1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 //===----------------------------------------------------------------------===//
33 //                        Aggregate Expression Emitter
34 //===----------------------------------------------------------------------===//
35 
36 namespace  {
37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
38   CodeGenFunction &CGF;
39   CGBuilderTy &Builder;
40   AggValueSlot Dest;
41   bool IsResultUnused;
42 
EnsureSlot(QualType T)43   AggValueSlot EnsureSlot(QualType T) {
44     if (!Dest.isIgnored()) return Dest;
45     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
46   }
EnsureDest(QualType T)47   void EnsureDest(QualType T) {
48     if (!Dest.isIgnored()) return;
49     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52   // Calls `Fn` with a valid return value slot, potentially creating a temporary
53   // to do so. If a temporary is created, an appropriate copy into `Dest` will
54   // be emitted, as will lifetime markers.
55   //
56   // The given function should take a ReturnValueSlot, and return an RValue that
57   // points to said slot.
58   void withReturnValueSlot(const Expr *E,
59                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
60 
61 public:
AggExprEmitter(CodeGenFunction & cgf,AggValueSlot Dest,bool IsResultUnused)62   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
63     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64     IsResultUnused(IsResultUnused) { }
65 
66   //===--------------------------------------------------------------------===//
67   //                               Utilities
68   //===--------------------------------------------------------------------===//
69 
70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71   /// represents a value lvalue, this method emits the address of the lvalue,
72   /// then loads the result into DestPtr.
73   void EmitAggLoadOfLValue(const Expr *E);
74 
75   enum ExprValueKind {
76     EVK_RValue,
77     EVK_NonRValue
78   };
79 
80   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
81   /// SrcIsRValue is true if source comes from an RValue.
82   void EmitFinalDestCopy(QualType type, const LValue &src,
83                          ExprValueKind SrcValueKind = EVK_NonRValue);
84   void EmitFinalDestCopy(QualType type, RValue src);
85   void EmitCopy(QualType type, const AggValueSlot &dest,
86                 const AggValueSlot &src);
87 
88   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
89 
90   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
91                      QualType ArrayQTy, InitListExpr *E);
92 
needsGC(QualType T)93   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
94     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
95       return AggValueSlot::NeedsGCBarriers;
96     return AggValueSlot::DoesNotNeedGCBarriers;
97   }
98 
99   bool TypeRequiresGCollection(QualType T);
100 
101   //===--------------------------------------------------------------------===//
102   //                            Visitor Methods
103   //===--------------------------------------------------------------------===//
104 
Visit(Expr * E)105   void Visit(Expr *E) {
106     ApplyDebugLocation DL(CGF, E);
107     StmtVisitor<AggExprEmitter>::Visit(E);
108   }
109 
VisitStmt(Stmt * S)110   void VisitStmt(Stmt *S) {
111     CGF.ErrorUnsupported(S, "aggregate expression");
112   }
VisitParenExpr(ParenExpr * PE)113   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)114   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
115     Visit(GE->getResultExpr());
116   }
VisitCoawaitExpr(CoawaitExpr * E)117   void VisitCoawaitExpr(CoawaitExpr *E) {
118     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
119   }
VisitCoyieldExpr(CoyieldExpr * E)120   void VisitCoyieldExpr(CoyieldExpr *E) {
121     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
122   }
VisitUnaryCoawait(UnaryOperator * E)123   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitUnaryExtension(UnaryOperator * E)124   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)125   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
126     return Visit(E->getReplacement());
127   }
128 
VisitConstantExpr(ConstantExpr * E)129   void VisitConstantExpr(ConstantExpr *E) {
130     if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
131       CGF.EmitAggregateStore(Result, Dest.getAddress(),
132                              E->getType().isVolatileQualified());
133       return;
134     }
135     return Visit(E->getSubExpr());
136   }
137 
138   // l-values.
VisitDeclRefExpr(DeclRefExpr * E)139   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
VisitMemberExpr(MemberExpr * ME)140   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
VisitUnaryDeref(UnaryOperator * E)141   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
VisitStringLiteral(StringLiteral * E)142   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
143   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
VisitArraySubscriptExpr(ArraySubscriptExpr * E)144   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
145     EmitAggLoadOfLValue(E);
146   }
VisitPredefinedExpr(const PredefinedExpr * E)147   void VisitPredefinedExpr(const PredefinedExpr *E) {
148     EmitAggLoadOfLValue(E);
149   }
150 
151   // Operators.
152   void VisitCastExpr(CastExpr *E);
153   void VisitCallExpr(const CallExpr *E);
154   void VisitStmtExpr(const StmtExpr *E);
155   void VisitBinaryOperator(const BinaryOperator *BO);
156   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
157   void VisitBinAssign(const BinaryOperator *E);
158   void VisitBinComma(const BinaryOperator *E);
159   void VisitBinCmp(const BinaryOperator *E);
VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator * E)160   void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
161     Visit(E->getSemanticForm());
162   }
163 
164   void VisitObjCMessageExpr(ObjCMessageExpr *E);
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)165   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
166     EmitAggLoadOfLValue(E);
167   }
168 
169   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
170   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
171   void VisitChooseExpr(const ChooseExpr *CE);
172   void VisitInitListExpr(InitListExpr *E);
173   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
174                               llvm::Value *outerBegin = nullptr);
175   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
VisitNoInitExpr(NoInitExpr * E)176   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)177   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
178     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
179     Visit(DAE->getExpr());
180   }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)181   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
182     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
183     Visit(DIE->getExpr());
184   }
185   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
186   void VisitCXXConstructExpr(const CXXConstructExpr *E);
187   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
188   void VisitLambdaExpr(LambdaExpr *E);
189   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
190   void VisitExprWithCleanups(ExprWithCleanups *E);
191   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
VisitCXXTypeidExpr(CXXTypeidExpr * E)192   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
193   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
194   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
195 
VisitPseudoObjectExpr(PseudoObjectExpr * E)196   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
197     if (E->isGLValue()) {
198       LValue LV = CGF.EmitPseudoObjectLValue(E);
199       return EmitFinalDestCopy(E->getType(), LV);
200     }
201 
202     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
203   }
204 
205   void VisitVAArgExpr(VAArgExpr *E);
206 
207   void EmitInitializationToLValue(Expr *E, LValue Address);
208   void EmitNullInitializationToLValue(LValue Address);
209   //  case Expr::ChooseExprClass:
VisitCXXThrowExpr(const CXXThrowExpr * E)210   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
VisitAtomicExpr(AtomicExpr * E)211   void VisitAtomicExpr(AtomicExpr *E) {
212     RValue Res = CGF.EmitAtomicExpr(E);
213     EmitFinalDestCopy(E->getType(), Res);
214   }
215 };
216 }  // end anonymous namespace.
217 
218 //===----------------------------------------------------------------------===//
219 //                                Utilities
220 //===----------------------------------------------------------------------===//
221 
222 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
223 /// represents a value lvalue, this method emits the address of the lvalue,
224 /// then loads the result into DestPtr.
EmitAggLoadOfLValue(const Expr * E)225 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
226   LValue LV = CGF.EmitLValue(E);
227 
228   // If the type of the l-value is atomic, then do an atomic load.
229   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
230     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
231     return;
232   }
233 
234   EmitFinalDestCopy(E->getType(), LV);
235 }
236 
237 /// True if the given aggregate type requires special GC API calls.
TypeRequiresGCollection(QualType T)238 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
239   // Only record types have members that might require garbage collection.
240   const RecordType *RecordTy = T->getAs<RecordType>();
241   if (!RecordTy) return false;
242 
243   // Don't mess with non-trivial C++ types.
244   RecordDecl *Record = RecordTy->getDecl();
245   if (isa<CXXRecordDecl>(Record) &&
246       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
247        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
248     return false;
249 
250   // Check whether the type has an object member.
251   return Record->hasObjectMember();
252 }
253 
withReturnValueSlot(const Expr * E,llvm::function_ref<RValue (ReturnValueSlot)> EmitCall)254 void AggExprEmitter::withReturnValueSlot(
255     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
256   QualType RetTy = E->getType();
257   bool RequiresDestruction =
258       !Dest.isExternallyDestructed() &&
259       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
260 
261   // If it makes no observable difference, save a memcpy + temporary.
262   //
263   // We need to always provide our own temporary if destruction is required.
264   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
265   // its lifetime before we have the chance to emit a proper destructor call.
