1 // Copyright 2018 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //    http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "VkImage.hpp"
16 
17 #include "VkBuffer.hpp"
18 #include "VkDevice.hpp"
19 #include "VkDeviceMemory.hpp"
20 #include "VkImageView.hpp"
21 #include "VkStringify.hpp"
22 #include "Device/ASTC_Decoder.hpp"
23 #include "Device/BC_Decoder.hpp"
24 #include "Device/Blitter.hpp"
25 #include "Device/ETC_Decoder.hpp"
26 
27 #ifdef __ANDROID__
28 #	include "System/GrallocAndroid.hpp"
29 #	include "VkDeviceMemoryExternalAndroid.hpp"
30 #endif
31 
32 #include <cstring>
33 
34 namespace {
35 
GetInputType(const vk::Format & format)36 ETC_Decoder::InputType GetInputType(const vk::Format &format)
37 {
38 	switch(format)
39 	{
40 		case VK_FORMAT_EAC_R11_UNORM_BLOCK:
41 			return ETC_Decoder::ETC_R_UNSIGNED;
42 		case VK_FORMAT_EAC_R11_SNORM_BLOCK:
43 			return ETC_Decoder::ETC_R_SIGNED;
44 		case VK_FORMAT_EAC_R11G11_UNORM_BLOCK:
45 			return ETC_Decoder::ETC_RG_UNSIGNED;
46 		case VK_FORMAT_EAC_R11G11_SNORM_BLOCK:
47 			return ETC_Decoder::ETC_RG_SIGNED;
48 		case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
49 		case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
50 			return ETC_Decoder::ETC_RGB;
51 		case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
52 		case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
53 			return ETC_Decoder::ETC_RGB_PUNCHTHROUGH_ALPHA;
54 		case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
55 		case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
56 			return ETC_Decoder::ETC_RGBA;
57 		default:
58 			UNSUPPORTED("format: %d", int(format));
59 			return ETC_Decoder::ETC_RGBA;
60 	}
61 }
62 
GetBCn(const vk::Format & format)63 int GetBCn(const vk::Format &format)
64 {
65 	switch(format)
66 	{
67 		case VK_FORMAT_BC1_RGB_UNORM_BLOCK:
68 		case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
69 		case VK_FORMAT_BC1_RGB_SRGB_BLOCK:
70 		case VK_FORMAT_BC1_RGBA_SRGB_BLOCK:
71 			return 1;
72 		case VK_FORMAT_BC2_UNORM_BLOCK:
73 		case VK_FORMAT_BC2_SRGB_BLOCK:
74 			return 2;
75 		case VK_FORMAT_BC3_UNORM_BLOCK:
76 		case VK_FORMAT_BC3_SRGB_BLOCK:
77 			return 3;
78 		case VK_FORMAT_BC4_UNORM_BLOCK:
79 		case VK_FORMAT_BC4_SNORM_BLOCK:
80 			return 4;
81 		case VK_FORMAT_BC5_UNORM_BLOCK:
82 		case VK_FORMAT_BC5_SNORM_BLOCK:
83 			return 5;
84 		case VK_FORMAT_BC6H_UFLOAT_BLOCK:
85 		case VK_FORMAT_BC6H_SFLOAT_BLOCK:
86 			return 6;
87 		case VK_FORMAT_BC7_UNORM_BLOCK:
88 		case VK_FORMAT_BC7_SRGB_BLOCK:
89 			return 7;
90 		default:
91 			UNSUPPORTED("format: %d", int(format));
92 			return 0;
93 	}
94 }
95 
96 // Returns true for BC1 if we have an RGB format, false for RGBA
97 // Returns true for BC4, BC5, BC6H if we have an unsigned format, false for signed
98 // Ignored by BC2, BC3, and BC7
GetNoAlphaOrUnsigned(const vk::Format & format)99 bool GetNoAlphaOrUnsigned(const vk::Format &format)
100 {
101 	switch(format)
102 	{
103 		case VK_FORMAT_BC1_RGB_UNORM_BLOCK:
104 		case VK_FORMAT_BC1_RGB_SRGB_BLOCK:
105 		case VK_FORMAT_BC4_UNORM_BLOCK:
106 		case VK_FORMAT_BC5_UNORM_BLOCK:
107 		case VK_FORMAT_BC6H_UFLOAT_BLOCK:
108 			return true;
109 		case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
110 		case VK_FORMAT_BC1_RGBA_SRGB_BLOCK:
111 		case VK_FORMAT_BC2_UNORM_BLOCK:
112 		case VK_FORMAT_BC2_SRGB_BLOCK:
113 		case VK_FORMAT_BC3_UNORM_BLOCK:
114 		case VK_FORMAT_BC3_SRGB_BLOCK:
115 		case VK_FORMAT_BC4_SNORM_BLOCK:
116 		case VK_FORMAT_BC5_SNORM_BLOCK:
117 		case VK_FORMAT_BC6H_SFLOAT_BLOCK:
118 		case VK_FORMAT_BC7_SRGB_BLOCK:
119 		case VK_FORMAT_BC7_UNORM_BLOCK:
120 			return false;
121 		default:
122 			UNSUPPORTED("format: %d", int(format));
123 			return false;
124 	}
125 }
126 
GetImageFormat(const VkImageCreateInfo * pCreateInfo)127 VkFormat GetImageFormat(const VkImageCreateInfo *pCreateInfo)
128 {
129 	auto nextInfo = reinterpret_cast<VkBaseInStructure const *>(pCreateInfo->pNext);
130 	while(nextInfo)
131 	{
132 		switch(nextInfo->sType)
133 		{
134 #ifdef __ANDROID__
135 			case VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID:
136 			{
137 				const VkExternalFormatANDROID *externalFormatAndroid = reinterpret_cast<const VkExternalFormatANDROID *>(nextInfo);
138 
139 				// VkExternalFormatANDROID: "If externalFormat is zero, the effect is as if the VkExternalFormatANDROID structure was not present."
