1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 using namespace clang;
30 using namespace CodeGen;
31
32 //===----------------------------------------------------------------------===//
33 // Aggregate Expression Emitter
34 //===----------------------------------------------------------------------===//
35
36 namespace {
37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
38 CodeGenFunction &CGF;
39 CGBuilderTy &Builder;
40 AggValueSlot Dest;
41 bool IsResultUnused;
42
EnsureSlot(QualType T)43 AggValueSlot EnsureSlot(QualType T) {
44 if (!Dest.isIgnored()) return Dest;
45 return CGF.CreateAggTemp(T, "agg.tmp.ensured");
46 }
EnsureDest(QualType T)47 void EnsureDest(QualType T) {
48 if (!Dest.isIgnored()) return;
49 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
50 }
51
52 // Calls `Fn` with a valid return value slot, potentially creating a temporary
53 // to do so. If a temporary is created, an appropriate copy into `Dest` will
54 // be emitted, as will lifetime markers.
55 //
56 // The given function should take a ReturnValueSlot, and return an RValue that
57 // points to said slot.
58 void withReturnValueSlot(const Expr *E,
59 llvm::function_ref<RValue(ReturnValueSlot)> Fn);
60
61 public:
AggExprEmitter(CodeGenFunction & cgf,AggValueSlot Dest,bool IsResultUnused)62 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
63 : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64 IsResultUnused(IsResultUnused) { }
65
66 //===--------------------------------------------------------------------===//
67 // Utilities
68 //===--------------------------------------------------------------------===//
69
70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71 /// represents a value lvalue, this method emits the address of the lvalue,
72 /// then loads the result into DestPtr.
73 void EmitAggLoadOfLValue(const Expr *E);
74
75 enum ExprValueKind {
76 EVK_RValue,
77 EVK_NonRValue
78 };
79
80 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
81 /// SrcIsRValue is true if source comes from an RValue.
82 void EmitFinalDestCopy(QualType type, const LValue &src,
83 ExprValueKind SrcValueKind = EVK_NonRValue);
84 void EmitFinalDestCopy(QualType type, RValue src);
85 void EmitCopy(QualType type, const AggValueSlot &dest,
86 const AggValueSlot &src);
87
88 void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
89
90 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
91 QualType ArrayQTy, InitListExpr *E);
92
needsGC(QualType T)93 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
94 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
95 return AggValueSlot::NeedsGCBarriers;
96 return AggValueSlot::DoesNotNeedGCBarriers;
97 }
98
99 bool TypeRequiresGCollection(QualType T);
100
101 //===--------------------------------------------------------------------===//
102 // Visitor Methods
103 //===--------------------------------------------------------------------===//
104
Visit(Expr * E)105 void Visit(Expr *E) {
106 ApplyDebugLocation DL(CGF, E);
107 StmtVisitor<AggExprEmitter>::Visit(E);
108 }
109
VisitStmt(Stmt * S)110 void VisitStmt(Stmt *S) {
111 CGF.ErrorUnsupported(S, "aggregate expression");
112 }
VisitParenExpr(ParenExpr * PE)113 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)114 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
115 Visit(GE->getResultExpr());
116 }
VisitCoawaitExpr(CoawaitExpr * E)117 void VisitCoawaitExpr(CoawaitExpr *E) {
118 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
119 }
VisitCoyieldExpr(CoyieldExpr * E)120 void VisitCoyieldExpr(CoyieldExpr *E) {
121 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
122 }
VisitUnaryCoawait(UnaryOperator * E)123 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitUnaryExtension(UnaryOperator * E)124 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)125 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
126 return Visit(E->getReplacement());
127 }
128
VisitConstantExpr(ConstantExpr * E)129 void VisitConstantExpr(ConstantExpr *E) {
130 if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
131 CGF.EmitAggregateStore(Result, Dest.getAddress(),
132 E->getType().isVolatileQualified());
133 return;
134 }
135 return Visit(E->getSubExpr());
136 }
137
138 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)139 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
VisitMemberExpr(MemberExpr * ME)140 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
VisitUnaryDeref(UnaryOperator * E)141 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
VisitStringLiteral(StringLiteral * E)142 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
143 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
VisitArraySubscriptExpr(ArraySubscriptExpr * E)144 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
145 EmitAggLoadOfLValue(E);
146 }
VisitPredefinedExpr(const PredefinedExpr * E)147 void VisitPredefinedExpr(const PredefinedExpr *E) {
148 EmitAggLoadOfLValue(E);
149 }
150
151 // Operators.
152 void VisitCastExpr(CastExpr *E);
153 void VisitCallExpr(const CallExpr *E);
154 void VisitStmtExpr(const StmtExpr *E);
155 void VisitBinaryOperator(const BinaryOperator *BO);
156 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
157 void VisitBinAssign(const BinaryOperator *E);
158 void VisitBinComma(const BinaryOperator *E);
159 void VisitBinCmp(const BinaryOperator *E);
VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator * E)160 void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
161 Visit(E->getSemanticForm());
162 }
163
164 void VisitObjCMessageExpr(ObjCMessageExpr *E);
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)165 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
166 EmitAggLoadOfLValue(E);
167 }
168
169 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
170 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
171 void VisitChooseExpr(const ChooseExpr *CE);
172 void VisitInitListExpr(InitListExpr *E);
173 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
174 llvm::Value *outerBegin = nullptr);
175 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
VisitNoInitExpr(NoInitExpr * E)176 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)177 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
178 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
179 Visit(DAE->getExpr());
180 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)181 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
182 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
183 Visit(DIE->getExpr());
184 }
185 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
186 void VisitCXXConstructExpr(const CXXConstructExpr *E);
187 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
188 void VisitLambdaExpr(LambdaExpr *E);
189 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
190 void VisitExprWithCleanups(ExprWithCleanups *E);
191 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
VisitCXXTypeidExpr(CXXTypeidExpr * E)192 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
193 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
194 void VisitOpaqueValueExpr(OpaqueValueExpr *E);
195
VisitPseudoObjectExpr(PseudoObjectExpr * E)196 void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
197 if (E->isGLValue()) {
198 LValue LV = CGF.EmitPseudoObjectLValue(E);
199 return EmitFinalDestCopy(E->getType(), LV);
200 }
201
202 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
203 }
204
205 void VisitVAArgExpr(VAArgExpr *E);
206
207 void EmitInitializationToLValue(Expr *E, LValue Address);
208 void EmitNullInitializationToLValue(LValue Address);
209 // case Expr::ChooseExprClass:
VisitCXXThrowExpr(const CXXThrowExpr * E)210 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
VisitAtomicExpr(AtomicExpr * E)211 void VisitAtomicExpr(AtomicExpr *E) {
212 RValue Res = CGF.EmitAtomicExpr(E);
213 EmitFinalDestCopy(E->getType(), Res);
214 }
215 };
216 } // end anonymous namespace.
217
218 //===----------------------------------------------------------------------===//
219 // Utilities
220 //===----------------------------------------------------------------------===//
221
222 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
223 /// represents a value lvalue, this method emits the address of the lvalue,
224 /// then loads the result into DestPtr.
EmitAggLoadOfLValue(const Expr * E)225 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
226 LValue LV = CGF.EmitLValue(E);
227
228 // If the type of the l-value is atomic, then do an atomic load.
229 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
230 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
231 return;
232 }
233
234 EmitFinalDestCopy(E->getType(), LV);
235 }
236
237 /// True if the given aggregate type requires special GC API calls.
TypeRequiresGCollection(QualType T)238 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
239 // Only record types have members that might require garbage collection.
240 const RecordType *RecordTy = T->getAs<RecordType>();
241 if (!RecordTy) return false;
242
243 // Don't mess with non-trivial C++ types.
244 RecordDecl *Record = RecordTy->getDecl();
245 if (isa<CXXRecordDecl>(Record) &&
246 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
247 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
248 return false;
249
250 // Check whether the type has an object member.
251 return Record->hasObjectMember();
252 }
253
withReturnValueSlot(const Expr * E,llvm::function_ref<RValue (ReturnValueSlot)> EmitCall)254 void AggExprEmitter::withReturnValueSlot(
255 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
256 QualType RetTy = E->getType();
257 bool RequiresDestruction =
258 !Dest.isExternallyDestructed() &&
259 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
260
261 // If it makes no observable difference, save a memcpy + temporary.
262 //
263 // We need to always provide our own temporary if destruction is required.
264 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
265 // its lifetime before we have the chance to emit a proper destructor call.
