// into any nested symbol tables.
walkSymbolUses(MutableArrayRef<Region> regions,function_ref<WalkResult (SymbolTable::SymbolUse,ArrayRef<int>)> callback)501 static Optional<WalkResult> walkSymbolUses(
502     MutableArrayRef<Region> regions,
503     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
504   return walkSymbolTable(regions, [&](Operation *op) -> Optional<WalkResult> {
505     // Check that this isn't a potentially unknown symbol table.
506     if (isPotentiallyUnknownSymbolTable(op))
507       return llvm::None;
508 
509     return walkSymbolRefs(op, callback);
510   });
511 }
512 /// Walk all of the uses, for any symbol, that are nested within the given
513 /// operation 'from', invoking the provided callback for each. This does not
514 /// traverse into any nested symbol tables.
walkSymbolUses(Operation * from,function_ref<WalkResult (SymbolTable::SymbolUse,ArrayRef<int>)> callback)515 static Optional<WalkResult> walkSymbolUses(
516     Operation *from,
517     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
518   // If this operation has regions, and it, as well as its dialect, isn't
519   // registered then conservatively fail. The operation may define a
520   // symbol table, so we can't opaquely know if we should traverse to find
521   // nested uses.
522   if (isPotentiallyUnknownSymbolTable(from))
523     return llvm::None;
524 
525   // Walk the uses on this operation.
526   if (walkSymbolRefs(from, callback).wasInterrupted())
527     return WalkResult::interrupt();
528 
529   // Only recurse if this operation is not a symbol table. A symbol table
530   // defines a new scope, so we can't walk the attributes from within the symbol
531   // table op.
532   if (!from->hasTrait<OpTrait::SymbolTable>())
533     return walkSymbolUses(from->getRegions(), callback);
534   return WalkResult::advance();
535 }
536 
537 namespace {
538 /// This class represents a single symbol scope. A symbol scope represents the
539 /// set of operations nested within a symbol table that may reference symbols
540 /// within that table. A symbol scope does not contain the symbol table
541 /// operation itself, just its contained operations. A scope ends at leaf
542 /// operations or another symbol table operation.
543 struct SymbolScope {
544   /// Walk the symbol uses within this scope, invoking the given callback.
545   /// This variant is used when the callback type matches that expected by
546   /// 'walkSymbolUses'.
547   template <typename CallbackT,
548             typename std::enable_if_t<!std::is_same<
549                 typename llvm::function_traits<CallbackT>::result_t,
550                 void>::value> * = nullptr>
walk__anonedf6c0e10511::SymbolScope551   Optional<WalkResult> walk(CallbackT cback) {
552     if (Region *region = limit.dyn_cast<Region *>())
553       return walkSymbolUses(*region, cback);
554     return walkSymbolUses(limit.get<Operation *>(), cback);
555   }
556   /// This variant is used when the callback type matches a stripped down type:
557   /// void(SymbolTable::SymbolUse use)
558   template <typename CallbackT,
559             typename std::enable_if_t<std::is_same<
560                 typename llvm::function_traits<CallbackT>::result_t,
561                 void>::value> * = nullptr>
walk__anonedf6c0e10511::SymbolScope562   Optional<WalkResult> walk(CallbackT cback) {
563     return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) {
564       return cback(use), WalkResult::advance();
565     });
566   }
567 
568   /// The representation of the symbol within this scope.
569   SymbolRefAttr symbol;
570 
571   /// The IR unit representing this scope.
572   llvm::PointerUnion<Operation *, Region *> limit;
573 };
574 } // end anonymous namespace
575 
576 /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'.
collectSymbolScopes(Operation * symbol,Operation * limit)577 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
578                                                        Operation *limit) {
579   StringRef symName = SymbolTable::getSymbolName(symbol);
580   assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit);
581 
582   // Compute the ancestors of 'limit'.
583   llvm::SetVector<Operation *, SmallVector<Operation *, 4>,
584                   SmallPtrSet<Operation *, 4>>
585       limitAncestors;
586   Operation *limitAncestor = limit;
587   do {
588     // Check to see if 'symbol' is an ancestor of 'limit'.
589     if (limitAncestor == symbol) {
590       // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr
591       // doesn't support parent references.