266   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
267                  (RequiresDestruction && !Dest.getAddress().isValid());
268 
269   Address RetAddr = Address::invalid();
270   Address RetAllocaAddr = Address::invalid();
271 
272   EHScopeStack::stable_iterator LifetimeEndBlock;
273   llvm::Value *LifetimeSizePtr = nullptr;
274   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
275   if (!UseTemp) {
276     RetAddr = Dest.getAddress();
277   } else {
278     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
279     uint64_t Size =
280         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
281     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
282     if (LifetimeSizePtr) {
283       LifetimeStartInst =
284           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
285       assert(LifetimeStartInst->getIntrinsicID() ==
286                  llvm::Intrinsic::lifetime_start &&
287              "Last insertion wasn't a lifetime.start?");
288 
289       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
290           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
291       LifetimeEndBlock = CGF.EHStack.stable_begin();
292     }
293   }
294 
295   RValue Src =
296       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
297                                Dest.isExternallyDestructed()));
298 
299   if (!UseTemp)
300     return;
301 
302   assert(Dest.getPointer() != Src.getAggregatePointer());
303   EmitFinalDestCopy(E->getType(), Src);
304 
305   if (!RequiresDestruction && LifetimeStartInst) {
306     // If there's no dtor to run, the copy was the last use of our temporary.
307     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
308     // eagerly.
309     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
310     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
311   }
312 }
313 
314 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,RValue src)315 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
316   assert(src.isAggregate() && "value must be aggregate value!");
317   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
318   EmitFinalDestCopy(type, srcLV, EVK_RValue);
319 }
320 
321 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,const LValue & src,ExprValueKind SrcValueKind)322 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
323                                        ExprValueKind SrcValueKind) {
324   // If Dest is ignored, then we're evaluating an aggregate expression
325   // in a context that doesn't care about the result.  Note that loads
326   // from volatile l-values force the existence of a non-ignored
327   // destination.
328   if (Dest.isIgnored())
329     return;
330 
331   // Copy non-trivial C structs here.
332   LValue DstLV = CGF.MakeAddrLValue(
333       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
334 
335   if (SrcValueKind == EVK_RValue) {
336     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
337       if (Dest.isPotentiallyAliased())
338         CGF.callCStructMoveAssignmentOperator(DstLV, src);
339       else
340         CGF.callCStructMoveConstructor(DstLV, src);
341       return;
342     }
343   } else {
344     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
345       if (Dest.isPotentiallyAliased())
346         CGF.callCStructCopyAssignmentOperator(DstLV, src);
347       else
348         CGF.callCStructCopyConstructor(DstLV, src);
349       return;
350     }
351   }
352 
353   AggValueSlot srcAgg = AggValueSlot::forLValue(
354       src, CGF, AggValueSlot::IsDestructed, needsGC(type),
355       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
356   EmitCopy(type, Dest, srcAgg);
357 }
358 
359 /// Perform a copy from the source into the destination.
360 ///
361 /// \param type - the type of the aggregate being copied; qualifiers are
362 ///   ignored
EmitCopy(QualType type,const AggValueSlot & dest,const AggValueSlot & src)363 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
364                               const AggValueSlot &src) {
365   if (dest.requiresGCollection()) {
366     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
367     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
368     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
369                                                       dest.getAddress(),
370                                                       src.getAddress(),
371                                                       size);
372     return;
373   }
374 
375   // If the result of the assignment is used, copy the LHS there also.
376   // It's volatile if either side is.  Use the minimum alignment of
377   // the two sides.
378   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
379   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
380   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
381                         dest.isVolatile() || src.isVolatile());
382 }
383 
384 /// Emit the initializer for a std::initializer_list initialized with a
385 /// real initializer list.
386 void
VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr * E)387 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
388   // Emit an array containing the elements.  The array is externally destructed
389   // if the std::initializer_list object is.
390   ASTContext &Ctx = CGF.getContext();
391   LValue Array = CGF.EmitLValue(E->getSubExpr());
392   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
393   Address ArrayPtr = Array.getAddress(CGF);
394 
395   const ConstantArrayType *ArrayType =
396       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
397   assert(ArrayType && "std::initializer_list constructed from non-array");
398 
399   // FIXME: Perform the checks on the field types in SemaInit.
400   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
401   RecordDecl::field_iterator Field = Record->field_begin();
402   if (Field == Record->field_end()) {
403     CGF.ErrorUnsupported(E, "weird std::initializer_list");
404     return;
405   }
406 
407   // Start pointer.
408   if (!Field->getType()->isPointerType() ||
409       !Ctx.hasSameType(Field->getType()->getPointeeType(),
410                        ArrayType->getElementType())) {
411     CGF.ErrorUnsupported(E, "weird std::initializer_list");
412     return;
413   }
414 
415   AggValueSlot Dest = EnsureSlot(E->getType());
416   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
417   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
418   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
419   llvm::Value *IdxStart[] = { Zero, Zero };
420   llvm::Value *ArrayStart =
421       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
422   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
423   ++Field;
424 
425   if (Field == Record->field_end()) {
426     CGF.ErrorUnsupported(E, "weird std::initializer_list");
427     return;
428   }
429 
430   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
431   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
432   if (Field->getType()->isPointerType() &&
433       Ctx.hasSameType(Field->getType()->getPointeeType(),
434                       ArrayType->getElementType())) {
435     // End pointer.
436     llvm::Value *IdxEnd[] = { Zero, Size };
437     llvm::Value *ArrayEnd =
438         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
439     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
440   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
441     // Length.
442     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
443   } else {
444     CGF.ErrorUnsupported(E, "weird std::initializer_list");
445     return;
446   }
447 }
448 
449 /// Determine if E is a trivial array filler, that is, one that is
450 /// equivalent to zero-initialization.
isTrivialFiller(Expr * E)451 static bool isTrivialFiller(Expr *E) {
452   if (!E)
453     return true;
454 
455   if (isa<ImplicitValueInitExpr>(E))
456     return true;
457 
458   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
459     if (ILE->getNumInits())
460       return false;
461     return isTrivialFiller(ILE->getArrayFiller());
462   }
463 
464   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
465     return Cons->getConstructor()->isDefaultConstructor() &&
466            Cons->getConstructor()->isTrivial();
467 
468   // FIXME: Are there other cases where we can avoid emitting an initializer?
469   return false;
470 }
471 
472 /// Emit initialization of an array from an initializer list.
EmitArrayInit(Address DestPtr,llvm::ArrayType * AType,QualType ArrayQTy,InitListExpr * E)473 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
474                                    QualType ArrayQTy, InitListExpr *E) {
475   uint64_t NumInitElements = E->getNumInits();
476 
477   uint64_t NumArrayElements = AType->getNumElements();
478   assert(NumInitElements <= NumArrayElements);
479 
480   QualType elementType =
481       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
482 
483   // DestPtr is an array*.  Construct an elementType* by drilling
484   // down a level.
485   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
486   llvm::Value *indices[] = { zero, zero };
487   llvm::Value *begin =
488     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
489 
490   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
491   CharUnits elementAlign =
492     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
493 
494   // Consider initializing the array by copying from a global. For this to be
495   // more efficient than per-element initialization, the size of the elements
496   // with explicit initializers should be large enough.
497   if (NumInitElements * elementSize.getQuantity() > 16 &&
498       elementType.isTriviallyCopyableType(CGF.getContext())) {
499     CodeGen::CodeGenModule &CGM = CGF.CGM;
500     ConstantEmitter Emitter(CGF);
501     LangAS AS = ArrayQTy.getAddressSpace();
502     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
503       auto GV = new llvm::GlobalVariable(
504           CGM.getModule(), C->getType(),
505           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
506           llvm::GlobalValue::PrivateLinkage, C, "constinit",
507           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
508           CGM.getContext().getTargetAddressSpace(AS));
509       Emitter.finalize(GV);
510       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
511       GV->setAlignment(Align.getAsAlign());
512       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
513       return;
514     }
515   }
516 
517   // Exception safety requires us to destroy all the
518   // already-constructed members if an initializer throws.
519   // For that, we'll need an EH cleanup.
520   QualType::DestructionKind dtorKind = elementType.isDestructedType();
521   Address endOfInit = Address::invalid();
522   EHScopeStack::stable_iterator cleanup;
523   llvm::Instruction *cleanupDominator = nullptr;
524   if (CGF.needsEHCleanup(dtorKind)) {
525     // In principle we could tell the cleanup where we are more
526     // directly, but the control flow can get so varied here that it
527     // would actually be quite complex.  Therefore we go through an
528     // alloca.
529     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
530                                      "arrayinit.endOfInit");
531     cleanupDominator = Builder.CreateStore(begin, endOfInit);
532     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
533                                          elementAlign,
534                                          CGF.getDestroyer(dtorKind));
535     cleanup = CGF.EHStack.stable_begin();
536 
537   // Otherwise, remember that we didn't need a cleanup.
538   } else {
539     dtorKind = QualType::DK_none;
540   }
541 
542   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
543 
544   // The 'current element to initialize'.  The invariants on this
545   // variable are complicated.  Essentially, after each iteration of
546   // the loop, it points to the last initialized element, except
547   // that it points to the beginning of the array before any
548   // elements have been initialized.
549   llvm::Value *element = begin;
550 
551   // Emit the explicit initializers.
552   for (uint64_t i = 0; i != NumInitElements; ++i) {
553     // Advance to the next element.