140 				if(externalFormatAndroid->externalFormat == 0)
141 				{
142 					break;
143 				}
144 
145 				const VkFormat correspondingVkFormat = AHardwareBufferExternalMemory::GetVkFormatFromAHBFormat(externalFormatAndroid->externalFormat);
146 				ASSERT(pCreateInfo->format == VK_FORMAT_UNDEFINED || pCreateInfo->format == correspondingVkFormat);
147 				return correspondingVkFormat;
148 			}
149 			break;
150 #endif
151 			default:
152 				LOG_TRAP("pCreateInfo->pNext->sType = %s", vk::Stringify(nextInfo->sType).c_str());
153 				break;
154 		}
155 
156 		nextInfo = nextInfo->pNext;
157 	}
158 
159 	return pCreateInfo->format;
160 }
161 
162 }  // anonymous namespace
163 
164 namespace vk {
165 
Image(const VkImageCreateInfo * pCreateInfo,void * mem,Device * device)166 Image::Image(const VkImageCreateInfo *pCreateInfo, void *mem, Device *device)
167     : device(device)
168     , flags(pCreateInfo->flags)
169     , imageType(pCreateInfo->imageType)
170     , format(GetImageFormat(pCreateInfo))
171     , extent(pCreateInfo->extent)
172     , mipLevels(pCreateInfo->mipLevels)
173     , arrayLayers(pCreateInfo->arrayLayers)
174     , samples(pCreateInfo->samples)
175     , tiling(pCreateInfo->tiling)
176     , usage(pCreateInfo->usage)
177 {
178 	if(format.isCompressed())
179 	{
180 		VkImageCreateInfo compressedImageCreateInfo = *pCreateInfo;
181 		compressedImageCreateInfo.format = format.getDecompressedFormat();
182 		decompressedImage = new(mem) Image(&compressedImageCreateInfo, nullptr, device);
183 	}
184 
185 	const auto *nextInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
186 	for(; nextInfo != nullptr; nextInfo = nextInfo->pNext)
187 	{
188 		if(nextInfo->sType == VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO)
189 		{
190 			const auto *externalInfo = reinterpret_cast<const VkExternalMemoryImageCreateInfo *>(nextInfo);
191 			supportedExternalMemoryHandleTypes = externalInfo->handleTypes;
192 		}
193 	}
194 }
195 
destroy(const VkAllocationCallbacks * pAllocator)196 void Image::destroy(const VkAllocationCallbacks *pAllocator)
197 {
198 	if(decompressedImage)
199 	{
200 		vk::deallocate(decompressedImage, pAllocator);
201 	}
202 }
203 
ComputeRequiredAllocationSize(const VkImageCreateInfo * pCreateInfo)204 size_t Image::ComputeRequiredAllocationSize(const VkImageCreateInfo *pCreateInfo)
205 {
206 	return Format(pCreateInfo->format).isCompressed() ? sizeof(Image) : 0;
207 }
208 
getMemoryRequirements() const209 const VkMemoryRequirements Image::getMemoryRequirements() const
210 {
211 	VkMemoryRequirements memoryRequirements;
212 	memoryRequirements.alignment = vk::REQUIRED_MEMORY_ALIGNMENT;
213 	memoryRequirements.memoryTypeBits = vk::MEMORY_TYPE_GENERIC_BIT;
214 	memoryRequirements.size = getStorageSize(format.getAspects()) +
215 	                          (decompressedImage ? decompressedImage->getStorageSize(decompressedImage->format.getAspects()) : 0);
216 	return memoryRequirements;
217 }
218 
getSizeInBytes(const VkImageSubresourceRange & subresourceRange) const219 size_t Image::getSizeInBytes(const VkImageSubresourceRange &subresourceRange) const
220 {
221 	size_t size = 0;
222 	uint32_t lastLayer = getLastLayerIndex(subresourceRange);
223 	uint32_t lastMipLevel = getLastMipLevel(subresourceRange);
224 	uint32_t layerCount = lastLayer - subresourceRange.baseArrayLayer + 1;
225 	uint32_t mipLevelCount = lastMipLevel - subresourceRange.baseMipLevel + 1;
226 
227 	auto aspect = static_cast<VkImageAspectFlagBits>(subresourceRange.aspectMask);
228 
229 	if(layerCount > 1)
230 	{
231 		if(mipLevelCount < mipLevels)  // Compute size for all layers except the last one, then add relevant mip level sizes only for last layer
232 		{
233 			size = (layerCount - 1) * getLayerSize(aspect);
234 			for(uint32_t mipLevel = subresourceRange.baseMipLevel; mipLevel <= lastMipLevel; ++mipLevel)
235 			{
236 				size += getMultiSampledLevelSize(aspect, mipLevel);
237 			}
238 		}
239 		else  // All mip levels used, compute full layer sizes
240 		{
241 			size = layerCount * getLayerSize(aspect);
242 		}
243 	}
244 	else  // Single layer, add all mip levels in the subresource range
245 	{
246 		for(uint32_t mipLevel = subresourceRange.baseMipLevel; mipLevel <= lastMipLevel; ++mipLevel)
247 		{
248 			size += getMultiSampledLevelSize(aspect, mipLevel);
249 		}
250 	}
251 
252 	return size;
253 }
254 
canBindToMemory(DeviceMemory * pDeviceMemory) const255 bool Image::canBindToMemory(DeviceMemory *pDeviceMemory) const
256 {
257 	return pDeviceMemory->checkExternalMemoryHandleType(supportedExternalMemoryHandleTypes);
258 }
259 
bind(DeviceMemory * pDeviceMemory,VkDeviceSize pMemoryOffset)260 void Image::bind(DeviceMemory *pDeviceMemory, VkDeviceSize pMemoryOffset)
261 {
262 	deviceMemory = pDeviceMemory;
263 	memoryOffset = pMemoryOffset;
264 	if(decompressedImage)
265 	{
266 		decompressedImage->deviceMemory = deviceMemory;
267 		decompressedImage->memoryOffset = memoryOffset + getStorageSize(format.getAspects());
268 	}
269 }
270 
271 #ifdef __ANDROID__
prepareForExternalUseANDROID() const272 VkResult Image::prepareForExternalUseANDROID() const
273 {
274 	void *nativeBuffer = nullptr;
275 	VkExtent3D extent = getMipLevelExtent(VK_IMAGE_ASPECT_COLOR_BIT, 0);
276 
277 	buffer_handle_t importedBufferHandle = nullptr;