592       if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) ==
593           symbol->getParentOp())
594         return {{SymbolRefAttr::get(symName, symbol->getContext()), limit}};
595       return {};
596     }
597 
598     limitAncestors.insert(limitAncestor);
599   } while ((limitAncestor = limitAncestor->getParentOp()));
600 
601   // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'.
602   Operation *commonAncestor = symbol->getParentOp();
603   do {
604     if (limitAncestors.count(commonAncestor))
605       break;
606   } while ((commonAncestor = commonAncestor->getParentOp()));
607   assert(commonAncestor && "'limit' and 'symbol' have no common ancestor");
608 
609   // Compute the set of valid nested references for 'symbol' as far up to the
610   // common ancestor as possible.
611   SmallVector<SymbolRefAttr, 2> references;
612   bool collectedAllReferences = succeeded(
613       collectValidReferencesFor(symbol, symName, commonAncestor, references));
614 
615   // Handle the case where the common ancestor is 'limit'.
616   if (commonAncestor == limit) {
617     SmallVector<SymbolScope, 2> scopes;
618 
619     // Walk each of the ancestors of 'symbol', calling the compute function for
620     // each one.
621     Operation *limitIt = symbol->getParentOp();
622     for (size_t i = 0, e = references.size(); i != e;
623          ++i, limitIt = limitIt->getParentOp()) {
624       assert(limitIt->hasTrait<OpTrait::SymbolTable>());
625       scopes.push_back({references[i], &limitIt->getRegion(0)});
626     }
627     return scopes;
628   }
629 
630   // Otherwise, we just need the symbol reference for 'symbol' that will be
631   // used within 'limit'. This is the last reference in the list we computed
632   // above if we were able to collect all references.
633   if (!collectedAllReferences)
634     return {};
635   return {{references.back(), limit}};
636 }
collectSymbolScopes(Operation * symbol,Region * limit)637 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
638                                                        Region *limit) {
639   auto scopes = collectSymbolScopes(symbol, limit->getParentOp());
640 
641   // If we collected some scopes to walk, make sure to constrain the one for
642   // limit to the specific region requested.
643   if (!scopes.empty())
644     scopes.back().limit = limit;
645   return scopes;
646 }
647 template <typename IRUnit>
collectSymbolScopes(StringRef symbol,IRUnit * limit)648 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringRef symbol,
649                                                        IRUnit *limit) {
650   return {{SymbolRefAttr::get(symbol, limit->getContext()), limit}};
651 }
652 
653 /// Returns true if the given reference 'SubRef' is a sub reference of the
654 /// reference 'ref', i.e. 'ref' is a further qualified reference.
isReferencePrefixOf(SymbolRefAttr subRef,SymbolRefAttr ref)655 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) {
656   if (ref == subRef)
657     return true;
658 
659   // If the references are not pointer equal, check to see if `subRef` is a
660   // prefix of `ref`.
661   if (ref.isa<FlatSymbolRefAttr>() ||
662       ref.getRootReference() != subRef.getRootReference())
663     return false;
664 
665   auto refLeafs = ref.getNestedReferences();
666   auto subRefLeafs = subRef.getNestedReferences();
667   return subRefLeafs.size() < refLeafs.size() &&
668          subRefLeafs == refLeafs.take_front(subRefLeafs.size());
669 }
670 
671 //===----------------------------------------------------------------------===//
672 // SymbolTable::getSymbolUses
673 
674 /// The implementation of SymbolTable::getSymbolUses below.
675 template <typename FromT>
getSymbolUsesImpl(FromT from)676 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) {
677   std::vector<SymbolTable::SymbolUse> uses;
678   auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
679     uses.push_back(symbolUse);
680     return WalkResult::advance();
681   };
682   auto result = walkSymbolUses(from, walkFn);
683   return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None;
684 }
685 
686 /// Get an iterator range for all of the uses, for any symbol, that are nested
687 /// within the given operation 'from'. This does not traverse into any nested
688 /// symbol tables, and will also only return uses on 'from' if it does not
689 /// also define a symbol table. This is because we treat the region as the
690 /// boundary of the symbol table, and not the op itself. This function returns
691 /// None if there are any unknown operations that may potentially be symbol
692 /// tables.
getSymbolUses(Operation * from)693 auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> {
694   return getSymbolUsesImpl(from);
695 }
getSymbolUses(Region * from)696 auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> {
697   return getSymbolUsesImpl(MutableArrayRef<Region>(*from));
698 }
699 
700 //===----------------------------------------------------------------------===//
701 // SymbolTable::getSymbolUses
702 
703 /// The implementation of SymbolTable::getSymbolUses below.