554     if (i > 0) {
555       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
556 
557       // Tell the cleanup that it needs to destroy up to this
558       // element.  TODO: some of these stores can be trivially
559       // observed to be unnecessary.
560       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
561     }
562 
563     LValue elementLV =
564       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
565     EmitInitializationToLValue(E->getInit(i), elementLV);
566   }
567 
568   // Check whether there's a non-trivial array-fill expression.
569   Expr *filler = E->getArrayFiller();
570   bool hasTrivialFiller = isTrivialFiller(filler);
571 
572   // Any remaining elements need to be zero-initialized, possibly
573   // using the filler expression.  We can skip this if the we're
574   // emitting to zeroed memory.
575   if (NumInitElements != NumArrayElements &&
576       !(Dest.isZeroed() && hasTrivialFiller &&
577         CGF.getTypes().isZeroInitializable(elementType))) {
578 
579     // Use an actual loop.  This is basically
580     //   do { *array++ = filler; } while (array != end);
581 
582     // Advance to the start of the rest of the array.
583     if (NumInitElements) {
584       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
585       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
586     }
587 
588     // Compute the end of the array.
589     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
590                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
591                                                  "arrayinit.end");
592 
593     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
594     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
595 
596     // Jump into the body.
597     CGF.EmitBlock(bodyBB);
598     llvm::PHINode *currentElement =
599       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
600     currentElement->addIncoming(element, entryBB);
601 
602     // Emit the actual filler expression.
603     {
604       // C++1z [class.temporary]p5:
605       //   when a default constructor is called to initialize an element of
606       //   an array with no corresponding initializer [...] the destruction of
607       //   every temporary created in a default argument is sequenced before
608       //   the construction of the next array element, if any
609       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
610       LValue elementLV =
611         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
612       if (filler)
613         EmitInitializationToLValue(filler, elementLV);
614       else
615         EmitNullInitializationToLValue(elementLV);
616     }
617 
618     // Move on to the next element.
619     llvm::Value *nextElement =
620       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
621 
622     // Tell the EH cleanup that we finished with the last element.
623     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
624 
625     // Leave the loop if we're done.
626     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
627                                              "arrayinit.done");
628     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
629     Builder.CreateCondBr(done, endBB, bodyBB);
630     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
631 
632     CGF.EmitBlock(endBB);
633   }
634 
635   // Leave the partial-array cleanup if we entered one.
636   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
637 }
638 
639 //===----------------------------------------------------------------------===//
640 //                            Visitor Methods
641 //===----------------------------------------------------------------------===//
642 
VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)643 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
644   Visit(E->getSubExpr());
645 }
646 
VisitOpaqueValueExpr(OpaqueValueExpr * e)647 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
648   // If this is a unique OVE, just visit its source expression.
649   if (e->isUnique())
650     Visit(e->getSourceExpr());
651   else
652     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
653 }
654 
655 void
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)656 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
657   if (Dest.isPotentiallyAliased() &&
658       E->getType().isPODType(CGF.getContext())) {
659     // For a POD type, just emit a load of the lvalue + a copy, because our
660     // compound literal might alias the destination.
661     EmitAggLoadOfLValue(E);
662     return;
663   }
664 
665   AggValueSlot Slot = EnsureSlot(E->getType());
666 
667   // Block-scope compound literals are destroyed at the end of the enclosing
668   // scope in C.
669   bool Destruct =
670       !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
671   if (Destruct)
672     Slot.setExternallyDestructed();
673 
674   CGF.EmitAggExpr(E->getInitializer(), Slot);
675 
676   if (Destruct)
677     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
678       CGF.pushLifetimeExtendedDestroy(
679           CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
680           CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
681 }
682 
683 /// Attempt to look through various unimportant expressions to find a
684 /// cast of the given kind.
findPeephole(Expr * op,CastKind kind,const ASTContext & ctx)685 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
686   op = op->IgnoreParenNoopCasts(ctx);
687   if (auto castE = dyn_cast<CastExpr>(op)) {
688     if (castE->getCastKind() == kind)
689       return castE->getSubExpr();
690   }
691   return nullptr;
692 }
693 
VisitCastExpr(CastExpr * E)694 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
695   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
696     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
697   switch (E->getCastKind()) {
698   case CK_Dynamic: {
699     // FIXME: Can this actually happen? We have no test coverage for it.
700     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
701     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
702                                       CodeGenFunction::TCK_Load);
703     // FIXME: Do we also need to handle property references here?
704     if (LV.isSimple())
705       CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
706     else
707       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
708 
709     if (!Dest.isIgnored())
710       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
711     break;
712   }
713 
714   case CK_ToUnion: {
715     // Evaluate even if the destination is ignored.
716     if (Dest.isIgnored()) {
717       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
718                       /*ignoreResult=*/true);
719       break;
720     }
721 
722     // GCC union extension
723     QualType Ty = E->getSubExpr()->getType();
724     Address CastPtr =
725       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
726     EmitInitializationToLValue(E->getSubExpr(),
727                                CGF.MakeAddrLValue(CastPtr, Ty));
728     break;
729   }
730 
731   case CK_LValueToRValueBitCast: {
732     if (Dest.isIgnored()) {
733       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
734                       /*ignoreResult=*/true);
735       break;
736     }
737 
738     LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
739     Address SourceAddress =
740         Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
741     Address DestAddress =
742         Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
743     llvm::Value *SizeVal = llvm::ConstantInt::get(
744         CGF.SizeTy,
745         CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
746     Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
747     break;
748   }
749 
750   case CK_DerivedToBase:
751   case CK_BaseToDerived:
752   case CK_UncheckedDerivedToBase: {
753     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
754                 "should have been unpacked before we got here");
755   }
756 
757   case CK_NonAtomicToAtomic:
758   case CK_AtomicToNonAtomic: {
759     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
760 
761     // Determine the atomic and value types.
762     QualType atomicType = E->getSubExpr()->getType();
763     QualType valueType = E->getType();
764     if (isToAtomic) std::swap(atomicType, valueType);
765 
766     assert(atomicType->isAtomicType());
767     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
768                           atomicType->castAs<AtomicType>()->getValueType()));
769 
770     // Just recurse normally if we're ignoring the result or the
771     // atomic type doesn't change representation.
772     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
773       return Visit(E->getSubExpr());
774     }
775 
776     CastKind peepholeTarget =
777       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
778 
779     // These two cases are reverses of each other; try to peephole them.
780     if (Expr *op =
781             findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
782       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
783                                                      E->getType()) &&
784            "peephole significantly changed types?");
785       return Visit(op);
786     }
787 
788     // If we're converting an r-value of non-atomic type to an r-value
789     // of atomic type, just emit directly into the relevant sub-object.
790     if (isToAtomic) {
791       AggValueSlot valueDest = Dest;
792       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
793         // Zero-initialize.  (Strictly speaking, we only need to initialize
794         // the padding at the end, but this is simpler.)
795         if (!Dest.isZeroed())
796           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
797 
798         // Build a GEP to refer to the subobject.
799         Address valueAddr =
800             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
801         valueDest = AggValueSlot::forAddr(valueAddr,
802                                           valueDest.getQualifiers(),
803                                           valueDest.isExternallyDestructed(),
804                                           valueDest.requiresGCollection(),
805                                           valueDest.isPotentiallyAliased(),
806                                           AggValueSlot::DoesNotOverlap,
807                                           AggValueSlot::IsZeroed);
808       }
809 
810       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
811       return;
812     }
813 
814     // Otherwise, we're converting an atomic type to a non-atomic type.
815     // Make an atomic temporary, emit into that, and then copy the value out.
816     AggValueSlot atomicSlot =
817       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
818     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
819 
820     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
821     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
822     return EmitFinalDestCopy(valueType, rvalue);
823   }
824   case CK_AddressSpaceConversion:
825      return Visit(E->getSubExpr());
826 
827   case CK_LValueToRValue:
828     // If we're loading from a volatile type, force the destination
829     // into existence.