266 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
267 (RequiresDestruction && !Dest.getAddress().isValid());
268
269 Address RetAddr = Address::invalid();
270 Address RetAllocaAddr = Address::invalid();
271
272 EHScopeStack::stable_iterator LifetimeEndBlock;
273 llvm::Value *LifetimeSizePtr = nullptr;
274 llvm::IntrinsicInst *LifetimeStartInst = nullptr;
275 if (!UseTemp) {
276 RetAddr = Dest.getAddress();
277 } else {
278 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
279 uint64_t Size =
280 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
281 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
282 if (LifetimeSizePtr) {
283 LifetimeStartInst =
284 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
285 assert(LifetimeStartInst->getIntrinsicID() ==
286 llvm::Intrinsic::lifetime_start &&
287 "Last insertion wasn't a lifetime.start?");
288
289 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
290 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
291 LifetimeEndBlock = CGF.EHStack.stable_begin();
292 }
293 }
294
295 RValue Src =
296 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
297 Dest.isExternallyDestructed()));
298
299 if (!UseTemp)
300 return;
301
302 assert(Dest.getPointer() != Src.getAggregatePointer());
303 EmitFinalDestCopy(E->getType(), Src);
304
305 if (!RequiresDestruction && LifetimeStartInst) {
306 // If there's no dtor to run, the copy was the last use of our temporary.
307 // Since we're not guaranteed to be in an ExprWithCleanups, clean up
308 // eagerly.
309 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
310 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
311 }
312 }
313
314 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,RValue src)315 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
316 assert(src.isAggregate() && "value must be aggregate value!");
317 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
318 EmitFinalDestCopy(type, srcLV, EVK_RValue);
319 }
320
321 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,const LValue & src,ExprValueKind SrcValueKind)322 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
323 ExprValueKind SrcValueKind) {
324 // If Dest is ignored, then we're evaluating an aggregate expression
325 // in a context that doesn't care about the result. Note that loads
326 // from volatile l-values force the existence of a non-ignored
327 // destination.
328 if (Dest.isIgnored())
329 return;
330
331 // Copy non-trivial C structs here.
332 LValue DstLV = CGF.MakeAddrLValue(
333 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
334
335 if (SrcValueKind == EVK_RValue) {
336 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
337 if (Dest.isPotentiallyAliased())
338 CGF.callCStructMoveAssignmentOperator(DstLV, src);
339 else
340 CGF.callCStructMoveConstructor(DstLV, src);
341 return;
342 }
343 } else {
344 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
345 if (Dest.isPotentiallyAliased())
346 CGF.callCStructCopyAssignmentOperator(DstLV, src);
347 else
348 CGF.callCStructCopyConstructor(DstLV, src);
349 return;
350 }
351 }
352
353 AggValueSlot srcAgg = AggValueSlot::forLValue(
354 src, CGF, AggValueSlot::IsDestructed, needsGC(type),
355 AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
356 EmitCopy(type, Dest, srcAgg);
357 }
358
359 /// Perform a copy from the source into the destination.
360 ///
361 /// \param type - the type of the aggregate being copied; qualifiers are
362 /// ignored
EmitCopy(QualType type,const AggValueSlot & dest,const AggValueSlot & src)363 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
364 const AggValueSlot &src) {
365 if (dest.requiresGCollection()) {
366 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
367 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
368 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
369 dest.getAddress(),
370 src.getAddress(),
371 size);
372 return;
373 }
374
375 // If the result of the assignment is used, copy the LHS there also.
376 // It's volatile if either side is. Use the minimum alignment of
377 // the two sides.
378 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
379 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
380 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
381 dest.isVolatile() || src.isVolatile());
382 }
383
384 /// Emit the initializer for a std::initializer_list initialized with a
385 /// real initializer list.
386 void
VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr * E)387 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
388 // Emit an array containing the elements. The array is externally destructed
389 // if the std::initializer_list object is.
390 ASTContext &Ctx = CGF.getContext();
391 LValue Array = CGF.EmitLValue(E->getSubExpr());
392 assert(Array.isSimple() && "initializer_list array not a simple lvalue");
393 Address ArrayPtr = Array.getAddress(CGF);
394
395 const ConstantArrayType *ArrayType =
396 Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
397 assert(ArrayType && "std::initializer_list constructed from non-array");
398
399 // FIXME: Perform the checks on the field types in SemaInit.
400 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
401 RecordDecl::field_iterator Field = Record->field_begin();
402 if (Field == Record->field_end()) {
403 CGF.ErrorUnsupported(E, "weird std::initializer_list");
404 return;
405 }
406
407 // Start pointer.
408 if (!Field->getType()->isPointerType() ||
409 !Ctx.hasSameType(Field->getType()->getPointeeType(),
410 ArrayType->getElementType())) {
411 CGF.ErrorUnsupported(E, "weird std::initializer_list");
412 return;
413 }
414
415 AggValueSlot Dest = EnsureSlot(E->getType());
416 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
417 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
418 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
419 llvm::Value *IdxStart[] = { Zero, Zero };
420 llvm::Value *ArrayStart =
421 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
422 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
423 ++Field;
424
425 if (Field == Record->field_end()) {
426 CGF.ErrorUnsupported(E, "weird std::initializer_list");
427 return;
428 }
429
430 llvm::Value *Size = Builder.getInt(ArrayType->getSize());
431 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
432 if (Field->getType()->isPointerType() &&
433 Ctx.hasSameType(Field->getType()->getPointeeType(),
434 ArrayType->getElementType())) {
435 // End pointer.
436 llvm::Value *IdxEnd[] = { Zero, Size };
437 llvm::Value *ArrayEnd =
438 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
439 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
440 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
441 // Length.
442 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
443 } else {
444 CGF.ErrorUnsupported(E, "weird std::initializer_list");
445 return;
446 }
447 }
448
449 /// Determine if E is a trivial array filler, that is, one that is
450 /// equivalent to zero-initialization.
isTrivialFiller(Expr * E)451 static bool isTrivialFiller(Expr *E) {
452 if (!E)
453 return true;
454
455 if (isa<ImplicitValueInitExpr>(E))
456 return true;
457
458 if (auto *ILE = dyn_cast<InitListExpr>(E)) {
459 if (ILE->getNumInits())
460 return false;
461 return isTrivialFiller(ILE->getArrayFiller());
462 }
463
464 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
465 return Cons->getConstructor()->isDefaultConstructor() &&
466 Cons->getConstructor()->isTrivial();
467
468 // FIXME: Are there other cases where we can avoid emitting an initializer?
469 return false;
470 }
471
472 /// Emit initialization of an array from an initializer list.
EmitArrayInit(Address DestPtr,llvm::ArrayType * AType,QualType ArrayQTy,InitListExpr * E)473 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
474 QualType ArrayQTy, InitListExpr *E) {
475 uint64_t NumInitElements = E->getNumInits();
476
477 uint64_t NumArrayElements = AType->getNumElements();
478 assert(NumInitElements <= NumArrayElements);
479
480 QualType elementType =
481 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
482
483 // DestPtr is an array*. Construct an elementType* by drilling
484 // down a level.
485 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
486 llvm::Value *indices[] = { zero, zero };
487 llvm::Value *begin =
488 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
489
490 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
491 CharUnits elementAlign =
492 DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
493
494 // Consider initializing the array by copying from a global. For this to be
495 // more efficient than per-element initialization, the size of the elements
496 // with explicit initializers should be large enough.
497 if (NumInitElements * elementSize.getQuantity() > 16 &&
498 elementType.isTriviallyCopyableType(CGF.getContext())) {
499 CodeGen::CodeGenModule &CGM = CGF.CGM;
500 ConstantEmitter Emitter(CGF);
501 LangAS AS = ArrayQTy.getAddressSpace();
502 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
503 auto GV = new llvm::GlobalVariable(
504 CGM.getModule(), C->getType(),
505 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
506 llvm::GlobalValue::PrivateLinkage, C, "constinit",
507 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
508 CGM.getContext().getTargetAddressSpace(AS));
509 Emitter.finalize(GV);
510 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
511 GV->setAlignment(Align.getAsAlign());
512 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
513 return;
514 }
515 }
516
517 // Exception safety requires us to destroy all the
518 // already-constructed members if an initializer throws.
519 // For that, we'll need an EH cleanup.
520 QualType::DestructionKind dtorKind = elementType.isDestructedType();
521 Address endOfInit = Address::invalid();
522 EHScopeStack::stable_iterator cleanup;
523 llvm::Instruction *cleanupDominator = nullptr;
524 if (CGF.needsEHCleanup(dtorKind)) {
525 // In principle we could tell the cleanup where we are more
526 // directly, but the control flow can get so varied here that it
527 // would actually be quite complex. Therefore we go through an
528 // alloca.
529 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
530 "arrayinit.endOfInit");
531 cleanupDominator = Builder.CreateStore(begin, endOfInit);
532 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
533 elementAlign,
534 CGF.getDestroyer(dtorKind));
535 cleanup = CGF.EHStack.stable_begin();
536
537 // Otherwise, remember that we didn't need a cleanup.
538 } else {
539 dtorKind = QualType::DK_none;
540 }
541
542 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
543
544 // The 'current element to initialize'. The invariants on this
545 // variable are complicated. Essentially, after each iteration of
546 // the loop, it points to the last initialized element, except
547 // that it points to the beginning of the array before any
548 // elements have been initialized.
549 llvm::Value *element = begin;
550
551 // Emit the explicit initializers.
552 for (uint64_t i = 0; i != NumInitElements; ++i) {
553 // Advance to the next element.