278 	if(GrallocModule::getInstance()->import(backingMemory.nativeHandle, &importedBufferHandle) != 0)
279 	{
280 		return VK_ERROR_OUT_OF_DATE_KHR;
281 	}
282 	if(!importedBufferHandle)
283 	{
284 		return VK_ERROR_OUT_OF_DATE_KHR;
285 	}
286 
287 	if(GrallocModule::getInstance()->lock(importedBufferHandle, GRALLOC_USAGE_SW_WRITE_OFTEN, 0, 0, extent.width, extent.height, &nativeBuffer) != 0)
288 	{
289 		return VK_ERROR_OUT_OF_DATE_KHR;
290 	}
291 
292 	if(!nativeBuffer)
293 	{
294 		return VK_ERROR_OUT_OF_DATE_KHR;
295 	}
296 
297 	int imageRowBytes = rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
298 	int bufferRowBytes = backingMemory.stride * getFormat().bytes();
299 	ASSERT(imageRowBytes <= bufferRowBytes);
300 
301 	uint8_t *srcBuffer = static_cast<uint8_t *>(deviceMemory->getOffsetPointer(0));
302 	uint8_t *dstBuffer = static_cast<uint8_t *>(nativeBuffer);
303 	for(uint32_t i = 0; i < extent.height; i++)
304 	{
305 		memcpy(dstBuffer + (i * bufferRowBytes), srcBuffer + (i * imageRowBytes), imageRowBytes);
306 	}
307 
308 	if(GrallocModule::getInstance()->unlock(importedBufferHandle) != 0)
309 	{
310 		return VK_ERROR_OUT_OF_DATE_KHR;
311 	}
312 
313 	if(GrallocModule::getInstance()->release(importedBufferHandle) != 0)
314 	{
315 		return VK_ERROR_OUT_OF_DATE_KHR;
316 	}
317 
318 	return VK_SUCCESS;
319 }
320 
getExternalMemory() const321 VkDeviceMemory Image::getExternalMemory() const
322 {
323 	return backingMemory.externalMemory ? *deviceMemory : VkDeviceMemory{ VK_NULL_HANDLE };
324 }
325 #endif
326 
getSubresourceLayout(const VkImageSubresource * pSubresource,VkSubresourceLayout * pLayout) const327 void Image::getSubresourceLayout(const VkImageSubresource *pSubresource, VkSubresourceLayout *pLayout) const
328 {
329 	// By spec, aspectMask has a single bit set.
330 	if(!((pSubresource->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
331 	     (pSubresource->aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) ||
332 	     (pSubresource->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) ||
333 	     (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) ||
334 	     (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) ||
335 	     (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT)))
336 	{
337 		UNSUPPORTED("aspectMask %X", pSubresource->aspectMask);
338 	}
339 
340 	auto aspect = static_cast<VkImageAspectFlagBits>(pSubresource->aspectMask);
341 	pLayout->offset = getMemoryOffset(aspect, pSubresource->mipLevel, pSubresource->arrayLayer);
342 	pLayout->size = getMultiSampledLevelSize(aspect, pSubresource->mipLevel);
343 	pLayout->rowPitch = rowPitchBytes(aspect, pSubresource->mipLevel);
344 	pLayout->depthPitch = slicePitchBytes(aspect, pSubresource->mipLevel);
345 	pLayout->arrayPitch = getLayerSize(aspect);
346 }
347 
copyTo(Image * dstImage,const VkImageCopy & region) const348 void Image::copyTo(Image *dstImage, const VkImageCopy &region) const
349 {
350 	// Image copy does not perform any conversion, it simply copies memory from
351 	// an image to another image that has the same number of bytes per pixel.
352 
353 	if(!((region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
354 	     (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) ||
355 	     (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) ||
356 	     (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) ||
357 	     (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) ||
358 	     (region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT)))
359 	{
360 		UNSUPPORTED("srcSubresource.aspectMask %X", region.srcSubresource.aspectMask);
361 	}
362 
363 	if(!((region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
364 	     (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) ||
365 	     (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) ||
366 	     (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) ||
367 	     (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) ||
368 	     (region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT)))
369 	{
370 		UNSUPPORTED("dstSubresource.aspectMask %X", region.dstSubresource.aspectMask);
371 	}
372 
373 	VkImageAspectFlagBits srcAspect = static_cast<VkImageAspectFlagBits>(region.srcSubresource.aspectMask);
374 	VkImageAspectFlagBits dstAspect = static_cast<VkImageAspectFlagBits>(region.dstSubresource.aspectMask);
375 
376 	Format srcFormat = getFormat(srcAspect);
377 	Format dstFormat = dstImage->getFormat(dstAspect);
378 	int bytesPerBlock = srcFormat.bytesPerBlock();
379 	ASSERT(bytesPerBlock == dstFormat.bytesPerBlock());
380 	ASSERT(samples == dstImage->samples);
381 
382 	VkExtent3D srcExtent = getMipLevelExtent(srcAspect, region.srcSubresource.mipLevel);
383 	VkExtent3D dstExtent = dstImage->getMipLevelExtent(dstAspect, region.dstSubresource.mipLevel);
384 	VkExtent3D copyExtent = imageExtentInBlocks(region.extent, srcAspect);
385 
386 	VkImageType srcImageType = imageType;
387 	VkImageType dstImageType = dstImage->getImageType();
388 	bool one3D = (srcImageType == VK_IMAGE_TYPE_3D) != (dstImageType == VK_IMAGE_TYPE_3D);
389 	bool both3D = (srcImageType == VK_IMAGE_TYPE_3D) && (dstImageType == VK_IMAGE_TYPE_3D);
390 
391 	// Texel layout pitches, using the VkSubresourceLayout nomenclature.