704 template <typename SymbolT, typename IRUnitT>
getSymbolUsesImpl(SymbolT symbol,IRUnitT * limit)705 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol,
706                                                          IRUnitT *limit) {
707   std::vector<SymbolTable::SymbolUse> uses;
708   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
709     if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) {
710           if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()))
711             uses.push_back(symbolUse);
712         }))
713       return llvm::None;
714   }
715   return SymbolTable::UseRange(std::move(uses));
716 }
717 
718 /// Get all of the uses of the given symbol that are nested within the given
719 /// operation 'from', invoking the provided callback for each. This does not
720 /// traverse into any nested symbol tables. This function returns None if there
721 /// are any unknown operations that may potentially be symbol tables.
getSymbolUses(StringRef symbol,Operation * from)722 auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from)
723     -> Optional<UseRange> {
724   return getSymbolUsesImpl(symbol, from);
725 }
getSymbolUses(Operation * symbol,Operation * from)726 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from)
727     -> Optional<UseRange> {
728   return getSymbolUsesImpl(symbol, from);
729 }
getSymbolUses(StringRef symbol,Region * from)730 auto SymbolTable::getSymbolUses(StringRef symbol, Region *from)
731     -> Optional<UseRange> {
732   return getSymbolUsesImpl(symbol, from);
733 }
getSymbolUses(Operation * symbol,Region * from)734 auto SymbolTable::getSymbolUses(Operation *symbol, Region *from)
735     -> Optional<UseRange> {
736   return getSymbolUsesImpl(symbol, from);
737 }
738 
739 //===----------------------------------------------------------------------===//
740 // SymbolTable::symbolKnownUseEmpty
741 
742 /// The implementation of SymbolTable::symbolKnownUseEmpty below.
743 template <typename SymbolT, typename IRUnitT>
symbolKnownUseEmptyImpl(SymbolT symbol,IRUnitT * limit)744 static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) {
745   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
746     // Walk all of the symbol uses looking for a reference to 'symbol'.
747     if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
748           return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())
749                      ? WalkResult::interrupt()
750                      : WalkResult::advance();
751         }) != WalkResult::advance())
752       return false;
753   }
754   return true;
755 }
756 
757 /// Return if the given symbol is known to have no uses that are nested within
758 /// the given operation 'from'. This does not traverse into any nested symbol
759 /// tables. This function will also return false if there are any unknown
760 /// operations that may potentially be symbol tables.
symbolKnownUseEmpty(StringRef symbol,Operation * from)761 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) {
762   return symbolKnownUseEmptyImpl(symbol, from);
763 }
symbolKnownUseEmpty(Operation * symbol,Operation * from)764 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) {
765   return symbolKnownUseEmptyImpl(symbol, from);
766 }
symbolKnownUseEmpty(StringRef symbol,Region * from)767 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Region *from) {
768   return symbolKnownUseEmptyImpl(symbol, from);
769 }
symbolKnownUseEmpty(Operation * symbol,Region * from)770 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) {
771   return symbolKnownUseEmptyImpl(symbol, from);
772 }
773 
774 //===----------------------------------------------------------------------===//
775 // SymbolTable::replaceAllSymbolUses
776 
777 /// Rebuild the given attribute container after replacing all references to a
778 /// symbol with the updated attribute in 'accesses'.
rebuildAttrAfterRAUW(Attribute container,ArrayRef<std::pair<SmallVector<int,1>,SymbolRefAttr>> accesses,unsigned depth)779 static Attribute rebuildAttrAfterRAUW(
780     Attribute container,
781     ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses,
782     unsigned depth) {
783   // Given a range of Attributes, update the ones referred to by the given
784   // access chains to point to the new symbol attribute.
785   auto updateAttrs = [&](auto &&attrRange) {
786     auto attrBegin = std::begin(attrRange);
787     for (unsigned i = 0, e = accesses.size(); i != e;) {
788       ArrayRef<int> access = accesses[i].first;
789       Attribute &attr = *std::next(attrBegin, access[depth]);
790 
791       // Check to see if this is a leaf access, i.e. a SymbolRef.