554 if (i > 0) {
555 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
556
557 // Tell the cleanup that it needs to destroy up to this
558 // element. TODO: some of these stores can be trivially
559 // observed to be unnecessary.
560 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
561 }
562
563 LValue elementLV =
564 CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
565 EmitInitializationToLValue(E->getInit(i), elementLV);
566 }
567
568 // Check whether there's a non-trivial array-fill expression.
569 Expr *filler = E->getArrayFiller();
570 bool hasTrivialFiller = isTrivialFiller(filler);
571
572 // Any remaining elements need to be zero-initialized, possibly
573 // using the filler expression. We can skip this if the we're
574 // emitting to zeroed memory.
575 if (NumInitElements != NumArrayElements &&
576 !(Dest.isZeroed() && hasTrivialFiller &&
577 CGF.getTypes().isZeroInitializable(elementType))) {
578
579 // Use an actual loop. This is basically
580 // do { *array++ = filler; } while (array != end);
581
582 // Advance to the start of the rest of the array.
583 if (NumInitElements) {
584 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
585 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
586 }
587
588 // Compute the end of the array.
589 llvm::Value *end = Builder.CreateInBoundsGEP(begin,
590 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
591 "arrayinit.end");
592
593 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
594 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
595
596 // Jump into the body.
597 CGF.EmitBlock(bodyBB);
598 llvm::PHINode *currentElement =
599 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
600 currentElement->addIncoming(element, entryBB);
601
602 // Emit the actual filler expression.
603 {
604 // C++1z [class.temporary]p5:
605 // when a default constructor is called to initialize an element of
606 // an array with no corresponding initializer [...] the destruction of
607 // every temporary created in a default argument is sequenced before
608 // the construction of the next array element, if any
609 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
610 LValue elementLV =
611 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
612 if (filler)
613 EmitInitializationToLValue(filler, elementLV);
614 else
615 EmitNullInitializationToLValue(elementLV);
616 }
617
618 // Move on to the next element.
619 llvm::Value *nextElement =
620 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
621
622 // Tell the EH cleanup that we finished with the last element.
623 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
624
625 // Leave the loop if we're done.
626 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
627 "arrayinit.done");
628 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
629 Builder.CreateCondBr(done, endBB, bodyBB);
630 currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
631
632 CGF.EmitBlock(endBB);
633 }
634
635 // Leave the partial-array cleanup if we entered one.
636 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
637 }
638
639 //===----------------------------------------------------------------------===//
640 // Visitor Methods
641 //===----------------------------------------------------------------------===//
642
VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)643 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
644 Visit(E->getSubExpr());
645 }
646
VisitOpaqueValueExpr(OpaqueValueExpr * e)647 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
648 // If this is a unique OVE, just visit its source expression.
649 if (e->isUnique())
650 Visit(e->getSourceExpr());
651 else
652 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
653 }
654
655 void
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)656 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
657 if (Dest.isPotentiallyAliased() &&
658 E->getType().isPODType(CGF.getContext())) {
659 // For a POD type, just emit a load of the lvalue + a copy, because our
660 // compound literal might alias the destination.
661 EmitAggLoadOfLValue(E);
662 return;
663 }
664
665 AggValueSlot Slot = EnsureSlot(E->getType());
666
667 // Block-scope compound literals are destroyed at the end of the enclosing
668 // scope in C.
669 bool Destruct =
670 !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
671 if (Destruct)
672 Slot.setExternallyDestructed();
673
674 CGF.EmitAggExpr(E->getInitializer(), Slot);
675
676 if (Destruct)
677 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
678 CGF.pushLifetimeExtendedDestroy(
679 CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
680 CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
681 }
682
683 /// Attempt to look through various unimportant expressions to find a
684 /// cast of the given kind.
findPeephole(Expr * op,CastKind kind,const ASTContext & ctx)685 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
686 op = op->IgnoreParenNoopCasts(ctx);
687 if (auto castE = dyn_cast<CastExpr>(op)) {
688 if (castE->getCastKind() == kind)
689 return castE->getSubExpr();
690 }
691 return nullptr;
692 }
693
VisitCastExpr(CastExpr * E)694 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
695 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
696 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
697 switch (E->getCastKind()) {
698 case CK_Dynamic: {
699 // FIXME: Can this actually happen? We have no test coverage for it.
700 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
701 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
702 CodeGenFunction::TCK_Load);
703 // FIXME: Do we also need to handle property references here?
704 if (LV.isSimple())
705 CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
706 else
707 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
708
709 if (!Dest.isIgnored())
710 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
711 break;
712 }
713
714 case CK_ToUnion: {
715 // Evaluate even if the destination is ignored.
716 if (Dest.isIgnored()) {
717 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
718 /*ignoreResult=*/true);
719 break;
720 }
721
722 // GCC union extension
723 QualType Ty = E->getSubExpr()->getType();
724 Address CastPtr =
725 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
726 EmitInitializationToLValue(E->getSubExpr(),
727 CGF.MakeAddrLValue(CastPtr, Ty));
728 break;
729 }
730
731 case CK_LValueToRValueBitCast: {
732 if (Dest.isIgnored()) {
733 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
734 /*ignoreResult=*/true);
735 break;
736 }
737
738 LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
739 Address SourceAddress =
740 Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
741 Address DestAddress =
742 Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
743 llvm::Value *SizeVal = llvm::ConstantInt::get(
744 CGF.SizeTy,
745 CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
746 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
747 break;
748 }
749
750 case CK_DerivedToBase:
751 case CK_BaseToDerived:
752 case CK_UncheckedDerivedToBase: {
753 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
754 "should have been unpacked before we got here");
755 }
756
757 case CK_NonAtomicToAtomic:
758 case CK_AtomicToNonAtomic: {
759 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
760
761 // Determine the atomic and value types.
762 QualType atomicType = E->getSubExpr()->getType();
763 QualType valueType = E->getType();
764 if (isToAtomic) std::swap(atomicType, valueType);
765
766 assert(atomicType->isAtomicType());
767 assert(CGF.getContext().hasSameUnqualifiedType(valueType,
768 atomicType->castAs<AtomicType>()->getValueType()));
769
770 // Just recurse normally if we're ignoring the result or the
771 // atomic type doesn't change representation.
772 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
773 return Visit(E->getSubExpr());
774 }
775
776 CastKind peepholeTarget =
777 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
778
779 // These two cases are reverses of each other; try to peephole them.
780 if (Expr *op =
781 findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
782 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
783 E->getType()) &&
784 "peephole significantly changed types?");
785 return Visit(op);
786 }
787
788 // If we're converting an r-value of non-atomic type to an r-value
789 // of atomic type, just emit directly into the relevant sub-object.
790 if (isToAtomic) {
791 AggValueSlot valueDest = Dest;
792 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
793 // Zero-initialize. (Strictly speaking, we only need to initialize
794 // the padding at the end, but this is simpler.)
795 if (!Dest.isZeroed())
796 CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
797
798 // Build a GEP to refer to the subobject.
799 Address valueAddr =
800 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
801 valueDest = AggValueSlot::forAddr(valueAddr,
802 valueDest.getQualifiers(),
803 valueDest.isExternallyDestructed(),
804 valueDest.requiresGCollection(),
805 valueDest.isPotentiallyAliased(),
806 AggValueSlot::DoesNotOverlap,
807 AggValueSlot::IsZeroed);
808 }
809
810 CGF.EmitAggExpr(E->getSubExpr(), valueDest);
811 return;
812 }
813
814 // Otherwise, we're converting an atomic type to a non-atomic type.
815 // Make an atomic temporary, emit into that, and then copy the value out.
816 AggValueSlot atomicSlot =
817 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
818 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
819
820 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
821 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
822 return EmitFinalDestCopy(valueType, rvalue);
823 }
824 case CK_AddressSpaceConversion:
825 return Visit(E->getSubExpr());
826
827 case CK_LValueToRValue:
828 // If we're loading from a volatile type, force the destination
829 // into existence.