830     if (E->getSubExpr()->getType().isVolatileQualified()) {
831       bool Destruct =
832           !Dest.isExternallyDestructed() &&
833           E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
834       if (Destruct)
835         Dest.setExternallyDestructed();
836       EnsureDest(E->getType());
837       Visit(E->getSubExpr());
838 
839       if (Destruct)
840         CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
841                         E->getType());
842 
843       return;
844     }
845 
846     LLVM_FALLTHROUGH;
847 
848 
849   case CK_NoOp:
850   case CK_UserDefinedConversion:
851   case CK_ConstructorConversion:
852     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
853                                                    E->getType()) &&
854            "Implicit cast types must be compatible");
855     Visit(E->getSubExpr());
856     break;
857 
858   case CK_LValueBitCast:
859     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
860 
861   case CK_Dependent:
862   case CK_BitCast:
863   case CK_ArrayToPointerDecay:
864   case CK_FunctionToPointerDecay:
865   case CK_NullToPointer:
866   case CK_NullToMemberPointer:
867   case CK_BaseToDerivedMemberPointer:
868   case CK_DerivedToBaseMemberPointer:
869   case CK_MemberPointerToBoolean:
870   case CK_ReinterpretMemberPointer:
871   case CK_IntegralToPointer:
872   case CK_PointerToIntegral:
873   case CK_PointerToBoolean:
874   case CK_ToVoid:
875   case CK_VectorSplat:
876   case CK_IntegralCast:
877   case CK_BooleanToSignedIntegral:
878   case CK_IntegralToBoolean:
879   case CK_IntegralToFloating:
880   case CK_FloatingToIntegral:
881   case CK_FloatingToBoolean:
882   case CK_FloatingCast:
883   case CK_CPointerToObjCPointerCast:
884   case CK_BlockPointerToObjCPointerCast:
885   case CK_AnyPointerToBlockPointerCast:
886   case CK_ObjCObjectLValueCast:
887   case CK_FloatingRealToComplex:
888   case CK_FloatingComplexToReal:
889   case CK_FloatingComplexToBoolean:
890   case CK_FloatingComplexCast:
891   case CK_FloatingComplexToIntegralComplex:
892   case CK_IntegralRealToComplex:
893   case CK_IntegralComplexToReal:
894   case CK_IntegralComplexToBoolean:
895   case CK_IntegralComplexCast:
896   case CK_IntegralComplexToFloatingComplex:
897   case CK_ARCProduceObject:
898   case CK_ARCConsumeObject:
899   case CK_ARCReclaimReturnedObject:
900   case CK_ARCExtendBlockObject:
901   case CK_CopyAndAutoreleaseBlockObject:
902   case CK_BuiltinFnToFnPtr:
903   case CK_ZeroToOCLOpaqueType:
904 
905   case CK_IntToOCLSampler:
906   case CK_FloatingToFixedPoint:
907   case CK_FixedPointToFloating:
908   case CK_FixedPointCast:
909   case CK_FixedPointToBoolean:
910   case CK_FixedPointToIntegral:
911   case CK_IntegralToFixedPoint:
912     llvm_unreachable("cast kind invalid for aggregate types");
913   }
914 }
915 
VisitCallExpr(const CallExpr * E)916 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
917   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
918     EmitAggLoadOfLValue(E);
919     return;
920   }
921 
922   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
923     return CGF.EmitCallExpr(E, Slot);
924   });
925 }
926 
VisitObjCMessageExpr(ObjCMessageExpr * E)927 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
928   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
929     return CGF.EmitObjCMessageExpr(E, Slot);
930   });
931 }
932 
VisitBinComma(const BinaryOperator * E)933 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
934   CGF.EmitIgnoredExpr(E->getLHS());
935   Visit(E->getRHS());
936 }
937 
VisitStmtExpr(const StmtExpr * E)938 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
939   CodeGenFunction::StmtExprEvaluation eval(CGF);
940   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
941 }
942 
943 enum CompareKind {
944   CK_Less,
945   CK_Greater,
946   CK_Equal,
947 };
948 
EmitCompare(CGBuilderTy & Builder,CodeGenFunction & CGF,const BinaryOperator * E,llvm::Value * LHS,llvm::Value * RHS,CompareKind Kind,const char * NameSuffix="")949 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
950                                 const BinaryOperator *E, llvm::Value *LHS,
951                                 llvm::Value *RHS, CompareKind Kind,
952                                 const char *NameSuffix = "") {
953   QualType ArgTy = E->getLHS()->getType();
954   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
955     ArgTy = CT->getElementType();
956 
957   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
958     assert(Kind == CK_Equal &&
959            "member pointers may only be compared for equality");
960     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
961         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
962   }
963 
964   // Compute the comparison instructions for the specified comparison kind.
965   struct CmpInstInfo {
966     const char *Name;
967     llvm::CmpInst::Predicate FCmp;
968     llvm::CmpInst::Predicate SCmp;
969     llvm::CmpInst::Predicate UCmp;
970   };
971   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
972     using FI = llvm::FCmpInst;
973     using II = llvm::ICmpInst;
974     switch (Kind) {
975     case CK_Less:
976       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
977     case CK_Greater:
978       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
979     case CK_Equal:
980       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
981     }
982     llvm_unreachable("Unrecognised CompareKind enum");
983   }();
984 
985   if (ArgTy->hasFloatingRepresentation())
986     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
987                               llvm::Twine(InstInfo.Name) + NameSuffix);
988   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
989     auto Inst =
990         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
991     return Builder.CreateICmp(Inst, LHS, RHS,
992                               llvm::Twine(InstInfo.Name) + NameSuffix);
993   }
994 
995   llvm_unreachable("unsupported aggregate binary expression should have "
996                    "already been handled");
997 }
998 
VisitBinCmp(const BinaryOperator * E)999 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
1000   using llvm::BasicBlock;
1001   using llvm::PHINode;
1002   using llvm::Value;
1003   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1004                                       E->getRHS()->getType()));
1005   const ComparisonCategoryInfo &CmpInfo =
1006       CGF.getContext().CompCategories.getInfoForType(E->getType());
1007   assert(CmpInfo.Record->isTriviallyCopyable() &&
1008          "cannot copy non-trivially copyable aggregate");
1009 
1010   QualType ArgTy = E->getLHS()->getType();
1011 
1012   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1013       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1014       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1015     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1016   }
1017   bool IsComplex = ArgTy->isAnyComplexType();
1018 
1019   // Evaluate the operands to the expression and extract their values.
1020   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1021     RValue RV = CGF.EmitAnyExpr(E);
1022     if (RV.isScalar())
1023       return {RV.getScalarVal(), nullptr};
1024     if (RV.isAggregate())
1025       return {RV.getAggregatePointer(), nullptr};
1026     assert(RV.isComplex());
1027     return RV.getComplexVal();
1028   };
1029   auto LHSValues = EmitOperand(E->getLHS()),
1030        RHSValues = EmitOperand(E->getRHS());
1031 
1032   auto EmitCmp = [&](CompareKind K) {
1033     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1034                              K, IsComplex ? ".r" : "");
1035     if (!IsComplex)
1036       return Cmp;
1037     assert(K == CompareKind::CK_Equal);
1038     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1039                                  RHSValues.second, K, ".i");
1040     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1041   };
1042   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1043     return Builder.getInt(VInfo->getIntValue());
1044   };
1045 
1046   Value *Select;
1047   if (ArgTy->isNullPtrType()) {
1048     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1049   } else if (!CmpInfo.isPartial()) {
1050     Value *SelectOne =
1051         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1052                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1053     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1054                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1055                                   SelectOne, "sel.eq");
1056   } else {
1057     Value *SelectEq = Builder.CreateSelect(
1058         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1059         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1060     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1061                                            EmitCmpRes(CmpInfo.getGreater()),
1062                                            SelectEq, "sel.gt");
1063     Select = Builder.CreateSelect(
1064         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1065   }
1066   // Create the return value in the destination slot.
1067   EnsureDest(E->getType());
1068   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1069 
1070   // Emit the address of the first (and only) field in the comparison category
1071   // type, and initialize it from the constant integer value selected above.
1072   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1073       DestLV, *CmpInfo.Record->field_begin());
1074   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1075 
1076   // All done! The result is in the Dest slot.
1077 }
1078 
VisitBinaryOperator(const BinaryOperator * E)1079 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1080   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1081     VisitPointerToDataMemberBinaryOperator(E);
1082   else
1083     CGF.ErrorUnsupported(E, "aggregate binary expression");
1084 }
1085 
VisitPointerToDataMemberBinaryOperator(const BinaryOperator * E)1086 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1087                                                     const BinaryOperator *E) {
1088   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1089   EmitFinalDestCopy(E->getType(), LV);
1090 }
1091 
1092 /// Is the value of the given expression possibly a reference to or
1093 /// into a __block variable?
isBlockVarRef(const Expr * E)1094 static bool isBlockVarRef(const Expr *E) {
1095   // Make sure we look through parens.
1096   E = E->IgnoreParens();
1097 
1098   // Check for a direct reference to a __block variable.
1099   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1100     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1101     return (var && var->hasAttr<BlocksAttr>());
1102   }
1103 
1104   // More complicated stuff.
1105 
1106   // Binary operators.
1107   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1108     // For an assignment or pointer-to-member operation, just care
1109     // about the LHS.
1110     if (op->isAssignmentOp() || op->isPtrMemOp())
1111       return isBlockVarRef(op->getLHS());
1112 
1113     // For a comma, just care about the RHS.
1114     if (op->getOpcode() == BO_Comma)
1115       return isBlockVarRef(op->getRHS());
1116 
1117     // FIXME: pointer arithmetic?
1118     return false;
1119 
1120   // Check both sides of a conditional operator.
1121   } else if (const AbstractConditionalOperator *op
1122                = dyn_cast<AbstractConditionalOperator>(E)) {
1123     return isBlockVarRef(op->getTrueExpr())
1124         || isBlockVarRef(op->getFalseExpr());
1125 
1126   // OVEs are required to support BinaryConditionalOperators.