792       if (access.size() == depth + 1) {
793         attr = accesses[i].second;
794         ++i;
795         continue;
796       }
797 
798       // Otherwise, this is a container. Collect all of the accesses for this
799       // index and recurse. The recursion here is bounded by the size of the
800       // largest access array.
801       auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) {
802         ArrayRef<int> nextAccess = it.first;
803         return nextAccess.size() > depth + 1 &&
804                nextAccess[depth] == access[depth];
805       });
806       attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1);
807 
808       // Skip over all of the accesses that refer to the nested container.
809       i += nestedAccesses.size();
810     }
811   };
812 
813   if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) {
814     auto newAttrs = llvm::to_vector<4>(dictAttr.getValue());
815     updateAttrs(make_second_range(newAttrs));
816     return DictionaryAttr::get(newAttrs, dictAttr.getContext());
817   }
818   auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue());
819   updateAttrs(newAttrs);
820   return ArrayAttr::get(newAttrs, container.getContext());
821 }
822 
823 /// Generates a new symbol reference attribute with a new leaf reference.
generateNewRefAttr(SymbolRefAttr oldAttr,FlatSymbolRefAttr newLeafAttr)824 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr,
825                                         FlatSymbolRefAttr newLeafAttr) {
826   if (oldAttr.isa<FlatSymbolRefAttr>())
827     return newLeafAttr;
828   auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences());
829   nestedRefs.back() = newLeafAttr;
830   return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs,
831                             oldAttr.getContext());
832 }
833 
834 /// The implementation of SymbolTable::replaceAllSymbolUses below.
835 template <typename SymbolT, typename IRUnitT>
836 static LogicalResult
replaceAllSymbolUsesImpl(SymbolT symbol,StringRef newSymbol,IRUnitT * limit)837 replaceAllSymbolUsesImpl(SymbolT symbol, StringRef newSymbol, IRUnitT *limit) {
838   // A collection of operations along with their new attribute dictionary.
839   std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts;
840 
841   // The current operation being processed.
842   Operation *curOp = nullptr;
843 
844   // The set of access chains into the attribute dictionary of the current
845   // operation, as well as the replacement attribute to use.
846   SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains;
847 
848   // Generate a new attribute dictionary for the current operation by replacing
849   // references to the old symbol.
850   auto generateNewAttrDict = [&] {
851     auto oldDict = curOp->getAttrDictionary();
852     auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0);
853     return newDict.cast<DictionaryAttr>();
854   };
855 
856   // Generate a new attribute to replace the given attribute.
857   MLIRContext *ctx = limit->getContext();
858   FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol, ctx);
859   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
860     SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr);
861     auto walkFn = [&](SymbolTable::SymbolUse symbolUse,
862                       ArrayRef<int> accessChain) {
863       SymbolRefAttr useRef = symbolUse.getSymbolRef();
864       if (!isReferencePrefixOf(scope.symbol, useRef))
865         return WalkResult::advance();
866 
867       // If we have a valid match, check to see if this is a proper
868       // subreference. If it is, then we will need to generate a different new
869       // attribute specifically for this use.
870       SymbolRefAttr replacementRef = newAttr;
871       if (useRef != scope.symbol) {
872         if (scope.symbol.isa<FlatSymbolRefAttr>()) {
873           replacementRef =
874               SymbolRefAttr::get(newSymbol, useRef.getNestedReferences(), ctx);
875         } else {
876           auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences());
877           nestedRefs[scope.symbol.getNestedReferences().size() - 1] =
878               newLeafAttr;
879           replacementRef =
880               SymbolRefAttr::get(useRef.getRootReference(), nestedRefs, ctx);
881         }
882       }
883 
884       // If there was a previous operation, generate a new attribute dict
885       // for it. This means that we've finished processing the current
886       // operation, so generate a new dictionary for it.
887       if (curOp && symbolUse.getUser() != curOp) {
888         updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
889         accessChains.clear();
890       }
891 
892       // Record this access.