830 if (E->getSubExpr()->getType().isVolatileQualified()) {
831 bool Destruct =
832 !Dest.isExternallyDestructed() &&
833 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
834 if (Destruct)
835 Dest.setExternallyDestructed();
836 EnsureDest(E->getType());
837 Visit(E->getSubExpr());
838
839 if (Destruct)
840 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
841 E->getType());
842
843 return;
844 }
845
846 LLVM_FALLTHROUGH;
847
848
849 case CK_NoOp:
850 case CK_UserDefinedConversion:
851 case CK_ConstructorConversion:
852 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
853 E->getType()) &&
854 "Implicit cast types must be compatible");
855 Visit(E->getSubExpr());
856 break;
857
858 case CK_LValueBitCast:
859 llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
860
861 case CK_Dependent:
862 case CK_BitCast:
863 case CK_ArrayToPointerDecay:
864 case CK_FunctionToPointerDecay:
865 case CK_NullToPointer:
866 case CK_NullToMemberPointer:
867 case CK_BaseToDerivedMemberPointer:
868 case CK_DerivedToBaseMemberPointer:
869 case CK_MemberPointerToBoolean:
870 case CK_ReinterpretMemberPointer:
871 case CK_IntegralToPointer:
872 case CK_PointerToIntegral:
873 case CK_PointerToBoolean:
874 case CK_ToVoid:
875 case CK_VectorSplat:
876 case CK_IntegralCast:
877 case CK_BooleanToSignedIntegral:
878 case CK_IntegralToBoolean:
879 case CK_IntegralToFloating:
880 case CK_FloatingToIntegral:
881 case CK_FloatingToBoolean:
882 case CK_FloatingCast:
883 case CK_CPointerToObjCPointerCast:
884 case CK_BlockPointerToObjCPointerCast:
885 case CK_AnyPointerToBlockPointerCast:
886 case CK_ObjCObjectLValueCast:
887 case CK_FloatingRealToComplex:
888 case CK_FloatingComplexToReal:
889 case CK_FloatingComplexToBoolean:
890 case CK_FloatingComplexCast:
891 case CK_FloatingComplexToIntegralComplex:
892 case CK_IntegralRealToComplex:
893 case CK_IntegralComplexToReal:
894 case CK_IntegralComplexToBoolean:
895 case CK_IntegralComplexCast:
896 case CK_IntegralComplexToFloatingComplex:
897 case CK_ARCProduceObject:
898 case CK_ARCConsumeObject:
899 case CK_ARCReclaimReturnedObject:
900 case CK_ARCExtendBlockObject:
901 case CK_CopyAndAutoreleaseBlockObject:
902 case CK_BuiltinFnToFnPtr:
903 case CK_ZeroToOCLOpaqueType:
904
905 case CK_IntToOCLSampler:
906 case CK_FloatingToFixedPoint:
907 case CK_FixedPointToFloating:
908 case CK_FixedPointCast:
909 case CK_FixedPointToBoolean:
910 case CK_FixedPointToIntegral:
911 case CK_IntegralToFixedPoint:
912 llvm_unreachable("cast kind invalid for aggregate types");
913 }
914 }
915
VisitCallExpr(const CallExpr * E)916 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
917 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
918 EmitAggLoadOfLValue(E);
919 return;
920 }
921
922 withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
923 return CGF.EmitCallExpr(E, Slot);
924 });
925 }
926
VisitObjCMessageExpr(ObjCMessageExpr * E)927 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
928 withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
929 return CGF.EmitObjCMessageExpr(E, Slot);
930 });
931 }
932
VisitBinComma(const BinaryOperator * E)933 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
934 CGF.EmitIgnoredExpr(E->getLHS());
935 Visit(E->getRHS());
936 }
937
VisitStmtExpr(const StmtExpr * E)938 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
939 CodeGenFunction::StmtExprEvaluation eval(CGF);
940 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
941 }
942
943 enum CompareKind {
944 CK_Less,
945 CK_Greater,
946 CK_Equal,
947 };
948
EmitCompare(CGBuilderTy & Builder,CodeGenFunction & CGF,const BinaryOperator * E,llvm::Value * LHS,llvm::Value * RHS,CompareKind Kind,const char * NameSuffix="")949 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
950 const BinaryOperator *E, llvm::Value *LHS,
951 llvm::Value *RHS, CompareKind Kind,
952 const char *NameSuffix = "") {
953 QualType ArgTy = E->getLHS()->getType();
954 if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
955 ArgTy = CT->getElementType();
956
957 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
958 assert(Kind == CK_Equal &&
959 "member pointers may only be compared for equality");
960 return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
961 CGF, LHS, RHS, MPT, /*IsInequality*/ false);
962 }
963
964 // Compute the comparison instructions for the specified comparison kind.
965 struct CmpInstInfo {
966 const char *Name;
967 llvm::CmpInst::Predicate FCmp;
968 llvm::CmpInst::Predicate SCmp;
969 llvm::CmpInst::Predicate UCmp;
970 };
971 CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
972 using FI = llvm::FCmpInst;
973 using II = llvm::ICmpInst;
974 switch (Kind) {
975 case CK_Less:
976 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
977 case CK_Greater:
978 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
979 case CK_Equal:
980 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
981 }
982 llvm_unreachable("Unrecognised CompareKind enum");
983 }();
984
985 if (ArgTy->hasFloatingRepresentation())
986 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
987 llvm::Twine(InstInfo.Name) + NameSuffix);
988 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
989 auto Inst =
990 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
991 return Builder.CreateICmp(Inst, LHS, RHS,
992 llvm::Twine(InstInfo.Name) + NameSuffix);
993 }
994
995 llvm_unreachable("unsupported aggregate binary expression should have "
996 "already been handled");
997 }
998
VisitBinCmp(const BinaryOperator * E)999 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
1000 using llvm::BasicBlock;
1001 using llvm::PHINode;
1002 using llvm::Value;
1003 assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1004 E->getRHS()->getType()));
1005 const ComparisonCategoryInfo &CmpInfo =
1006 CGF.getContext().CompCategories.getInfoForType(E->getType());
1007 assert(CmpInfo.Record->isTriviallyCopyable() &&
1008 "cannot copy non-trivially copyable aggregate");
1009
1010 QualType ArgTy = E->getLHS()->getType();
1011
1012 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1013 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1014 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1015 return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1016 }
1017 bool IsComplex = ArgTy->isAnyComplexType();
1018
1019 // Evaluate the operands to the expression and extract their values.
1020 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1021 RValue RV = CGF.EmitAnyExpr(E);
1022 if (RV.isScalar())
1023 return {RV.getScalarVal(), nullptr};
1024 if (RV.isAggregate())
1025 return {RV.getAggregatePointer(), nullptr};
1026 assert(RV.isComplex());
1027 return RV.getComplexVal();
1028 };
1029 auto LHSValues = EmitOperand(E->getLHS()),
1030 RHSValues = EmitOperand(E->getRHS());
1031
1032 auto EmitCmp = [&](CompareKind K) {
1033 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1034 K, IsComplex ? ".r" : "");
1035 if (!IsComplex)
1036 return Cmp;
1037 assert(K == CompareKind::CK_Equal);
1038 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1039 RHSValues.second, K, ".i");
1040 return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1041 };
1042 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1043 return Builder.getInt(VInfo->getIntValue());
1044 };
1045
1046 Value *Select;
1047 if (ArgTy->isNullPtrType()) {
1048 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1049 } else if (!CmpInfo.isPartial()) {
1050 Value *SelectOne =
1051 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1052 EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1053 Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1054 EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1055 SelectOne, "sel.eq");
1056 } else {
1057 Value *SelectEq = Builder.CreateSelect(
1058 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1059 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1060 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1061 EmitCmpRes(CmpInfo.getGreater()),
1062 SelectEq, "sel.gt");
1063 Select = Builder.CreateSelect(
1064 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1065 }
1066 // Create the return value in the destination slot.
1067 EnsureDest(E->getType());
1068 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1069
1070 // Emit the address of the first (and only) field in the comparison category
1071 // type, and initialize it from the constant integer value selected above.
1072 LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1073 DestLV, *CmpInfo.Record->field_begin());
1074 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1075
1076 // All done! The result is in the Dest slot.
1077 }
1078
VisitBinaryOperator(const BinaryOperator * E)1079 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1080 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1081 VisitPointerToDataMemberBinaryOperator(E);
1082 else
1083 CGF.ErrorUnsupported(E, "aggregate binary expression");
1084 }
1085
VisitPointerToDataMemberBinaryOperator(const BinaryOperator * E)1086 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1087 const BinaryOperator *E) {
1088 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1089 EmitFinalDestCopy(E->getType(), LV);
1090 }
1091
1092 /// Is the value of the given expression possibly a reference to or
1093 /// into a __block variable?
isBlockVarRef(const Expr * E)1094 static bool isBlockVarRef(const Expr *E) {
1095 // Make sure we look through parens.
1096 E = E->IgnoreParens();
1097
1098 // Check for a direct reference to a __block variable.
1099 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1100 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1101 return (var && var->hasAttr<BlocksAttr>());
1102 }
1103
1104 // More complicated stuff.
1105
1106 // Binary operators.
1107 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1108 // For an assignment or pointer-to-member operation, just care
1109 // about the LHS.
1110 if (op->isAssignmentOp() || op->isPtrMemOp())
1111 return isBlockVarRef(op->getLHS());
1112
1113 // For a comma, just care about the RHS.
1114 if (op->getOpcode() == BO_Comma)
1115 return isBlockVarRef(op->getRHS());
1116
1117 // FIXME: pointer arithmetic?
1118 return false;
1119
1120 // Check both sides of a conditional operator.
1121 } else if (const AbstractConditionalOperator *op
1122 = dyn_cast<AbstractConditionalOperator>(E)) {
1123 return isBlockVarRef(op->getTrueExpr())
1124 || isBlockVarRef(op->getFalseExpr());
1125
1126 // OVEs are required to support BinaryConditionalOperators.
1127 } else if (const OpaqueValueExpr *op
1128 = dyn_cast<OpaqueValueExpr>(E)) {
1129 if (const Expr *src = op->getSourceExpr())
1130 return isBlockVarRef(src);
1131
1132 // Casts are necessary to get things like (*(int*)&var) = foo().