1127   } else if (const OpaqueValueExpr *op
1128                = dyn_cast<OpaqueValueExpr>(E)) {
1129     if (const Expr *src = op->getSourceExpr())
1130       return isBlockVarRef(src);
1131 
1132   // Casts are necessary to get things like (*(int*)&var) = foo().
1133   // We don't really care about the kind of cast here, except
1134   // we don't want to look through l2r casts, because it's okay
1135   // to get the *value* in a __block variable.
1136   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1137     if (cast->getCastKind() == CK_LValueToRValue)
1138       return false;
1139     return isBlockVarRef(cast->getSubExpr());
1140 
1141   // Handle unary operators.  Again, just aggressively look through
1142   // it, ignoring the operation.
1143   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1144     return isBlockVarRef(uop->getSubExpr());
1145 
1146   // Look into the base of a field access.
1147   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1148     return isBlockVarRef(mem->getBase());
1149 
1150   // Look into the base of a subscript.
1151   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1152     return isBlockVarRef(sub->getBase());
1153   }
1154 
1155   return false;
1156 }
1157 
VisitBinAssign(const BinaryOperator * E)1158 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1159   // For an assignment to work, the value on the right has
1160   // to be compatible with the value on the left.
1161   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1162                                                  E->getRHS()->getType())
1163          && "Invalid assignment");
1164 
1165   // If the LHS might be a __block variable, and the RHS can
1166   // potentially cause a block copy, we need to evaluate the RHS first
1167   // so that the assignment goes the right place.
1168   // This is pretty semantically fragile.
1169   if (isBlockVarRef(E->getLHS()) &&
1170       E->getRHS()->HasSideEffects(CGF.getContext())) {
1171     // Ensure that we have a destination, and evaluate the RHS into that.
1172     EnsureDest(E->getRHS()->getType());
1173     Visit(E->getRHS());
1174 
1175     // Now emit the LHS and copy into it.
1176     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1177 
1178     // That copy is an atomic copy if the LHS is atomic.
1179     if (LHS.getType()->isAtomicType() ||
1180         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1181       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1182       return;
1183     }
1184 
1185     EmitCopy(E->getLHS()->getType(),
1186              AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1187                                      needsGC(E->getLHS()->getType()),
1188                                      AggValueSlot::IsAliased,
1189                                      AggValueSlot::MayOverlap),
1190              Dest);
1191     return;
1192   }
1193 
1194   LValue LHS = CGF.EmitLValue(E->getLHS());
1195 
1196   // If we have an atomic type, evaluate into the destination and then
1197   // do an atomic copy.
1198   if (LHS.getType()->isAtomicType() ||
1199       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1200     EnsureDest(E->getRHS()->getType());
1201     Visit(E->getRHS());
1202     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1203     return;
1204   }
1205 
1206   // Codegen the RHS so that it stores directly into the LHS.
1207   AggValueSlot LHSSlot = AggValueSlot::forLValue(
1208       LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1209       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1210   // A non-volatile aggregate destination might have volatile member.
1211   if (!LHSSlot.isVolatile() &&
1212       CGF.hasVolatileMember(E->getLHS()->getType()))
1213     LHSSlot.setVolatile(true);
1214 
1215   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1216 
1217   // Copy into the destination if the assignment isn't ignored.
1218   EmitFinalDestCopy(E->getType(), LHS);
1219 
1220   if (!Dest.isIgnored() && !Dest.isExternallyDestructed() &&
1221       E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
1222     CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1223                     E->getType());
1224 }
1225 
1226 void AggExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)1227 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1228   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1229   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1230   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1231 
1232   // Bind the common expression if necessary.
1233   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1234 
1235   CodeGenFunction::ConditionalEvaluation eval(CGF);
1236   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1237                            CGF.getProfileCount(E));
1238 
1239   // Save whether the destination's lifetime is externally managed.
1240   bool isExternallyDestructed = Dest.isExternallyDestructed();
1241   bool destructNonTrivialCStruct =
1242       !isExternallyDestructed &&
1243       E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
1244   isExternallyDestructed |= destructNonTrivialCStruct;
1245   Dest.setExternallyDestructed(isExternallyDestructed);
1246 
1247   eval.begin(CGF);
1248   CGF.EmitBlock(LHSBlock);
1249   CGF.incrementProfileCounter(E);
1250   Visit(E->getTrueExpr());
1251   eval.end(CGF);
1252 
1253   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1254   CGF.Builder.CreateBr(ContBlock);
1255 
1256   // If the result of an agg expression is unused, then the emission
1257   // of the LHS might need to create a destination slot.  That's fine
1258   // with us, and we can safely emit the RHS into the same slot, but
1259   // we shouldn't claim that it's already being destructed.
1260   Dest.setExternallyDestructed(isExternallyDestructed);
1261 
1262   eval.begin(CGF);
1263   CGF.EmitBlock(RHSBlock);
1264   Visit(E->getFalseExpr());
1265   eval.end(CGF);
1266 
1267   if (destructNonTrivialCStruct)
1268     CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1269                     E->getType());
1270 
1271   CGF.EmitBlock(ContBlock);
1272 }
1273 
VisitChooseExpr(const ChooseExpr * CE)1274 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1275   Visit(CE->getChosenSubExpr());
1276 }
1277 
VisitVAArgExpr(VAArgExpr * VE)1278 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1279   Address ArgValue = Address::invalid();
1280   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1281 
1282   // If EmitVAArg fails, emit an error.
1283   if (!ArgPtr.isValid()) {
1284     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1285     return;
1286   }
1287 
1288   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1289 }
1290 
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)1291 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1292   // Ensure that we have a slot, but if we already do, remember
1293   // whether it was externally destructed.
1294   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1295   EnsureDest(E->getType());
1296 
1297   // We're going to push a destructor if there isn't already one.
1298   Dest.setExternallyDestructed();
1299 
1300   Visit(E->getSubExpr());
1301 
1302   // Push that destructor we promised.
1303   if (!wasExternallyDestructed)
1304     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1305 }
1306 
1307 void
VisitCXXConstructExpr(const CXXConstructExpr * E)1308 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1309   AggValueSlot Slot = EnsureSlot(E->getType());
1310   CGF.EmitCXXConstructExpr(E, Slot);
1311 }
1312 
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)1313 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1314     const CXXInheritedCtorInitExpr *E) {
1315   AggValueSlot Slot = EnsureSlot(E->getType());
1316   CGF.EmitInheritedCXXConstructorCall(
1317       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1318       E->inheritedFromVBase(), E);
1319 }
1320 
1321 void
VisitLambdaExpr(LambdaExpr * E)1322 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1323   AggValueSlot Slot = EnsureSlot(E->getType());
1324   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1325 
1326   // We'll need to enter cleanup scopes in case any of the element
1327   // initializers throws an exception.
1328   SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1329   llvm::Instruction *CleanupDominator = nullptr;
1330 
1331   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1332   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1333                                                e = E->capture_init_end();
1334        i != e; ++i, ++CurField) {
1335     // Emit initialization
1336     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1337     if (CurField->hasCapturedVLAType()) {
1338       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1339       continue;
1340     }
1341 
1342     EmitInitializationToLValue(*i, LV);
1343 
1344     // Push a destructor if necessary.
1345     if (QualType::DestructionKind DtorKind =
1346             CurField->getType().isDestructedType()) {
1347       assert(LV.isSimple());
1348       if (CGF.needsEHCleanup(DtorKind)) {
1349         if (!CleanupDominator)
1350           CleanupDominator = CGF.Builder.CreateAlignedLoad(
1351               CGF.Int8Ty,
1352               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1353               CharUnits::One()); // placeholder
1354 
1355         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1356                         CGF.getDestroyer(DtorKind), false);
1357         Cleanups.push_back(CGF.EHStack.stable_begin());
1358       }
1359     }
1360   }
1361 
1362   // Deactivate all the partial cleanups in reverse order, which
1363   // generally means popping them.
1364   for (unsigned i = Cleanups.size(); i != 0; --i)
1365     CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1366 
1367   // Destroy the placeholder if we made one.
1368   if (CleanupDominator)
1369     CleanupDominator->eraseFromParent();
1370 }
1371 
VisitExprWithCleanups(ExprWithCleanups * E)1372 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1373   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1374   Visit(E->getSubExpr());
1375 }
1376 
VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)1377 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1378   QualType T = E->getType();
1379   AggValueSlot Slot = EnsureSlot(T);
1380   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1381 }
1382 
VisitImplicitValueInitExpr(ImplicitValueInitExpr * E)1383 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1384   QualType T = E->getType();
1385   AggValueSlot Slot = EnsureSlot(T);
1386   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1387 }
1388 
1389 /// Determine whether the given cast kind is known to always convert values
1390 /// with all zero bits in their value representation to values with all zero
1391 /// bits in their value representation.
castPreservesZero(const CastExpr * CE)1392 static bool castPreservesZero(const CastExpr *CE) {
1393   switch (CE->getCastKind()) {
1394     // No-ops.