893       curOp = symbolUse.getUser();
894       accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef});
895       return WalkResult::advance();
896     };
897     if (!scope.walk(walkFn))
898       return failure();
899 
900     // Check to see if we have a dangling op that needs to be processed.
901     if (curOp) {
902       updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
903       curOp = nullptr;
904     }
905   }
906 
907   // Update the attribute dictionaries as necessary.
908   for (auto &it : updatedAttrDicts)
909     it.first->setAttrs(it.second);
910   return success();
911 }
912 
913 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the
914 /// provided symbol 'newSymbol' that are nested within the given operation
915 /// 'from'. This does not traverse into any nested symbol tables. If there are
916 /// any unknown operations that may potentially be symbol tables, no uses are
917 /// replaced and failure is returned.
replaceAllSymbolUses(StringRef oldSymbol,StringRef newSymbol,Operation * from)918 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
919                                                 StringRef newSymbol,
920                                                 Operation *from) {
921   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
922 }
replaceAllSymbolUses(Operation * oldSymbol,StringRef newSymbol,Operation * from)923 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
924                                                 StringRef newSymbol,
925                                                 Operation *from) {
926   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
927 }
replaceAllSymbolUses(StringRef oldSymbol,StringRef newSymbol,Region * from)928 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
929                                                 StringRef newSymbol,
930                                                 Region *from) {
931   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
932 }
replaceAllSymbolUses(Operation * oldSymbol,StringRef newSymbol,Region * from)933 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
934                                                 StringRef newSymbol,
935                                                 Region *from) {
936   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
937 }
938 
939 //===----------------------------------------------------------------------===//
940 // SymbolTableCollection
941 //===----------------------------------------------------------------------===//
942 
lookupSymbolIn(Operation * symbolTableOp,StringRef symbol)943 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
944                                                  StringRef symbol) {
945   return getSymbolTable(symbolTableOp).lookup(symbol);
946 }
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr name)947 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
948                                                  SymbolRefAttr name) {
949   SmallVector<Operation *, 4> symbols;
950   if (failed(lookupSymbolIn(symbolTableOp, name, symbols)))
951     return nullptr;
952   return symbols.back();
953 }
954 /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by
955 /// a given SymbolRefAttr. Returns failure if any of the nested references could
956 /// not be resolved.
957 LogicalResult
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr name,SmallVectorImpl<Operation * > & symbols)958 SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
959                                       SymbolRefAttr name,
960                                       SmallVectorImpl<Operation *> &symbols) {
961   auto lookupFn = [this](Operation *symbolTableOp, StringRef symbol) {
962     return lookupSymbolIn(symbolTableOp, symbol);
963   };
964   return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn);
965 }
966 
967 /// Returns the operation registered with the given symbol name within the
968 /// closest parent operation of, or including, 'from' with the
969 /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was
970 /// found.
lookupNearestSymbolFrom(Operation * from,StringRef symbol)971 Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
972                                                           StringRef symbol) {
973   Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
974   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
975 }
976 Operation *
lookupNearestSymbolFrom(Operation * from,SymbolRefAttr symbol)977 SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
978                                                SymbolRefAttr symbol) {
979   Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
980   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
981 }
982 
983 /// Lookup, or create, a symbol table for an operation.
getSymbolTable(Operation * op)984 SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) {
985   auto it = symbolTables.try_emplace(op, nullptr);
986   if (it.second)
987     it.first->second = std::make_unique<SymbolTable>(op);
988   return *it.first->second;
989 }
990 
991 //===----------------------------------------------------------------------===//
992 // Visibility parsing implementation.
993 //===----------------------------------------------------------------------===//
994 
parseOptionalVisibilityKeyword(OpAsmParser & parser,NamedAttrList & attrs)995 ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser,
996                                                  NamedAttrList &attrs) {
997   StringRef visibility;
998   if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"}))
999     return failure();
1000 
1001   StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility);
1002   attrs.push_back(parser.getBuilder().getNamedAttr(
1003       SymbolTable::getVisibilityAttrName(), visibilityAttr));
1004   return success();
1005 }
1006 
1007 //===----------------------------------------------------------------------===//
1008 // Symbol Interfaces
1009 //===----------------------------------------------------------------------===//
1010 
1011 /// Include the generated symbol interfaces.
1012 #include "mlir/IR/SymbolInterfaces.cpp.inc"
1013