1133 // We don't really care about the kind of cast here, except
1134 // we don't want to look through l2r casts, because it's okay
1135 // to get the *value* in a __block variable.
1136 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1137 if (cast->getCastKind() == CK_LValueToRValue)
1138 return false;
1139 return isBlockVarRef(cast->getSubExpr());
1140
1141 // Handle unary operators. Again, just aggressively look through
1142 // it, ignoring the operation.
1143 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1144 return isBlockVarRef(uop->getSubExpr());
1145
1146 // Look into the base of a field access.
1147 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1148 return isBlockVarRef(mem->getBase());
1149
1150 // Look into the base of a subscript.
1151 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1152 return isBlockVarRef(sub->getBase());
1153 }
1154
1155 return false;
1156 }
1157
VisitBinAssign(const BinaryOperator * E)1158 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1159 // For an assignment to work, the value on the right has
1160 // to be compatible with the value on the left.
1161 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1162 E->getRHS()->getType())
1163 && "Invalid assignment");
1164
1165 // If the LHS might be a __block variable, and the RHS can
1166 // potentially cause a block copy, we need to evaluate the RHS first
1167 // so that the assignment goes the right place.
1168 // This is pretty semantically fragile.
1169 if (isBlockVarRef(E->getLHS()) &&
1170 E->getRHS()->HasSideEffects(CGF.getContext())) {
1171 // Ensure that we have a destination, and evaluate the RHS into that.
1172 EnsureDest(E->getRHS()->getType());
1173 Visit(E->getRHS());
1174
1175 // Now emit the LHS and copy into it.
1176 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1177
1178 // That copy is an atomic copy if the LHS is atomic.
1179 if (LHS.getType()->isAtomicType() ||
1180 CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1181 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1182 return;
1183 }
1184
1185 EmitCopy(E->getLHS()->getType(),
1186 AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1187 needsGC(E->getLHS()->getType()),
1188 AggValueSlot::IsAliased,
1189 AggValueSlot::MayOverlap),
1190 Dest);
1191 return;
1192 }
1193
1194 LValue LHS = CGF.EmitLValue(E->getLHS());
1195
1196 // If we have an atomic type, evaluate into the destination and then
1197 // do an atomic copy.
1198 if (LHS.getType()->isAtomicType() ||
1199 CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1200 EnsureDest(E->getRHS()->getType());
1201 Visit(E->getRHS());
1202 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1203 return;
1204 }
1205
1206 // Codegen the RHS so that it stores directly into the LHS.
1207 AggValueSlot LHSSlot = AggValueSlot::forLValue(
1208 LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1209 AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1210 // A non-volatile aggregate destination might have volatile member.
1211 if (!LHSSlot.isVolatile() &&
1212 CGF.hasVolatileMember(E->getLHS()->getType()))
1213 LHSSlot.setVolatile(true);
1214
1215 CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1216
1217 // Copy into the destination if the assignment isn't ignored.
1218 EmitFinalDestCopy(E->getType(), LHS);
1219
1220 if (!Dest.isIgnored() && !Dest.isExternallyDestructed() &&
1221 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
1222 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1223 E->getType());
1224 }
1225
1226 void AggExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)1227 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1228 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1229 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1230 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1231
1232 // Bind the common expression if necessary.
1233 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1234
1235 CodeGenFunction::ConditionalEvaluation eval(CGF);
1236 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1237 CGF.getProfileCount(E));
1238
1239 // Save whether the destination's lifetime is externally managed.
1240 bool isExternallyDestructed = Dest.isExternallyDestructed();
1241 bool destructNonTrivialCStruct =
1242 !isExternallyDestructed &&
1243 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
1244 isExternallyDestructed |= destructNonTrivialCStruct;
1245 Dest.setExternallyDestructed(isExternallyDestructed);
1246
1247 eval.begin(CGF);
1248 CGF.EmitBlock(LHSBlock);
1249 CGF.incrementProfileCounter(E);
1250 Visit(E->getTrueExpr());
1251 eval.end(CGF);
1252
1253 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1254 CGF.Builder.CreateBr(ContBlock);
1255
1256 // If the result of an agg expression is unused, then the emission
1257 // of the LHS might need to create a destination slot. That's fine
1258 // with us, and we can safely emit the RHS into the same slot, but
1259 // we shouldn't claim that it's already being destructed.
1260 Dest.setExternallyDestructed(isExternallyDestructed);
1261
1262 eval.begin(CGF);
1263 CGF.EmitBlock(RHSBlock);
1264 Visit(E->getFalseExpr());
1265 eval.end(CGF);
1266
1267 if (destructNonTrivialCStruct)
1268 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1269 E->getType());
1270
1271 CGF.EmitBlock(ContBlock);
1272 }
1273
VisitChooseExpr(const ChooseExpr * CE)1274 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1275 Visit(CE->getChosenSubExpr());
1276 }
1277
VisitVAArgExpr(VAArgExpr * VE)1278 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1279 Address ArgValue = Address::invalid();
1280 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1281
1282 // If EmitVAArg fails, emit an error.
1283 if (!ArgPtr.isValid()) {
1284 CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1285 return;
1286 }
1287
1288 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1289 }
1290
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)1291 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1292 // Ensure that we have a slot, but if we already do, remember
1293 // whether it was externally destructed.
1294 bool wasExternallyDestructed = Dest.isExternallyDestructed();
1295 EnsureDest(E->getType());
1296
1297 // We're going to push a destructor if there isn't already one.
1298 Dest.setExternallyDestructed();
1299
1300 Visit(E->getSubExpr());
1301
1302 // Push that destructor we promised.
1303 if (!wasExternallyDestructed)
1304 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1305 }
1306
1307 void
VisitCXXConstructExpr(const CXXConstructExpr * E)1308 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1309 AggValueSlot Slot = EnsureSlot(E->getType());
1310 CGF.EmitCXXConstructExpr(E, Slot);
1311 }
1312
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)1313 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1314 const CXXInheritedCtorInitExpr *E) {
1315 AggValueSlot Slot = EnsureSlot(E->getType());
1316 CGF.EmitInheritedCXXConstructorCall(
1317 E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1318 E->inheritedFromVBase(), E);
1319 }
1320
1321 void
VisitLambdaExpr(LambdaExpr * E)1322 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1323 AggValueSlot Slot = EnsureSlot(E->getType());
1324 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1325
1326 // We'll need to enter cleanup scopes in case any of the element
1327 // initializers throws an exception.
1328 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1329 llvm::Instruction *CleanupDominator = nullptr;
1330
1331 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1332 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1333 e = E->capture_init_end();
1334 i != e; ++i, ++CurField) {
1335 // Emit initialization
1336 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1337 if (CurField->hasCapturedVLAType()) {
1338 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1339 continue;
1340 }
1341
1342 EmitInitializationToLValue(*i, LV);
1343
1344 // Push a destructor if necessary.
1345 if (QualType::DestructionKind DtorKind =
1346 CurField->getType().isDestructedType()) {
1347 assert(LV.isSimple());
1348 if (CGF.needsEHCleanup(DtorKind)) {
1349 if (!CleanupDominator)
1350 CleanupDominator = CGF.Builder.CreateAlignedLoad(
1351 CGF.Int8Ty,
1352 llvm::Constant::getNullValue(CGF.Int8PtrTy),
1353 CharUnits::One()); // placeholder
1354
1355 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1356 CGF.getDestroyer(DtorKind), false);
1357 Cleanups.push_back(CGF.EHStack.stable_begin());
1358 }
1359 }
1360 }
1361
1362 // Deactivate all the partial cleanups in reverse order, which
1363 // generally means popping them.
1364 for (unsigned i = Cleanups.size(); i != 0; --i)
1365 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1366
1367 // Destroy the placeholder if we made one.
1368 if (CleanupDominator)
1369 CleanupDominator->eraseFromParent();
1370 }
1371
VisitExprWithCleanups(ExprWithCleanups * E)1372 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1373 CodeGenFunction::RunCleanupsScope cleanups(CGF);
1374 Visit(E->getSubExpr());
1375 }
1376
VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)1377 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1378 QualType T = E->getType();
1379 AggValueSlot Slot = EnsureSlot(T);
1380 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1381 }
1382
VisitImplicitValueInitExpr(ImplicitValueInitExpr * E)1383 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1384 QualType T = E->getType();
1385 AggValueSlot Slot = EnsureSlot(T);
1386 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1387 }
1388
1389 /// Determine whether the given cast kind is known to always convert values
1390 /// with all zero bits in their value representation to values with all zero
1391 /// bits in their value representation.
castPreservesZero(const CastExpr * CE)1392 static bool castPreservesZero(const CastExpr *CE) {
1393 switch (CE->getCastKind()) {
1394 // No-ops.
1395 case CK_NoOp:
1396 case CK_UserDefinedConversion:
1397 case CK_ConstructorConversion:
1398 case CK_BitCast:
1399 case CK_ToUnion:
1400 case CK_ToVoid:
1401 // Conversions between (possibly-complex) integral, (possibly-complex)
1402 // floating-point, and bool.