1395   case CK_NoOp:
1396   case CK_UserDefinedConversion:
1397   case CK_ConstructorConversion:
1398   case CK_BitCast:
1399   case CK_ToUnion:
1400   case CK_ToVoid:
1401     // Conversions between (possibly-complex) integral, (possibly-complex)
1402     // floating-point, and bool.
1403   case CK_BooleanToSignedIntegral:
1404   case CK_FloatingCast:
1405   case CK_FloatingComplexCast:
1406   case CK_FloatingComplexToBoolean:
1407   case CK_FloatingComplexToIntegralComplex:
1408   case CK_FloatingComplexToReal:
1409   case CK_FloatingRealToComplex:
1410   case CK_FloatingToBoolean:
1411   case CK_FloatingToIntegral:
1412   case CK_IntegralCast:
1413   case CK_IntegralComplexCast:
1414   case CK_IntegralComplexToBoolean:
1415   case CK_IntegralComplexToFloatingComplex:
1416   case CK_IntegralComplexToReal:
1417   case CK_IntegralRealToComplex:
1418   case CK_IntegralToBoolean:
1419   case CK_IntegralToFloating:
1420     // Reinterpreting integers as pointers and vice versa.
1421   case CK_IntegralToPointer:
1422   case CK_PointerToIntegral:
1423     // Language extensions.
1424   case CK_VectorSplat:
1425   case CK_NonAtomicToAtomic:
1426   case CK_AtomicToNonAtomic:
1427     return true;
1428 
1429   case CK_BaseToDerivedMemberPointer:
1430   case CK_DerivedToBaseMemberPointer:
1431   case CK_MemberPointerToBoolean:
1432   case CK_NullToMemberPointer:
1433   case CK_ReinterpretMemberPointer:
1434     // FIXME: ABI-dependent.
1435     return false;
1436 
1437   case CK_AnyPointerToBlockPointerCast:
1438   case CK_BlockPointerToObjCPointerCast:
1439   case CK_CPointerToObjCPointerCast:
1440   case CK_ObjCObjectLValueCast:
1441   case CK_IntToOCLSampler:
1442   case CK_ZeroToOCLOpaqueType:
1443     // FIXME: Check these.
1444     return false;
1445 
1446   case CK_FixedPointCast:
1447   case CK_FixedPointToBoolean:
1448   case CK_FixedPointToFloating:
1449   case CK_FixedPointToIntegral:
1450   case CK_FloatingToFixedPoint:
1451   case CK_IntegralToFixedPoint:
1452     // FIXME: Do all fixed-point types represent zero as all 0 bits?
1453     return false;
1454 
1455   case CK_AddressSpaceConversion:
1456   case CK_BaseToDerived:
1457   case CK_DerivedToBase:
1458   case CK_Dynamic:
1459   case CK_NullToPointer:
1460   case CK_PointerToBoolean:
1461     // FIXME: Preserves zeroes only if zero pointers and null pointers have the
1462     // same representation in all involved address spaces.
1463     return false;
1464 
1465   case CK_ARCConsumeObject:
1466   case CK_ARCExtendBlockObject:
1467   case CK_ARCProduceObject:
1468   case CK_ARCReclaimReturnedObject:
1469   case CK_CopyAndAutoreleaseBlockObject:
1470   case CK_ArrayToPointerDecay:
1471   case CK_FunctionToPointerDecay:
1472   case CK_BuiltinFnToFnPtr:
1473   case CK_Dependent:
1474   case CK_LValueBitCast:
1475   case CK_LValueToRValue:
1476   case CK_LValueToRValueBitCast:
1477   case CK_UncheckedDerivedToBase:
1478     return false;
1479   }
1480   llvm_unreachable("Unhandled clang::CastKind enum");
1481 }
1482 
1483 /// isSimpleZero - If emitting this value will obviously just cause a store of
1484 /// zero to memory, return true.  This can return false if uncertain, so it just
1485 /// handles simple cases.
isSimpleZero(const Expr * E,CodeGenFunction & CGF)1486 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1487   E = E->IgnoreParens();
1488   while (auto *CE = dyn_cast<CastExpr>(E)) {
1489     if (!castPreservesZero(CE))
1490       break;
1491     E = CE->getSubExpr()->IgnoreParens();
1492   }
1493 
1494   // 0
1495   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1496     return IL->getValue() == 0;
1497   // +0.0
1498   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1499     return FL->getValue().isPosZero();
1500   // int()
1501   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1502       CGF.getTypes().isZeroInitializable(E->getType()))
1503     return true;
1504   // (int*)0 - Null pointer expressions.
1505   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1506     return ICE->getCastKind() == CK_NullToPointer &&
1507            CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1508            !E->HasSideEffects(CGF.getContext());
1509   // '\0'
1510   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1511     return CL->getValue() == 0;
1512 
1513   // Otherwise, hard case: conservatively return false.
1514   return false;
1515 }
1516 
1517 
1518 void
EmitInitializationToLValue(Expr * E,LValue LV)1519 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1520   QualType type = LV.getType();
1521   // FIXME: Ignore result?
1522   // FIXME: Are initializers affected by volatile?
1523   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1524     // Storing "i32 0" to a zero'd memory location is a noop.
1525     return;
1526   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1527     return EmitNullInitializationToLValue(LV);
1528   } else if (isa<NoInitExpr>(E)) {
1529     // Do nothing.
1530     return;
1531   } else if (type->isReferenceType()) {
1532     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1533     return CGF.EmitStoreThroughLValue(RV, LV);
1534   }
1535 
1536   switch (CGF.getEvaluationKind(type)) {
1537   case TEK_Complex:
1538     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1539     return;
1540   case TEK_Aggregate:
1541     CGF.EmitAggExpr(
1542         E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1543                                    AggValueSlot::DoesNotNeedGCBarriers,
1544                                    AggValueSlot::IsNotAliased,
1545                                    AggValueSlot::MayOverlap, Dest.isZeroed()));
1546     return;
1547   case TEK_Scalar:
1548     if (LV.isSimple()) {
1549       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1550     } else {
1551       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1552     }
1553     return;
1554   }
1555   llvm_unreachable("bad evaluation kind");
1556 }
1557 
EmitNullInitializationToLValue(LValue lv)1558 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1559   QualType type = lv.getType();
1560 
1561   // If the destination slot is already zeroed out before the aggregate is
1562   // copied into it, we don't have to emit any zeros here.
1563   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1564     return;
1565 
1566   if (CGF.hasScalarEvaluationKind(type)) {
1567     // For non-aggregates, we can store the appropriate null constant.
1568     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1569     // Note that the following is not equivalent to
1570     // EmitStoreThroughBitfieldLValue for ARC types.
1571     if (lv.isBitField()) {
1572       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1573     } else {
1574       assert(lv.isSimple());
1575       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1576     }
1577   } else {
1578     // There's a potential optimization opportunity in combining
1579     // memsets; that would be easy for arrays, but relatively
1580     // difficult for structures with the current code.
1581     CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1582   }
1583 }
1584 
VisitInitListExpr(InitListExpr * E)1585 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1586 #if 0
1587   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1588   // (Length of globals? Chunks of zeroed-out space?).
1589   //
1590   // If we can, prefer a copy from a global; this is a lot less code for long
1591   // globals, and it's easier for the current optimizers to analyze.
1592   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1593     llvm::GlobalVariable* GV =
1594     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1595                              llvm::GlobalValue::InternalLinkage, C, "");
1596     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1597     return;
1598   }
1599 #endif
1600   if (E->hadArrayRangeDesignator())
1601     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1602 
1603   if (E->isTransparent())
1604     return Visit(E->getInit(0));
1605 
1606   AggValueSlot Dest = EnsureSlot(E->getType());
1607 
1608   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1609 
1610   // Handle initialization of an array.
1611   if (E->getType()->isArrayType()) {
1612     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1613     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1614     return;
1615   }
1616 
1617   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1618 
1619   // Do struct initialization; this code just sets each individual member
1620   // to the approprate value.  This makes bitfield support automatic;
1621   // the disadvantage is that the generated code is more difficult for
1622   // the optimizer, especially with bitfields.
1623   unsigned NumInitElements = E->getNumInits();
1624   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1625 
1626   // We'll need to enter cleanup scopes in case any of the element
1627   // initializers throws an exception.
1628   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1629   llvm::Instruction *cleanupDominator = nullptr;
1630   auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1631     cleanups.push_back(cleanup);
1632     if (!cleanupDominator) // create placeholder once needed
1633       cleanupDominator = CGF.Builder.CreateAlignedLoad(
1634           CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1635           CharUnits::One());
1636   };
1637 
1638   unsigned curInitIndex = 0;
1639 
1640   // Emit initialization of base classes.