392 	int srcRowPitch = rowPitchBytes(srcAspect, region.srcSubresource.mipLevel);
393 	int srcDepthPitch = slicePitchBytes(srcAspect, region.srcSubresource.mipLevel);
394 	int dstRowPitch = dstImage->rowPitchBytes(dstAspect, region.dstSubresource.mipLevel);
395 	int dstDepthPitch = dstImage->slicePitchBytes(dstAspect, region.dstSubresource.mipLevel);
396 	VkDeviceSize srcArrayPitch = getLayerSize(srcAspect);
397 	VkDeviceSize dstArrayPitch = dstImage->getLayerSize(dstAspect);
398 
399 	// These are the pitches used when iterating over the layers that are being copied by the
400 	// vkCmdCopyImage command. They can differ from the above array piches because the spec states that:
401 	// "If one image is VK_IMAGE_TYPE_3D and the other image is VK_IMAGE_TYPE_2D with multiple
402 	//  layers, then each slice is copied to or from a different layer."
403 	VkDeviceSize srcLayerPitch = (srcImageType == VK_IMAGE_TYPE_3D) ? srcDepthPitch : srcArrayPitch;
404 	VkDeviceSize dstLayerPitch = (dstImageType == VK_IMAGE_TYPE_3D) ? dstDepthPitch : dstArrayPitch;
405 
406 	// If one image is 3D, extent.depth must match the layer count. If both images are 2D,
407 	// depth is 1 but the source and destination subresource layer count must match.
408 	uint32_t layerCount = one3D ? copyExtent.depth : region.srcSubresource.layerCount;
409 
410 	// Copies between 2D and 3D images are treated as layers, so only use depth as the slice count when
411 	// both images are 3D.
412 	// Multisample images are currently implemented similar to 3D images by storing one sample per slice.
413 	// TODO(b/160600347): Store samples consecutively.
414 	uint32_t sliceCount = both3D ? copyExtent.depth : samples;
415 
416 	bool isSingleSlice = (sliceCount == 1);
417 	bool isSingleRow = (copyExtent.height == 1) && isSingleSlice;
418 	// In order to copy multiple rows using a single memcpy call, we
419 	// have to make sure that we need to copy the entire row and that
420 	// both source and destination rows have the same size in bytes
421 	bool isEntireRow = (region.extent.width == srcExtent.width) &&
422 	                   (region.extent.width == dstExtent.width) &&
423 	                   // For non-compressed formats, blockWidth is 1. For compressed
424 	                   // formats, rowPitchBytes returns the number of bytes for a row of
425 	                   // blocks, so we have to divide by the block height, which means:
426 	                   // srcRowPitchBytes / srcBlockWidth == dstRowPitchBytes / dstBlockWidth
427 	                   // And, to avoid potential non exact integer division, for example if a
428 	                   // block has 16 bytes and represents 5 rows, we change the equation to:
429 	                   // srcRowPitchBytes * dstBlockWidth == dstRowPitchBytes * srcBlockWidth
430 	                   ((srcRowPitch * dstFormat.blockWidth()) ==
431 	                    (dstRowPitch * srcFormat.blockWidth()));
432 	// In order to copy multiple slices using a single memcpy call, we
433 	// have to make sure that we need to copy the entire slice and that
434 	// both source and destination slices have the same size in bytes
435 	bool isEntireSlice = isEntireRow &&
436 	                     (copyExtent.height == srcExtent.height) &&
437 	                     (copyExtent.height == dstExtent.height) &&
438 	                     (srcDepthPitch == dstDepthPitch);
439 
440 	const uint8_t *srcLayer = static_cast<const uint8_t *>(getTexelPointer(region.srcOffset, { region.srcSubresource.aspectMask, region.srcSubresource.mipLevel, region.srcSubresource.baseArrayLayer }));
441 	uint8_t *dstLayer = static_cast<uint8_t *>(dstImage->getTexelPointer(region.dstOffset, { region.dstSubresource.aspectMask, region.dstSubresource.mipLevel, region.dstSubresource.baseArrayLayer }));
442 
443 	for(uint32_t layer = 0; layer < layerCount; layer++)
444 	{
445 		if(isSingleRow)  // Copy one row
446 		{
447 			size_t copySize = copyExtent.width * bytesPerBlock;
448 			ASSERT((srcLayer + copySize) < end());
449 			ASSERT((dstLayer + copySize) < dstImage->end());
450 			memcpy(dstLayer, srcLayer, copySize);
451 		}
452 		else if(isEntireRow && isSingleSlice)  // Copy one slice
453 		{
454 			size_t copySize = copyExtent.height * srcRowPitch;
455 			ASSERT((srcLayer + copySize) < end());
456 			ASSERT((dstLayer + copySize) < dstImage->end());
457 			memcpy(dstLayer, srcLayer, copySize);
458 		}
459 		else if(isEntireSlice)  // Copy multiple slices
460 		{
461 			size_t copySize = sliceCount * srcDepthPitch;
462 			ASSERT((srcLayer + copySize) < end());
463 			ASSERT((dstLayer + copySize) < dstImage->end());
464 			memcpy(dstLayer, srcLayer, copySize);
465 		}
466 		else if(isEntireRow)  // Copy slice by slice
467 		{
468 			size_t sliceSize = copyExtent.height * srcRowPitch;
469 			const uint8_t *srcSlice = srcLayer;
470 			uint8_t *dstSlice = dstLayer;
471 
472 			for(uint32_t z = 0; z < sliceCount; z++)
473 			{
474 				ASSERT((srcSlice + sliceSize) < end());
475 				ASSERT((dstSlice + sliceSize) < dstImage->end());
476 
477 				memcpy(dstSlice, srcSlice, sliceSize);
478 
479 				dstSlice += dstDepthPitch;
480 				srcSlice += srcDepthPitch;
481 			}
482 		}
483 		else  // Copy row by row
484 		{
485 			size_t rowSize = copyExtent.width * bytesPerBlock;
486 			const uint8_t *srcSlice = srcLayer;
487 			uint8_t *dstSlice = dstLayer;
488 
489 			for(uint32_t z = 0; z < sliceCount; z++)