1403 case CK_BooleanToSignedIntegral:
1404 case CK_FloatingCast:
1405 case CK_FloatingComplexCast:
1406 case CK_FloatingComplexToBoolean:
1407 case CK_FloatingComplexToIntegralComplex:
1408 case CK_FloatingComplexToReal:
1409 case CK_FloatingRealToComplex:
1410 case CK_FloatingToBoolean:
1411 case CK_FloatingToIntegral:
1412 case CK_IntegralCast:
1413 case CK_IntegralComplexCast:
1414 case CK_IntegralComplexToBoolean:
1415 case CK_IntegralComplexToFloatingComplex:
1416 case CK_IntegralComplexToReal:
1417 case CK_IntegralRealToComplex:
1418 case CK_IntegralToBoolean:
1419 case CK_IntegralToFloating:
1420 // Reinterpreting integers as pointers and vice versa.
1421 case CK_IntegralToPointer:
1422 case CK_PointerToIntegral:
1423 // Language extensions.
1424 case CK_VectorSplat:
1425 case CK_NonAtomicToAtomic:
1426 case CK_AtomicToNonAtomic:
1427 return true;
1428
1429 case CK_BaseToDerivedMemberPointer:
1430 case CK_DerivedToBaseMemberPointer:
1431 case CK_MemberPointerToBoolean:
1432 case CK_NullToMemberPointer:
1433 case CK_ReinterpretMemberPointer:
1434 // FIXME: ABI-dependent.
1435 return false;
1436
1437 case CK_AnyPointerToBlockPointerCast:
1438 case CK_BlockPointerToObjCPointerCast:
1439 case CK_CPointerToObjCPointerCast:
1440 case CK_ObjCObjectLValueCast:
1441 case CK_IntToOCLSampler:
1442 case CK_ZeroToOCLOpaqueType:
1443 // FIXME: Check these.
1444 return false;
1445
1446 case CK_FixedPointCast:
1447 case CK_FixedPointToBoolean:
1448 case CK_FixedPointToFloating:
1449 case CK_FixedPointToIntegral:
1450 case CK_FloatingToFixedPoint:
1451 case CK_IntegralToFixedPoint:
1452 // FIXME: Do all fixed-point types represent zero as all 0 bits?
1453 return false;
1454
1455 case CK_AddressSpaceConversion:
1456 case CK_BaseToDerived:
1457 case CK_DerivedToBase:
1458 case CK_Dynamic:
1459 case CK_NullToPointer:
1460 case CK_PointerToBoolean:
1461 // FIXME: Preserves zeroes only if zero pointers and null pointers have the
1462 // same representation in all involved address spaces.
1463 return false;
1464
1465 case CK_ARCConsumeObject:
1466 case CK_ARCExtendBlockObject:
1467 case CK_ARCProduceObject:
1468 case CK_ARCReclaimReturnedObject:
1469 case CK_CopyAndAutoreleaseBlockObject:
1470 case CK_ArrayToPointerDecay:
1471 case CK_FunctionToPointerDecay:
1472 case CK_BuiltinFnToFnPtr:
1473 case CK_Dependent:
1474 case CK_LValueBitCast:
1475 case CK_LValueToRValue:
1476 case CK_LValueToRValueBitCast:
1477 case CK_UncheckedDerivedToBase:
1478 return false;
1479 }
1480 llvm_unreachable("Unhandled clang::CastKind enum");
1481 }
1482
1483 /// isSimpleZero - If emitting this value will obviously just cause a store of
1484 /// zero to memory, return true. This can return false if uncertain, so it just
1485 /// handles simple cases.
isSimpleZero(const Expr * E,CodeGenFunction & CGF)1486 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1487 E = E->IgnoreParens();
1488 while (auto *CE = dyn_cast<CastExpr>(E)) {
1489 if (!castPreservesZero(CE))
1490 break;
1491 E = CE->getSubExpr()->IgnoreParens();
1492 }
1493
1494 // 0
1495 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1496 return IL->getValue() == 0;
1497 // +0.0
1498 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1499 return FL->getValue().isPosZero();
1500 // int()
1501 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1502 CGF.getTypes().isZeroInitializable(E->getType()))
1503 return true;
1504 // (int*)0 - Null pointer expressions.
1505 if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1506 return ICE->getCastKind() == CK_NullToPointer &&
1507 CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1508 !E->HasSideEffects(CGF.getContext());
1509 // '\0'
1510 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1511 return CL->getValue() == 0;
1512
1513 // Otherwise, hard case: conservatively return false.
1514 return false;
1515 }
1516
1517
1518 void
EmitInitializationToLValue(Expr * E,LValue LV)1519 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1520 QualType type = LV.getType();
1521 // FIXME: Ignore result?
1522 // FIXME: Are initializers affected by volatile?
1523 if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1524 // Storing "i32 0" to a zero'd memory location is a noop.
1525 return;
1526 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1527 return EmitNullInitializationToLValue(LV);
1528 } else if (isa<NoInitExpr>(E)) {
1529 // Do nothing.
1530 return;
1531 } else if (type->isReferenceType()) {
1532 RValue RV = CGF.EmitReferenceBindingToExpr(E);
1533 return CGF.EmitStoreThroughLValue(RV, LV);
1534 }
1535
1536 switch (CGF.getEvaluationKind(type)) {
1537 case TEK_Complex:
1538 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1539 return;
1540 case TEK_Aggregate:
1541 CGF.EmitAggExpr(
1542 E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1543 AggValueSlot::DoesNotNeedGCBarriers,
1544 AggValueSlot::IsNotAliased,
1545 AggValueSlot::MayOverlap, Dest.isZeroed()));
1546 return;
1547 case TEK_Scalar:
1548 if (LV.isSimple()) {
1549 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1550 } else {
1551 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1552 }
1553 return;
1554 }
1555 llvm_unreachable("bad evaluation kind");
1556 }
1557
EmitNullInitializationToLValue(LValue lv)1558 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1559 QualType type = lv.getType();
1560
1561 // If the destination slot is already zeroed out before the aggregate is
1562 // copied into it, we don't have to emit any zeros here.
1563 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1564 return;
1565
1566 if (CGF.hasScalarEvaluationKind(type)) {
1567 // For non-aggregates, we can store the appropriate null constant.
1568 llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1569 // Note that the following is not equivalent to
1570 // EmitStoreThroughBitfieldLValue for ARC types.
1571 if (lv.isBitField()) {
1572 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1573 } else {
1574 assert(lv.isSimple());
1575 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1576 }
1577 } else {
1578 // There's a potential optimization opportunity in combining
1579 // memsets; that would be easy for arrays, but relatively
1580 // difficult for structures with the current code.
1581 CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1582 }
1583 }
1584
VisitInitListExpr(InitListExpr * E)1585 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1586 #if 0
1587 // FIXME: Assess perf here? Figure out what cases are worth optimizing here
1588 // (Length of globals? Chunks of zeroed-out space?).
1589 //
1590 // If we can, prefer a copy from a global; this is a lot less code for long
1591 // globals, and it's easier for the current optimizers to analyze.
1592 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1593 llvm::GlobalVariable* GV =
1594 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1595 llvm::GlobalValue::InternalLinkage, C, "");
1596 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1597 return;
1598 }
1599 #endif
1600 if (E->hadArrayRangeDesignator())
1601 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1602
1603 if (E->isTransparent())
1604 return Visit(E->getInit(0));
1605
1606 AggValueSlot Dest = EnsureSlot(E->getType());
1607
1608 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1609
1610 // Handle initialization of an array.
1611 if (E->getType()->isArrayType()) {
1612 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1613 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1614 return;
1615 }
1616
1617 assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1618
1619 // Do struct initialization; this code just sets each individual member
1620 // to the approprate value. This makes bitfield support automatic;
1621 // the disadvantage is that the generated code is more difficult for
1622 // the optimizer, especially with bitfields.
1623 unsigned NumInitElements = E->getNumInits();
1624 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1625
1626 // We'll need to enter cleanup scopes in case any of the element
1627 // initializers throws an exception.
1628 SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1629 llvm::Instruction *cleanupDominator = nullptr;
1630 auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1631 cleanups.push_back(cleanup);
1632 if (!cleanupDominator) // create placeholder once needed
1633 cleanupDominator = CGF.Builder.CreateAlignedLoad(
1634 CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1635 CharUnits::One());
1636 };
1637
1638 unsigned curInitIndex = 0;
1639
1640 // Emit initialization of base classes.