1641   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1642     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1643            "missing initializer for base class");
1644     for (auto &Base : CXXRD->bases()) {
1645       assert(!Base.isVirtual() && "should not see vbases here");
1646       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1647       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1648           Dest.getAddress(), CXXRD, BaseRD,
1649           /*isBaseVirtual*/ false);
1650       AggValueSlot AggSlot = AggValueSlot::forAddr(
1651           V, Qualifiers(),
1652           AggValueSlot::IsDestructed,
1653           AggValueSlot::DoesNotNeedGCBarriers,
1654           AggValueSlot::IsNotAliased,
1655           CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1656       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1657 
1658       if (QualType::DestructionKind dtorKind =
1659               Base.getType().isDestructedType()) {
1660         CGF.pushDestroy(dtorKind, V, Base.getType());
1661         addCleanup(CGF.EHStack.stable_begin());
1662       }
1663     }
1664   }
1665 
1666   // Prepare a 'this' for CXXDefaultInitExprs.
1667   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1668 
1669   if (record->isUnion()) {
1670     // Only initialize one field of a union. The field itself is
1671     // specified by the initializer list.
1672     if (!E->getInitializedFieldInUnion()) {
1673       // Empty union; we have nothing to do.
1674 
1675 #ifndef NDEBUG
1676       // Make sure that it's really an empty and not a failure of
1677       // semantic analysis.
1678       for (const auto *Field : record->fields())
1679         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1680 #endif
1681       return;
1682     }
1683 
1684     // FIXME: volatility
1685     FieldDecl *Field = E->getInitializedFieldInUnion();
1686 
1687     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1688     if (NumInitElements) {
1689       // Store the initializer into the field
1690       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1691     } else {
1692       // Default-initialize to null.
1693       EmitNullInitializationToLValue(FieldLoc);
1694     }
1695 
1696     return;
1697   }
1698 
1699   // Here we iterate over the fields; this makes it simpler to both
1700   // default-initialize fields and skip over unnamed fields.
1701   for (const auto *field : record->fields()) {
1702     // We're done once we hit the flexible array member.
1703     if (field->getType()->isIncompleteArrayType())
1704       break;
1705 
1706     // Always skip anonymous bitfields.
1707     if (field->isUnnamedBitfield())
1708       continue;
1709 
1710     // We're done if we reach the end of the explicit initializers, we
1711     // have a zeroed object, and the rest of the fields are
1712     // zero-initializable.
1713     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1714         CGF.getTypes().isZeroInitializable(E->getType()))
1715       break;
1716 
1717 
1718     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1719     // We never generate write-barries for initialized fields.
1720     LV.setNonGC(true);
1721 
1722     if (curInitIndex < NumInitElements) {
1723       // Store the initializer into the field.
1724       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1725     } else {
1726       // We're out of initializers; default-initialize to null
1727       EmitNullInitializationToLValue(LV);
1728     }
1729 
1730     // Push a destructor if necessary.
1731     // FIXME: if we have an array of structures, all explicitly
1732     // initialized, we can end up pushing a linear number of cleanups.
1733     bool pushedCleanup = false;
1734     if (QualType::DestructionKind dtorKind
1735           = field->getType().isDestructedType()) {
1736       assert(LV.isSimple());
1737       if (CGF.needsEHCleanup(dtorKind)) {
1738         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1739                         CGF.getDestroyer(dtorKind), false);
1740         addCleanup(CGF.EHStack.stable_begin());
1741         pushedCleanup = true;
1742       }
1743     }
1744 
1745     // If the GEP didn't get used because of a dead zero init or something
1746     // else, clean it up for -O0 builds and general tidiness.
1747     if (!pushedCleanup && LV.isSimple())
1748       if (llvm::GetElementPtrInst *GEP =
1749               dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1750         if (GEP->use_empty())
1751           GEP->eraseFromParent();
1752   }
1753 
1754   // Deactivate all the partial cleanups in reverse order, which
1755   // generally means popping them.
1756   assert((cleanupDominator || cleanups.empty()) &&
1757          "Missing cleanupDominator before deactivating cleanup blocks");
1758   for (unsigned i = cleanups.size(); i != 0; --i)
1759     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1760 
1761   // Destroy the placeholder if we made one.
1762   if (cleanupDominator)
1763     cleanupDominator->eraseFromParent();
1764 }
1765 
VisitArrayInitLoopExpr(const ArrayInitLoopExpr * E,llvm::Value * outerBegin)1766 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1767                                             llvm::Value *outerBegin) {
1768   // Emit the common subexpression.
1769   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1770 
1771   Address destPtr = EnsureSlot(E->getType()).getAddress();
1772   uint64_t numElements = E->getArraySize().getZExtValue();
1773 
1774   if (!numElements)
1775     return;
1776 
1777   // destPtr is an array*. Construct an elementType* by drilling down a level.
1778   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1779   llvm::Value *indices[] = {zero, zero};
1780   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1781                                                  "arrayinit.begin");
1782 
1783   // Prepare to special-case multidimensional array initialization: we avoid
1784   // emitting multiple destructor loops in that case.
1785   if (!outerBegin)
1786     outerBegin = begin;
1787   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1788 
1789   QualType elementType =
1790       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1791   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1792   CharUnits elementAlign =
1793       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1794 
1795   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1796   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1797 
1798   // Jump into the body.
1799   CGF.EmitBlock(bodyBB);
1800   llvm::PHINode *index =
1801       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1802   index->addIncoming(zero, entryBB);
1803   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1804 
1805   // Prepare for a cleanup.
1806   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1807   EHScopeStack::stable_iterator cleanup;
1808   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1809     if (outerBegin->getType() != element->getType())
1810       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1811     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1812                                        elementAlign,
1813                                        CGF.getDestroyer(dtorKind));
1814     cleanup = CGF.EHStack.stable_begin();
1815   } else {
1816     dtorKind = QualType::DK_none;
1817   }
1818 
1819   // Emit the actual filler expression.
1820   {
1821     // Temporaries created in an array initialization loop are destroyed
1822     // at the end of each iteration.
1823     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1824     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1825     LValue elementLV =
1826         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1827 
1828     if (InnerLoop) {
1829       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1830       auto elementSlot = AggValueSlot::forLValue(
1831           elementLV, CGF, AggValueSlot::IsDestructed,
1832           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1833           AggValueSlot::DoesNotOverlap);
1834       AggExprEmitter(CGF, elementSlot, false)
1835           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1836     } else
1837       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1838   }
1839 
1840   // Move on to the next element.
1841   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1842       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1843   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1844 
1845   // Leave the loop if we're done.
1846   llvm::Value *done = Builder.CreateICmpEQ(
1847       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1848       "arrayinit.done");
1849   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1850   Builder.CreateCondBr(done, endBB, bodyBB);
1851 
1852   CGF.EmitBlock(endBB);
1853 
1854   // Leave the partial-array cleanup if we entered one.
1855   if (dtorKind)
1856     CGF.DeactivateCleanupBlock(cleanup, index);
1857 }
1858 
VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr * E)1859 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1860   AggValueSlot Dest = EnsureSlot(E->getType());
1861 
1862   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1863   EmitInitializationToLValue(E->getBase(), DestLV);
1864   VisitInitListExpr(E->getUpdater());
1865 }
1866 
1867 //===----------------------------------------------------------------------===//
1868 //                        Entry Points into this File
1869 //===----------------------------------------------------------------------===//
1870 
1871 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1872 /// non-zero bytes that will be stored when outputting the initializer for the
1873 /// specified initializer expression.
GetNumNonZeroBytesInInit(const Expr * E,CodeGenFunction & CGF)1874 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1875   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
1876     E = MTE->getSubExpr();
1877   E = E->IgnoreParenNoopCasts(CGF.getContext());
1878 
1879   // 0 and 0.0 won't require any non-zero stores!
1880   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1881 
1882   // If this is an initlist expr, sum up the size of sizes of the (present)
1883   // elements.  If this is something weird, assume the whole thing is non-zero.
1884   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1885   while (ILE && ILE->isTransparent())
1886     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1887   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1888     return CGF.getContext().getTypeSizeInChars(E->getType());
1889 
1890   // InitListExprs for structs have to be handled carefully.  If there are
1891   // reference members, we need to consider the size of the reference, not the
1892   // referencee.  InitListExprs for unions and arrays can't have references.
1893   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1894     if (!RT->isUnionType()) {
1895       RecordDecl *SD = RT->getDecl();
1896       CharUnits NumNonZeroBytes = CharUnits::Zero();
1897 
1898       unsigned ILEElement = 0;
1899       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1900         while (ILEElement != CXXRD->getNumBases())
1901           NumNonZeroBytes +=
1902               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1903       for (const auto *Field : SD->fields()) {
1904         // We're done once we hit the flexible array member or run out of
1905         // InitListExpr elements.