490 			{
491 				const uint8_t *srcRow = srcSlice;
492 				uint8_t *dstRow = dstSlice;
493 
494 				for(uint32_t y = 0; y < copyExtent.height; y++)
495 				{
496 					ASSERT((srcRow + rowSize) < end());
497 					ASSERT((dstRow + rowSize) < dstImage->end());
498 
499 					memcpy(dstRow, srcRow, rowSize);
500 
501 					srcRow += srcRowPitch;
502 					dstRow += dstRowPitch;
503 				}
504 
505 				srcSlice += srcDepthPitch;
506 				dstSlice += dstDepthPitch;
507 			}
508 		}
509 
510 		srcLayer += srcLayerPitch;
511 		dstLayer += dstLayerPitch;
512 	}
513 
514 	dstImage->contentsChanged({ region.dstSubresource.aspectMask, region.dstSubresource.mipLevel, 1,
515 	                            region.dstSubresource.baseArrayLayer, region.dstSubresource.layerCount });
516 }
517 
copy(Buffer * buffer,const VkBufferImageCopy & region,bool bufferIsSource)518 void Image::copy(Buffer *buffer, const VkBufferImageCopy &region, bool bufferIsSource)
519 {
520 	switch(region.imageSubresource.aspectMask)
521 	{
522 		case VK_IMAGE_ASPECT_COLOR_BIT:
523 		case VK_IMAGE_ASPECT_DEPTH_BIT:
524 		case VK_IMAGE_ASPECT_STENCIL_BIT:
525 		case VK_IMAGE_ASPECT_PLANE_0_BIT:
526 		case VK_IMAGE_ASPECT_PLANE_1_BIT:
527 		case VK_IMAGE_ASPECT_PLANE_2_BIT:
528 			break;
529 		default:
530 			UNSUPPORTED("aspectMask %x", int(region.imageSubresource.aspectMask));
531 			break;
532 	}
533 
534 	auto aspect = static_cast<VkImageAspectFlagBits>(region.imageSubresource.aspectMask);
535 	Format copyFormat = getFormat(aspect);
536 
537 	VkExtent3D imageExtent = imageExtentInBlocks(region.imageExtent, aspect);
538 
539 	if(imageExtent.width == 0 || imageExtent.height == 0 || imageExtent.depth == 0)
540 	{
541 		return;
542 	}
543 
544 	VkExtent2D bufferExtent = bufferExtentInBlocks({ imageExtent.width, imageExtent.height }, region);
545 	int bytesPerBlock = copyFormat.bytesPerBlock();
546 	int bufferRowPitchBytes = bufferExtent.width * bytesPerBlock;
547 	int bufferSlicePitchBytes = bufferExtent.height * bufferRowPitchBytes;
548 	ASSERT(samples == 1);
549 
550 	uint8_t *bufferMemory = static_cast<uint8_t *>(buffer->getOffsetPointer(region.bufferOffset));
551 	uint8_t *imageMemory = static_cast<uint8_t *>(getTexelPointer(region.imageOffset, { region.imageSubresource.aspectMask, region.imageSubresource.mipLevel, region.imageSubresource.baseArrayLayer }));
552 	uint8_t *srcMemory = bufferIsSource ? bufferMemory : imageMemory;
553 	uint8_t *dstMemory = bufferIsSource ? imageMemory : bufferMemory;
554 	int imageRowPitchBytes = rowPitchBytes(aspect, region.imageSubresource.mipLevel);
555 	int imageSlicePitchBytes = slicePitchBytes(aspect, region.imageSubresource.mipLevel);
556 
557 	int srcSlicePitchBytes = bufferIsSource ? bufferSlicePitchBytes : imageSlicePitchBytes;
558 	int dstSlicePitchBytes = bufferIsSource ? imageSlicePitchBytes : bufferSlicePitchBytes;
559 	int srcRowPitchBytes = bufferIsSource ? bufferRowPitchBytes : imageRowPitchBytes;
560 	int dstRowPitchBytes = bufferIsSource ? imageRowPitchBytes : bufferRowPitchBytes;
561 
562 	VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, region.imageSubresource.mipLevel);
563 	bool isSingleSlice = (imageExtent.depth == 1);
564 	bool isSingleRow = (imageExtent.height == 1) && isSingleSlice;
565 	bool isEntireRow = (imageExtent.width == mipLevelExtent.width) &&
566 	                   (imageRowPitchBytes == bufferRowPitchBytes);
567 	bool isEntireSlice = isEntireRow && (imageExtent.height == mipLevelExtent.height) &&
568 	                     (imageSlicePitchBytes == bufferSlicePitchBytes);
569 
570 	VkDeviceSize copySize = 0;
571 	if(isSingleRow)
572 	{
573 		copySize = imageExtent.width * bytesPerBlock;
574 	}
575 	else if(isEntireRow && isSingleSlice)
576 	{
577 		copySize = (imageExtent.height - 1) * imageRowPitchBytes + imageExtent.width * bytesPerBlock;
578 	}
579 	else if(isEntireSlice)
580 	{
581 		copySize = (imageExtent.depth - 1) * imageSlicePitchBytes + (imageExtent.height - 1) * imageRowPitchBytes + imageExtent.width * bytesPerBlock;  // Copy multiple slices
582 	}
583 	else if(isEntireRow)  // Copy slice by slice
584 	{
585 		copySize = (imageExtent.height - 1) * imageRowPitchBytes + imageExtent.width * bytesPerBlock;
586 	}
587 	else  // Copy row by row
588 	{
589 		copySize = imageExtent.width * bytesPerBlock;
590 	}
591 
592 	VkDeviceSize imageLayerSize = getLayerSize(aspect);
593 	VkDeviceSize srcLayerSize = bufferIsSource ? bufferSlicePitchBytes : imageLayerSize;
594 	VkDeviceSize dstLayerSize = bufferIsSource ? imageLayerSize : bufferSlicePitchBytes;
595 
596 	for(uint32_t i = 0; i < region.imageSubresource.layerCount; i++)
597 	{
598 		if(isSingleRow || (isEntireRow && isSingleSlice) || isEntireSlice)
599 		{
600 			ASSERT(((bufferIsSource ? dstMemory : srcMemory) + copySize) < end());
601 			ASSERT(((bufferIsSource ? srcMemory : dstMemory) + copySize) < buffer->end());
602 			memcpy(dstMemory, srcMemory, copySize);
603 		}
604 		else if(isEntireRow)  // Copy slice by slice
605 		{
606 			uint8_t *srcSliceMemory = srcMemory;
607 			uint8_t *dstSliceMemory = dstMemory;
608 			for(uint32_t z = 0; z < imageExtent.depth; z++)
609 			{
610 				ASSERT(((bufferIsSource ? dstSliceMemory : srcSliceMemory) + copySize) < end());
611 				ASSERT(((bufferIsSource ? srcSliceMemory : dstSliceMemory) + copySize) < buffer->end());
612 				memcpy(dstSliceMemory, srcSliceMemory, copySize);