1641 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1642 assert(E->getNumInits() >= CXXRD->getNumBases() &&
1643 "missing initializer for base class");
1644 for (auto &Base : CXXRD->bases()) {
1645 assert(!Base.isVirtual() && "should not see vbases here");
1646 auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1647 Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1648 Dest.getAddress(), CXXRD, BaseRD,
1649 /*isBaseVirtual*/ false);
1650 AggValueSlot AggSlot = AggValueSlot::forAddr(
1651 V, Qualifiers(),
1652 AggValueSlot::IsDestructed,
1653 AggValueSlot::DoesNotNeedGCBarriers,
1654 AggValueSlot::IsNotAliased,
1655 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1656 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1657
1658 if (QualType::DestructionKind dtorKind =
1659 Base.getType().isDestructedType()) {
1660 CGF.pushDestroy(dtorKind, V, Base.getType());
1661 addCleanup(CGF.EHStack.stable_begin());
1662 }
1663 }
1664 }
1665
1666 // Prepare a 'this' for CXXDefaultInitExprs.
1667 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1668
1669 if (record->isUnion()) {
1670 // Only initialize one field of a union. The field itself is
1671 // specified by the initializer list.
1672 if (!E->getInitializedFieldInUnion()) {
1673 // Empty union; we have nothing to do.
1674
1675 #ifndef NDEBUG
1676 // Make sure that it's really an empty and not a failure of
1677 // semantic analysis.
1678 for (const auto *Field : record->fields())
1679 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1680 #endif
1681 return;
1682 }
1683
1684 // FIXME: volatility
1685 FieldDecl *Field = E->getInitializedFieldInUnion();
1686
1687 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1688 if (NumInitElements) {
1689 // Store the initializer into the field
1690 EmitInitializationToLValue(E->getInit(0), FieldLoc);
1691 } else {
1692 // Default-initialize to null.
1693 EmitNullInitializationToLValue(FieldLoc);
1694 }
1695
1696 return;
1697 }
1698
1699 // Here we iterate over the fields; this makes it simpler to both
1700 // default-initialize fields and skip over unnamed fields.
1701 for (const auto *field : record->fields()) {
1702 // We're done once we hit the flexible array member.
1703 if (field->getType()->isIncompleteArrayType())
1704 break;
1705
1706 // Always skip anonymous bitfields.
1707 if (field->isUnnamedBitfield())
1708 continue;
1709
1710 // We're done if we reach the end of the explicit initializers, we
1711 // have a zeroed object, and the rest of the fields are
1712 // zero-initializable.
1713 if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1714 CGF.getTypes().isZeroInitializable(E->getType()))
1715 break;
1716
1717
1718 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1719 // We never generate write-barries for initialized fields.
1720 LV.setNonGC(true);
1721
1722 if (curInitIndex < NumInitElements) {
1723 // Store the initializer into the field.
1724 EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1725 } else {
1726 // We're out of initializers; default-initialize to null
1727 EmitNullInitializationToLValue(LV);
1728 }
1729
1730 // Push a destructor if necessary.
1731 // FIXME: if we have an array of structures, all explicitly
1732 // initialized, we can end up pushing a linear number of cleanups.
1733 bool pushedCleanup = false;
1734 if (QualType::DestructionKind dtorKind
1735 = field->getType().isDestructedType()) {
1736 assert(LV.isSimple());
1737 if (CGF.needsEHCleanup(dtorKind)) {
1738 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1739 CGF.getDestroyer(dtorKind), false);
1740 addCleanup(CGF.EHStack.stable_begin());
1741 pushedCleanup = true;
1742 }
1743 }
1744
1745 // If the GEP didn't get used because of a dead zero init or something
1746 // else, clean it up for -O0 builds and general tidiness.
1747 if (!pushedCleanup && LV.isSimple())
1748 if (llvm::GetElementPtrInst *GEP =
1749 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1750 if (GEP->use_empty())
1751 GEP->eraseFromParent();
1752 }
1753
1754 // Deactivate all the partial cleanups in reverse order, which
1755 // generally means popping them.
1756 assert((cleanupDominator || cleanups.empty()) &&
1757 "Missing cleanupDominator before deactivating cleanup blocks");
1758 for (unsigned i = cleanups.size(); i != 0; --i)
1759 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1760
1761 // Destroy the placeholder if we made one.
1762 if (cleanupDominator)
1763 cleanupDominator->eraseFromParent();
1764 }
1765
VisitArrayInitLoopExpr(const ArrayInitLoopExpr * E,llvm::Value * outerBegin)1766 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1767 llvm::Value *outerBegin) {
1768 // Emit the common subexpression.
1769 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1770
1771 Address destPtr = EnsureSlot(E->getType()).getAddress();
1772 uint64_t numElements = E->getArraySize().getZExtValue();
1773
1774 if (!numElements)
1775 return;
1776
1777 // destPtr is an array*. Construct an elementType* by drilling down a level.
1778 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1779 llvm::Value *indices[] = {zero, zero};
1780 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1781 "arrayinit.begin");
1782
1783 // Prepare to special-case multidimensional array initialization: we avoid
1784 // emitting multiple destructor loops in that case.
1785 if (!outerBegin)
1786 outerBegin = begin;
1787 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1788
1789 QualType elementType =
1790 CGF.getContext().getAsArrayType(E->getType())->getElementType();
1791 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1792 CharUnits elementAlign =
1793 destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1794
1795 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1796 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1797
1798 // Jump into the body.
1799 CGF.EmitBlock(bodyBB);
1800 llvm::PHINode *index =
1801 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1802 index->addIncoming(zero, entryBB);
1803 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1804
1805 // Prepare for a cleanup.
1806 QualType::DestructionKind dtorKind = elementType.isDestructedType();
1807 EHScopeStack::stable_iterator cleanup;
1808 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1809 if (outerBegin->getType() != element->getType())
1810 outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1811 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1812 elementAlign,
1813 CGF.getDestroyer(dtorKind));
1814 cleanup = CGF.EHStack.stable_begin();
1815 } else {
1816 dtorKind = QualType::DK_none;
1817 }
1818
1819 // Emit the actual filler expression.
1820 {
1821 // Temporaries created in an array initialization loop are destroyed
1822 // at the end of each iteration.
1823 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1824 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1825 LValue elementLV =
1826 CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1827
1828 if (InnerLoop) {
1829 // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1830 auto elementSlot = AggValueSlot::forLValue(
1831 elementLV, CGF, AggValueSlot::IsDestructed,
1832 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1833 AggValueSlot::DoesNotOverlap);
1834 AggExprEmitter(CGF, elementSlot, false)
1835 .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1836 } else
1837 EmitInitializationToLValue(E->getSubExpr(), elementLV);
1838 }
1839
1840 // Move on to the next element.
1841 llvm::Value *nextIndex = Builder.CreateNUWAdd(
1842 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1843 index->addIncoming(nextIndex, Builder.GetInsertBlock());
1844
1845 // Leave the loop if we're done.
1846 llvm::Value *done = Builder.CreateICmpEQ(
1847 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1848 "arrayinit.done");
1849 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1850 Builder.CreateCondBr(done, endBB, bodyBB);
1851
1852 CGF.EmitBlock(endBB);
1853
1854 // Leave the partial-array cleanup if we entered one.
1855 if (dtorKind)
1856 CGF.DeactivateCleanupBlock(cleanup, index);
1857 }
1858
VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr * E)1859 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1860 AggValueSlot Dest = EnsureSlot(E->getType());
1861
1862 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1863 EmitInitializationToLValue(E->getBase(), DestLV);
1864 VisitInitListExpr(E->getUpdater());
1865 }
1866
1867 //===----------------------------------------------------------------------===//
1868 // Entry Points into this File
1869 //===----------------------------------------------------------------------===//
1870
1871 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1872 /// non-zero bytes that will be stored when outputting the initializer for the
1873 /// specified initializer expression.
GetNumNonZeroBytesInInit(const Expr * E,CodeGenFunction & CGF)1874 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1875 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
1876 E = MTE->getSubExpr();
1877 E = E->IgnoreParenNoopCasts(CGF.getContext());
1878
1879 // 0 and 0.0 won't require any non-zero stores!
1880 if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1881
1882 // If this is an initlist expr, sum up the size of sizes of the (present)
1883 // elements. If this is something weird, assume the whole thing is non-zero.
1884 const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1885 while (ILE && ILE->isTransparent())
1886 ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1887 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1888 return CGF.getContext().getTypeSizeInChars(E->getType());
1889
1890 // InitListExprs for structs have to be handled carefully. If there are
1891 // reference members, we need to consider the size of the reference, not the
1892 // referencee. InitListExprs for unions and arrays can't have references.
1893 if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1894 if (!RT->isUnionType()) {
1895 RecordDecl *SD = RT->getDecl();
1896 CharUnits NumNonZeroBytes = CharUnits::Zero();
1897
1898 unsigned ILEElement = 0;
1899 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1900 while (ILEElement != CXXRD->getNumBases())
1901 NumNonZeroBytes +=
1902 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1903 for (const auto *Field : SD->fields()) {
1904 // We're done once we hit the flexible array member or run out of
1905 // InitListExpr elements.
1906 if (Field->getType()->isIncompleteArrayType() ||
1907 ILEElement == ILE->getNumInits())
1908 break;
1909 if (Field->isUnnamedBitfield())
1910 continue;
1911
1912 const Expr *E = ILE->getInit(ILEElement++);
1913
1914 // Reference values are always non-null and have the width of a pointer.