1906         if (Field->getType()->isIncompleteArrayType() ||
1907             ILEElement == ILE->getNumInits())
1908           break;
1909         if (Field->isUnnamedBitfield())
1910           continue;
1911 
1912         const Expr *E = ILE->getInit(ILEElement++);
1913 
1914         // Reference values are always non-null and have the width of a pointer.
1915         if (Field->getType()->isReferenceType())
1916           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1917               CGF.getTarget().getPointerWidth(0));
1918         else
1919           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1920       }
1921 
1922       return NumNonZeroBytes;
1923     }
1924   }
1925 
1926   // FIXME: This overestimates the number of non-zero bytes for bit-fields.
1927   CharUnits NumNonZeroBytes = CharUnits::Zero();
1928   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1929     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1930   return NumNonZeroBytes;
1931 }
1932 
1933 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1934 /// zeros in it, emit a memset and avoid storing the individual zeros.
1935 ///
CheckAggExprForMemSetUse(AggValueSlot & Slot,const Expr * E,CodeGenFunction & CGF)1936 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1937                                      CodeGenFunction &CGF) {
1938   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1939   // volatile stores.
1940   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1941     return;
1942 
1943   // C++ objects with a user-declared constructor don't need zero'ing.
1944   if (CGF.getLangOpts().CPlusPlus)
1945     if (const RecordType *RT = CGF.getContext()
1946                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1947       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1948       if (RD->hasUserDeclaredConstructor())
1949         return;
1950     }
1951 
1952   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1953   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1954   if (Size <= CharUnits::fromQuantity(16))
1955     return;
1956 
1957   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1958   // we prefer to emit memset + individual stores for the rest.
1959   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1960   if (NumNonZeroBytes*4 > Size)
1961     return;
1962 
1963   // Okay, it seems like a good idea to use an initial memset, emit the call.
1964   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1965 
1966   Address Loc = Slot.getAddress();
1967   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1968   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1969 
1970   // Tell the AggExprEmitter that the slot is known zero.
1971   Slot.setZeroed();
1972 }
1973 
1974 
1975 
1976 
1977 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1978 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1979 /// the value of the aggregate expression is not needed.  If VolatileDest is
1980 /// true, DestPtr cannot be 0.
EmitAggExpr(const Expr * E,AggValueSlot Slot)1981 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1982   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1983          "Invalid aggregate expression to emit");
1984   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1985          "slot has bits but no address");
1986 
1987   // Optimize the slot if possible.
1988   CheckAggExprForMemSetUse(Slot, E, *this);
1989 
1990   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1991 }
1992 
EmitAggExprToLValue(const Expr * E)1993 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1994   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1995   Address Temp = CreateMemTemp(E->getType());
1996   LValue LV = MakeAddrLValue(Temp, E->getType());
1997   EmitAggExpr(E, AggValueSlot::forLValue(
1998                      LV, *this, AggValueSlot::IsNotDestructed,
1999                      AggValueSlot::DoesNotNeedGCBarriers,
2000                      AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
2001   return LV;
2002 }
2003 
2004 AggValueSlot::Overlap_t
getOverlapForFieldInit(const FieldDecl * FD)2005 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
2006   if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
2007     return AggValueSlot::DoesNotOverlap;
2008 
2009   // If the field lies entirely within the enclosing class's nvsize, its tail
2010   // padding cannot overlap any already-initialized object. (The only subobjects
2011   // with greater addresses that might already be initialized are vbases.)
2012   const RecordDecl *ClassRD = FD->getParent();
2013   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
2014   if (Layout.getFieldOffset(FD->getFieldIndex()) +
2015           getContext().getTypeSize(FD->getType()) <=
2016       (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
2017     return AggValueSlot::DoesNotOverlap;
2018 
2019   // The tail padding may contain values we need to preserve.
2020   return AggValueSlot::MayOverlap;
2021 }
2022 
getOverlapForBaseInit(const CXXRecordDecl * RD,const CXXRecordDecl * BaseRD,bool IsVirtual)2023 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
2024     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
2025   // If the most-derived object is a field declared with [[no_unique_address]],
2026   // the tail padding of any virtual base could be reused for other subobjects
2027   // of that field's class.
2028   if (IsVirtual)
2029     return AggValueSlot::MayOverlap;
2030 
2031   // If the base class is laid out entirely within the nvsize of the derived
2032   // class, its tail padding cannot yet be initialized, so we can issue
2033   // stores at the full width of the base class.
2034   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2035   if (Layout.getBaseClassOffset(BaseRD) +
2036           getContext().getASTRecordLayout(BaseRD).getSize() <=
2037       Layout.getNonVirtualSize())
2038     return AggValueSlot::DoesNotOverlap;
2039 
2040   // The tail padding may contain values we need to preserve.
2041   return AggValueSlot::MayOverlap;
2042 }
2043 
EmitAggregateCopy(LValue Dest,LValue Src,QualType Ty,AggValueSlot::Overlap_t MayOverlap,bool isVolatile)2044 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
2045                                         AggValueSlot::Overlap_t MayOverlap,
2046                                         bool isVolatile) {
2047   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
2048 
2049   Address DestPtr = Dest.getAddress(*this);
2050   Address SrcPtr = Src.getAddress(*this);
2051 
2052   if (getLangOpts().CPlusPlus) {
2053     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2054       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
2055       assert((Record->hasTrivialCopyConstructor() ||
2056               Record->hasTrivialCopyAssignment() ||
2057               Record->hasTrivialMoveConstructor() ||
2058               Record->hasTrivialMoveAssignment() ||
2059               Record->isUnion()) &&
2060              "Trying to aggregate-copy a type without a trivial copy/move "
2061              "constructor or assignment operator");
2062       // Ignore empty classes in C++.
2063       if (Record->isEmpty())
2064         return;
2065     }
2066   }
2067 
2068   if (getLangOpts().CUDAIsDevice) {
2069     if (Ty->isCUDADeviceBuiltinSurfaceType()) {
2070       if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
2071                                                                   Src))
2072         return;
2073     } else if (Ty->isCUDADeviceBuiltinTextureType()) {
2074       if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
2075                                                                   Src))
2076         return;
2077     }
2078   }
2079 
2080   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
2081   // C99 6.5.16.1p3, which states "If the value being stored in an object is
2082   // read from another object that overlaps in anyway the storage of the first
2083   // object, then the overlap shall be exact and the two objects shall have
2084   // qualified or unqualified versions of a compatible type."
2085   //
2086   // memcpy is not defined if the source and destination pointers are exactly
2087   // equal, but other compilers do this optimization, and almost every memcpy
2088   // implementation handles this case safely.  If there is a libc that does not
2089   // safely handle this, we can add a target hook.
2090 
2091   // Get data size info for this aggregate. Don't copy the tail padding if this
2092   // might be a potentially-overlapping subobject, since the tail padding might
2093   // be occupied by a different object. Otherwise, copying it is fine.
2094   TypeInfoChars TypeInfo;
2095   if (MayOverlap)
2096     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
2097   else
2098     TypeInfo = getContext().getTypeInfoInChars(Ty);
2099 
2100   llvm::Value *SizeVal = nullptr;
2101   if (TypeInfo.Width.isZero()) {
2102     // But note that getTypeInfo returns 0 for a VLA.
2103     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
2104             getContext().getAsArrayType(Ty))) {
2105       QualType BaseEltTy;
2106       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
2107       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
2108       assert(!TypeInfo.Width.isZero());
2109       SizeVal = Builder.CreateNUWMul(
2110           SizeVal,
2111           llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()));
2112     }
2113   }
2114   if (!SizeVal) {
2115     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity());
2116   }
2117 
2118   // FIXME: If we have a volatile struct, the optimizer can remove what might
2119   // appear to be `extra' memory ops:
2120   //
2121   // volatile struct { int i; } a, b;
2122   //
2123   // int main() {
2124   //   a = b;
2125   //   a = b;
2126   // }
2127   //
2128   // we need to use a different call here.  We use isVolatile to indicate when
2129   // either the source or the destination is volatile.
2130 
2131   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
2132   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
2133 
2134   // Don't do any of the memmove_collectable tests if GC isn't set.
2135   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2136     // fall through
2137   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2138     RecordDecl *Record = RecordTy->getDecl();
2139     if (Record->hasObjectMember()) {
2140       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2141                                                     SizeVal);
2142       return;
2143     }
2144   } else if (Ty->isArrayType()) {
2145     QualType BaseType = getContext().getBaseElementType(Ty);
2146     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2147       if (RecordTy->getDecl()->hasObjectMember()) {
2148         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2149                                                       SizeVal);
2150         return;
2151       }
2152     }
2153   }
2154 
2155   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2156 
2157   // Determine the metadata to describe the position of any padding in this
2158   // memcpy, as well as the TBAA tags for the members of the struct, in case
2159   // the optimizer wishes to expand it in to scalar memory operations.
2160   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2161     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2162 
2163   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2164     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2165         Dest.getTBAAInfo(), Src.getTBAAInfo());
2166     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2167   }
2168 }
2169