613 				srcSliceMemory += srcSlicePitchBytes;
614 				dstSliceMemory += dstSlicePitchBytes;
615 			}
616 		}
617 		else  // Copy row by row
618 		{
619 			uint8_t *srcLayerMemory = srcMemory;
620 			uint8_t *dstLayerMemory = dstMemory;
621 			for(uint32_t z = 0; z < imageExtent.depth; z++)
622 			{
623 				uint8_t *srcSliceMemory = srcLayerMemory;
624 				uint8_t *dstSliceMemory = dstLayerMemory;
625 				for(uint32_t y = 0; y < imageExtent.height; y++)
626 				{
627 					ASSERT(((bufferIsSource ? dstSliceMemory : srcSliceMemory) + copySize) < end());
628 					ASSERT(((bufferIsSource ? srcSliceMemory : dstSliceMemory) + copySize) < buffer->end());
629 					memcpy(dstSliceMemory, srcSliceMemory, copySize);
630 					srcSliceMemory += srcRowPitchBytes;
631 					dstSliceMemory += dstRowPitchBytes;
632 				}
633 				srcLayerMemory += srcSlicePitchBytes;
634 				dstLayerMemory += dstSlicePitchBytes;
635 			}
636 		}
637 
638 		srcMemory += srcLayerSize;
639 		dstMemory += dstLayerSize;
640 	}
641 
642 	if(bufferIsSource)
643 	{
644 		contentsChanged({ region.imageSubresource.aspectMask, region.imageSubresource.mipLevel, 1,
645 		                  region.imageSubresource.baseArrayLayer, region.imageSubresource.layerCount });
646 	}
647 }
648 
copyTo(Buffer * dstBuffer,const VkBufferImageCopy & region)649 void Image::copyTo(Buffer *dstBuffer, const VkBufferImageCopy &region)
650 {
651 	copy(dstBuffer, region, false);
652 }
653 
copyFrom(Buffer * srcBuffer,const VkBufferImageCopy & region)654 void Image::copyFrom(Buffer *srcBuffer, const VkBufferImageCopy &region)
655 {
656 	copy(srcBuffer, region, true);
657 }
658 
getTexelPointer(const VkOffset3D & offset,const VkImageSubresource & subresource) const659 void *Image::getTexelPointer(const VkOffset3D &offset, const VkImageSubresource &subresource) const
660 {
661 	VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask);
662 	return deviceMemory->getOffsetPointer(texelOffsetBytesInStorage(offset, subresource) +
663 	                                      getMemoryOffset(aspect, subresource.mipLevel, subresource.arrayLayer));
664 }
665 
imageExtentInBlocks(const VkExtent3D & extent,VkImageAspectFlagBits aspect) const666 VkExtent3D Image::imageExtentInBlocks(const VkExtent3D &extent, VkImageAspectFlagBits aspect) const
667 {
668 	VkExtent3D adjustedExtent = extent;
669 	Format usedFormat = getFormat(aspect);
670 	if(usedFormat.isCompressed())
671 	{
672 		// When using a compressed format, we use the block as the base unit, instead of the texel
673 		int blockWidth = usedFormat.blockWidth();
674 		int blockHeight = usedFormat.blockHeight();
675 
676 		// Mip level allocations will round up to the next block for compressed texture
677 		adjustedExtent.width = ((adjustedExtent.width + blockWidth - 1) / blockWidth);
678 		adjustedExtent.height = ((adjustedExtent.height + blockHeight - 1) / blockHeight);
679 	}
680 	return adjustedExtent;
681 }
682 
imageOffsetInBlocks(const VkOffset3D & offset,VkImageAspectFlagBits aspect) const683 VkOffset3D Image::imageOffsetInBlocks(const VkOffset3D &offset, VkImageAspectFlagBits aspect) const
684 {
685 	VkOffset3D adjustedOffset = offset;
686 	Format usedFormat = getFormat(aspect);
687 	if(usedFormat.isCompressed())
688 	{
689 		// When using a compressed format, we use the block as the base unit, instead of the texel
690 		int blockWidth = usedFormat.blockWidth();
691 		int blockHeight = usedFormat.blockHeight();
692 
693 		ASSERT(((offset.x % blockWidth) == 0) && ((offset.y % blockHeight) == 0));  // We can't offset within a block
694 
695 		adjustedOffset.x /= blockWidth;
696 		adjustedOffset.y /= blockHeight;
697 	}
698 	return adjustedOffset;
699 }
700 
bufferExtentInBlocks(const VkExtent2D & extent,const VkBufferImageCopy & region) const701 VkExtent2D Image::bufferExtentInBlocks(const VkExtent2D &extent, const VkBufferImageCopy &region) const
702 {
703 	VkExtent2D adjustedExtent = extent;
704 	VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(region.imageSubresource.aspectMask);
705 	Format usedFormat = getFormat(aspect);
706 	if(region.bufferRowLength != 0)
707 	{
708 		adjustedExtent.width = region.bufferRowLength;
709 
710 		if(usedFormat.isCompressed())
711 		{
712 			int blockWidth = usedFormat.blockWidth();
713 			ASSERT((adjustedExtent.width % blockWidth) == 0);
714 			adjustedExtent.width /= blockWidth;
715 		}
716 	}
717 	if(region.bufferImageHeight != 0)
718 	{
719 		adjustedExtent.height = region.bufferImageHeight;
720 
721 		if(usedFormat.isCompressed())
722 		{
723 			int blockHeight = usedFormat.blockHeight();
724 			ASSERT((adjustedExtent.height % blockHeight) == 0);
725 			adjustedExtent.height /= blockHeight;
726 		}
727 	}
728 	return adjustedExtent;
729 }
730 
borderSize() const731 int Image::borderSize() const
732 {
733 	// We won't add a border to compressed cube textures, we'll add it when we decompress the texture
734 	return (isCube() && !format.isCompressed()) ? 1 : 0;
735 }
736 
texelOffsetBytesInStorage(const VkOffset3D & offset,const VkImageSubresource & subresource) const737 VkDeviceSize Image::texelOffsetBytesInStorage(const VkOffset3D &offset, const VkImageSubresource &subresource) const
738 {
739 	VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask);
740 	VkOffset3D adjustedOffset = imageOffsetInBlocks(offset, aspect);
741 	int border = borderSize();
742 	return adjustedOffset.z * slicePitchBytes(aspect, subresource.mipLevel) +