1915 if (Field->getType()->isReferenceType())
1916 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1917 CGF.getTarget().getPointerWidth(0));
1918 else
1919 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1920 }
1921
1922 return NumNonZeroBytes;
1923 }
1924 }
1925
1926 // FIXME: This overestimates the number of non-zero bytes for bit-fields.
1927 CharUnits NumNonZeroBytes = CharUnits::Zero();
1928 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1929 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1930 return NumNonZeroBytes;
1931 }
1932
1933 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1934 /// zeros in it, emit a memset and avoid storing the individual zeros.
1935 ///
CheckAggExprForMemSetUse(AggValueSlot & Slot,const Expr * E,CodeGenFunction & CGF)1936 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1937 CodeGenFunction &CGF) {
1938 // If the slot is already known to be zeroed, nothing to do. Don't mess with
1939 // volatile stores.
1940 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1941 return;
1942
1943 // C++ objects with a user-declared constructor don't need zero'ing.
1944 if (CGF.getLangOpts().CPlusPlus)
1945 if (const RecordType *RT = CGF.getContext()
1946 .getBaseElementType(E->getType())->getAs<RecordType>()) {
1947 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1948 if (RD->hasUserDeclaredConstructor())
1949 return;
1950 }
1951
1952 // If the type is 16-bytes or smaller, prefer individual stores over memset.
1953 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1954 if (Size <= CharUnits::fromQuantity(16))
1955 return;
1956
1957 // Check to see if over 3/4 of the initializer are known to be zero. If so,
1958 // we prefer to emit memset + individual stores for the rest.
1959 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1960 if (NumNonZeroBytes*4 > Size)
1961 return;
1962
1963 // Okay, it seems like a good idea to use an initial memset, emit the call.
1964 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1965
1966 Address Loc = Slot.getAddress();
1967 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1968 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1969
1970 // Tell the AggExprEmitter that the slot is known zero.
1971 Slot.setZeroed();
1972 }
1973
1974
1975
1976
1977 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1978 /// type. The result is computed into DestPtr. Note that if DestPtr is null,
1979 /// the value of the aggregate expression is not needed. If VolatileDest is
1980 /// true, DestPtr cannot be 0.
EmitAggExpr(const Expr * E,AggValueSlot Slot)1981 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1982 assert(E && hasAggregateEvaluationKind(E->getType()) &&
1983 "Invalid aggregate expression to emit");
1984 assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1985 "slot has bits but no address");
1986
1987 // Optimize the slot if possible.
1988 CheckAggExprForMemSetUse(Slot, E, *this);
1989
1990 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1991 }
1992
EmitAggExprToLValue(const Expr * E)1993 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1994 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1995 Address Temp = CreateMemTemp(E->getType());
1996 LValue LV = MakeAddrLValue(Temp, E->getType());
1997 EmitAggExpr(E, AggValueSlot::forLValue(
1998 LV, *this, AggValueSlot::IsNotDestructed,
1999 AggValueSlot::DoesNotNeedGCBarriers,
2000 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
2001 return LV;
2002 }
2003
2004 AggValueSlot::Overlap_t
getOverlapForFieldInit(const FieldDecl * FD)2005 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
2006 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
2007 return AggValueSlot::DoesNotOverlap;
2008
2009 // If the field lies entirely within the enclosing class's nvsize, its tail
2010 // padding cannot overlap any already-initialized object. (The only subobjects
2011 // with greater addresses that might already be initialized are vbases.)
2012 const RecordDecl *ClassRD = FD->getParent();
2013 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
2014 if (Layout.getFieldOffset(FD->getFieldIndex()) +
2015 getContext().getTypeSize(FD->getType()) <=
2016 (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
2017 return AggValueSlot::DoesNotOverlap;
2018
2019 // The tail padding may contain values we need to preserve.
2020 return AggValueSlot::MayOverlap;
2021 }
2022
getOverlapForBaseInit(const CXXRecordDecl * RD,const CXXRecordDecl * BaseRD,bool IsVirtual)2023 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
2024 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
2025 // If the most-derived object is a field declared with [[no_unique_address]],
2026 // the tail padding of any virtual base could be reused for other subobjects
2027 // of that field's class.
2028 if (IsVirtual)
2029 return AggValueSlot::MayOverlap;
2030
2031 // If the base class is laid out entirely within the nvsize of the derived
2032 // class, its tail padding cannot yet be initialized, so we can issue
2033 // stores at the full width of the base class.
2034 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2035 if (Layout.getBaseClassOffset(BaseRD) +
2036 getContext().getASTRecordLayout(BaseRD).getSize() <=
2037 Layout.getNonVirtualSize())
2038 return AggValueSlot::DoesNotOverlap;
2039
2040 // The tail padding may contain values we need to preserve.
2041 return AggValueSlot::MayOverlap;
2042 }
2043
EmitAggregateCopy(LValue Dest,LValue Src,QualType Ty,AggValueSlot::Overlap_t MayOverlap,bool isVolatile)2044 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
2045 AggValueSlot::Overlap_t MayOverlap,
2046 bool isVolatile) {
2047 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
2048
2049 Address DestPtr = Dest.getAddress(*this);
2050 Address SrcPtr = Src.getAddress(*this);
2051
2052 if (getLangOpts().CPlusPlus) {
2053 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2054 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
2055 assert((Record->hasTrivialCopyConstructor() ||
2056 Record->hasTrivialCopyAssignment() ||
2057 Record->hasTrivialMoveConstructor() ||
2058 Record->hasTrivialMoveAssignment() ||
2059 Record->isUnion()) &&
2060 "Trying to aggregate-copy a type without a trivial copy/move "
2061 "constructor or assignment operator");
2062 // Ignore empty classes in C++.
2063 if (Record->isEmpty())
2064 return;
2065 }
2066 }
2067
2068 if (getLangOpts().CUDAIsDevice) {
2069 if (Ty->isCUDADeviceBuiltinSurfaceType()) {
2070 if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
2071 Src))
2072 return;
2073 } else if (Ty->isCUDADeviceBuiltinTextureType()) {
2074 if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
2075 Src))
2076 return;
2077 }
2078 }
2079
2080 // Aggregate assignment turns into llvm.memcpy. This is almost valid per
2081 // C99 6.5.16.1p3, which states "If the value being stored in an object is
2082 // read from another object that overlaps in anyway the storage of the first
2083 // object, then the overlap shall be exact and the two objects shall have
2084 // qualified or unqualified versions of a compatible type."
2085 //
2086 // memcpy is not defined if the source and destination pointers are exactly
2087 // equal, but other compilers do this optimization, and almost every memcpy
2088 // implementation handles this case safely. If there is a libc that does not
2089 // safely handle this, we can add a target hook.
2090
2091 // Get data size info for this aggregate. Don't copy the tail padding if this
2092 // might be a potentially-overlapping subobject, since the tail padding might
2093 // be occupied by a different object. Otherwise, copying it is fine.
2094 TypeInfoChars TypeInfo;
2095 if (MayOverlap)
2096 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
2097 else
2098 TypeInfo = getContext().getTypeInfoInChars(Ty);
2099
2100 llvm::Value *SizeVal = nullptr;
2101 if (TypeInfo.Width.isZero()) {
2102 // But note that getTypeInfo returns 0 for a VLA.
2103 if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
2104 getContext().getAsArrayType(Ty))) {
2105 QualType BaseEltTy;
2106 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
2107 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
2108 assert(!TypeInfo.Width.isZero());
2109 SizeVal = Builder.CreateNUWMul(
2110 SizeVal,
2111 llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()));
2112 }
2113 }
2114 if (!SizeVal) {
2115 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity());
2116 }
2117
2118 // FIXME: If we have a volatile struct, the optimizer can remove what might
2119 // appear to be `extra' memory ops:
2120 //
2121 // volatile struct { int i; } a, b;
2122 //
2123 // int main() {
2124 // a = b;
2125 // a = b;
2126 // }
2127 //
2128 // we need to use a different call here. We use isVolatile to indicate when
2129 // either the source or the destination is volatile.
2130
2131 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
2132 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
2133
2134 // Don't do any of the memmove_collectable tests if GC isn't set.
2135 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2136 // fall through
2137 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2138 RecordDecl *Record = RecordTy->getDecl();
2139 if (Record->hasObjectMember()) {
2140 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2141 SizeVal);
2142 return;
2143 }
2144 } else if (Ty->isArrayType()) {
2145 QualType BaseType = getContext().getBaseElementType(Ty);
2146 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2147 if (RecordTy->getDecl()->hasObjectMember()) {
2148 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2149 SizeVal);
2150 return;
2151 }
2152 }
2153 }
2154
2155 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2156
2157 // Determine the metadata to describe the position of any padding in this
2158 // memcpy, as well as the TBAA tags for the members of the struct, in case
2159 // the optimizer wishes to expand it in to scalar memory operations.
2160 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2161 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2162
2163 if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2164 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2165 Dest.getTBAAInfo(), Src.getTBAAInfo());
2166 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2167 }
2168 }
2169