743 	       (adjustedOffset.y + border) * rowPitchBytes(aspect, subresource.mipLevel) +
744 	       (adjustedOffset.x + border) * getFormat(aspect).bytesPerBlock();
745 }
746 
getMipLevelExtent(VkImageAspectFlagBits aspect,uint32_t mipLevel) const747 VkExtent3D Image::getMipLevelExtent(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
748 {
749 	VkExtent3D mipLevelExtent;
750 	mipLevelExtent.width = extent.width >> mipLevel;
751 	mipLevelExtent.height = extent.height >> mipLevel;
752 	mipLevelExtent.depth = extent.depth >> mipLevel;
753 
754 	if(mipLevelExtent.width == 0) { mipLevelExtent.width = 1; }
755 	if(mipLevelExtent.height == 0) { mipLevelExtent.height = 1; }
756 	if(mipLevelExtent.depth == 0) { mipLevelExtent.depth = 1; }
757 
758 	switch(aspect)
759 	{
760 		case VK_IMAGE_ASPECT_COLOR_BIT:
761 		case VK_IMAGE_ASPECT_DEPTH_BIT:
762 		case VK_IMAGE_ASPECT_STENCIL_BIT:
763 		case VK_IMAGE_ASPECT_PLANE_0_BIT:  // Vulkan 1.1 Table 31. Plane Format Compatibility Table: plane 0 of all defined formats is full resolution.
764 			break;
765 		case VK_IMAGE_ASPECT_PLANE_1_BIT:
766 		case VK_IMAGE_ASPECT_PLANE_2_BIT:
767 			switch(format)
768 			{
769 				case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM:
770 				case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM:
771 					ASSERT(mipLevelExtent.width % 2 == 0 && mipLevelExtent.height % 2 == 0);  // Vulkan 1.1: "Images in this format must be defined with a width and height that is a multiple of two."
772 					// Vulkan 1.1 Table 31. Plane Format Compatibility Table:
773 					// Half-resolution U and V planes.
774 					mipLevelExtent.width /= 2;
775 					mipLevelExtent.height /= 2;
776 					break;
777 				default:
778 					UNSUPPORTED("format %d", int(format));
779 			}
780 			break;
781 		default:
782 			UNSUPPORTED("aspect %x", int(aspect));
783 	}
784 
785 	return mipLevelExtent;
786 }
787 
rowPitchBytes(VkImageAspectFlagBits aspect,uint32_t mipLevel) const788 int Image::rowPitchBytes(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
789 {
790 	if(deviceMemory && deviceMemory->hasExternalImageProperties())
791 	{
792 		return deviceMemory->externalImageRowPitchBytes(aspect);
793 	}
794 
795 	// Depth and Stencil pitch should be computed separately
796 	ASSERT((aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) !=
797 	       (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
798 
799 	VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, mipLevel);
800 	Format usedFormat = getFormat(aspect);
801 	if(usedFormat.isCompressed())
802 	{
803 		VkExtent3D extentInBlocks = imageExtentInBlocks(mipLevelExtent, aspect);
804 		return extentInBlocks.width * usedFormat.bytesPerBlock();
805 	}
806 
807 	return usedFormat.pitchB(mipLevelExtent.width, borderSize(), true);
808 }
809 
slicePitchBytes(VkImageAspectFlagBits aspect,uint32_t mipLevel) const810 int Image::slicePitchBytes(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
811 {
812 	// Depth and Stencil slice should be computed separately
813 	ASSERT((aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) !=
814 	       (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
815 
816 	VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, mipLevel);
817 	Format usedFormat = getFormat(aspect);
818 	if(usedFormat.isCompressed())
819 	{
820 		VkExtent3D extentInBlocks = imageExtentInBlocks(mipLevelExtent, aspect);
821 		return extentInBlocks.height * extentInBlocks.width * usedFormat.bytesPerBlock();
822 	}
823 
824 	return usedFormat.sliceB(mipLevelExtent.width, mipLevelExtent.height, borderSize(), true);
825 }
826 
getFormat(VkImageAspectFlagBits aspect) const827 Format Image::getFormat(VkImageAspectFlagBits aspect) const
828 {
829 	return format.getAspectFormat(aspect);
830 }
831 
isCube() const832 bool Image::isCube() const
833 {
834 	return (flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) && (imageType == VK_IMAGE_TYPE_2D);
835 }
836 
end() const837 uint8_t *Image::end() const
838 {
839 	return reinterpret_cast<uint8_t *>(deviceMemory->getOffsetPointer(deviceMemory->getCommittedMemoryInBytes() + 1));
840 }
841 
getMemoryOffset(VkImageAspectFlagBits aspect) const842 VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect) const
843 {
844 	if(deviceMemory && deviceMemory->hasExternalImageProperties())
845 	{
846 		return deviceMemory->externalImageMemoryOffset(aspect);
847 	}
848 
849 	switch(format)
850 	{
851 		case VK_FORMAT_D16_UNORM_S8_UINT:
852 		case VK_FORMAT_D24_UNORM_S8_UINT:
853 		case VK_FORMAT_D32_SFLOAT_S8_UINT:
854 			if(aspect == VK_IMAGE_ASPECT_STENCIL_BIT)
855 			{
856 				// Offset by depth buffer to get to stencil buffer
857 				return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_DEPTH_BIT);
858 			}
859 			break;
860 
861 		case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM:
862 			if(aspect == VK_IMAGE_ASPECT_PLANE_2_BIT)
863 			{
864 				return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_PLANE_1_BIT) + getStorageSize(VK_IMAGE_ASPECT_PLANE_0_BIT);
865 			}
866 			// Fall through to 2PLANE case:
867 		case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM:
868 			if(aspect == VK_IMAGE_ASPECT_PLANE_1_BIT)
869 			{
870 				return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_PLANE_0_BIT);
871 			}
872 			else
873 			{
874 				ASSERT(aspect == VK_IMAGE_ASPECT_PLANE_0_BIT);
875 
876 				return memoryOffset;
877 			}
878 			break;
879 
880 		default:
881 			break;
882 	}
883 
884 	return memoryOffset;
885 }
886 
getMemoryOffset(VkImageAspectFlagBits aspect,uint32_t mipLevel) const887 VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
888 {
889 	VkDeviceSize offset = getMemoryOffset(aspect);
890 	for(uint32_t i = 0; i < mipLevel; ++i)
891 	{
892 		offset += getMultiSampledLevelSize(aspect, i);
893 	}
894 	return offset;
895 }
896 
getMemoryOffset(VkImageAspectFlagBits aspect,uint32_t mipLevel,uint32_t layer) const897 VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel, uint32_t layer) const
898 {
899 	return layer * getLayerOffset(aspect, mipLevel) + getMemoryOffset(aspect, mipLevel);
900 }
901 
getMipLevelSize(VkImageAspectFlagBits aspect,uint32_t mipLevel) const902 VkDeviceSize Image::getMipLevelSize(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
903 {
904 	return getMipLevelExtent(aspect, mipLevel).depth * slicePitchBytes(aspect, mipLevel);
905 }
906 
getMultiSampledLevelSize(VkImageAspectFlagBits aspect,uint32_t mipLevel) const907 VkDeviceSize Image::getMultiSampledLevelSize(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
908 {
909 	return getMipLevelSize(aspect, mipLevel) * samples;
910 }
911 
is3DSlice() const912 bool Image::is3DSlice() const
913 {
914 	return ((imageType == VK_IMAGE_TYPE_3D) && (flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT));
915 }
916 
getLayerOffset(VkImageAspectFlagBits aspect,uint32_t mipLevel) const917 VkDeviceSize Image::getLayerOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
918 {
919 	if(is3DSlice())
920 	{
921 		// When the VkImageSubresourceRange structure is used to select a subset of the slices of a 3D
922 		// image's mip level in order to create a 2D or 2D array image view of a 3D image created with
923 		// VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, baseArrayLayer and layerCount specify the first
924 		// slice index and the number of slices to include in the created image view.
925 		ASSERT(samples == VK_SAMPLE_COUNT_1_BIT);
926 
927 		// Offset to the proper slice of the 3D image's mip level
928 		return slicePitchBytes(aspect, mipLevel);
929 	}
930 
931 	return getLayerSize(aspect);
932 }
933 
getLayerSize(VkImageAspectFlagBits aspect) const934 VkDeviceSize Image::getLayerSize(VkImageAspectFlagBits aspect) const
935 {
936 	VkDeviceSize layerSize = 0;
937 
938 	for(uint32_t mipLevel = 0; mipLevel < mipLevels; ++mipLevel)
939 	{
940 		layerSize += getMultiSampledLevelSize(aspect, mipLevel);
941 	}
942 
943 	return layerSize;
944 }
945 
getStorageSize(VkImageAspectFlags aspectMask) const946 VkDeviceSize Image::getStorageSize(VkImageAspectFlags aspectMask) const
947 {
948 	if((aspectMask & ~(VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT |
949 	                   VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT)) != 0)
950 	{
951 		UNSUPPORTED("aspectMask %x", int(aspectMask));
952 	}
953 
954 	VkDeviceSize storageSize = 0;
955 
956 	if(aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_COLOR_BIT);
957 	if(aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_DEPTH_BIT);
958 	if(aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_STENCIL_BIT);
959 	if(aspectMask & VK_IMAGE_ASPECT_PLANE_0_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_0_BIT);
960 	if(aspectMask & VK_IMAGE_ASPECT_PLANE_1_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_1_BIT);
961 	if(aspectMask & VK_IMAGE_ASPECT_PLANE_2_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_2_BIT);
962 
963 	return arrayLayers * storageSize;
964 }
965 
getSampledImage(const vk::Format & imageViewFormat) const966 const Image *Image::getSampledImage(const vk::Format &imageViewFormat) const
967 {
968 	bool isImageViewCompressed = imageViewFormat.isCompressed();
969 	if(decompressedImage && !isImageViewCompressed)
970 	{
971 		ASSERT(flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT);
972 		ASSERT(format.bytesPerBlock() == imageViewFormat.bytesPerBlock());
973 	}
974 	// If the ImageView's format is compressed, then we do need to decompress the image so that
975 	// it may be sampled properly by texture sampling functions, which don't support compressed
976 	// textures. If the ImageView's format is NOT compressed, then we reinterpret cast the
977 	// compressed image into the ImageView's format, so we must return the compressed image as is.
978 	return (decompressedImage && isImageViewCompressed) ? decompressedImage : this;
979 }
980 
blitTo(Image * dstImage,const VkImageBlit & region,VkFilter filter) const981 void Image::blitTo(Image *dstImage, const VkImageBlit &region, VkFilter filter) const
982 {
983 	device->getBlitter()->blit(this, dstImage, region, filter);
984 }
985 
copyTo(uint8_t * dst,unsigned int dstPitch) const986 void Image::copyTo(uint8_t *dst, unsigned int dstPitch) const
987 {
988 	device->getBlitter()->copy(this, dst, dstPitch);
989 }
990 
resolveTo(Image * dstImage,const VkImageResolve & region) const991 void Image::resolveTo(Image *dstImage, const VkImageResolve &region) const
992 {
993 	device->getBlitter()->resolve(this, dstImage, region);
994 }
995 
resolveDepthStencilTo(const ImageView * src,ImageView * dst,const VkSubpassDescriptionDepthStencilResolve & dsResolve) const996 void Image::resolveDepthStencilTo(const ImageView *src, ImageView *dst, const VkSubpassDescriptionDepthStencilResolve &dsResolve) const
997 {
998 	device->getBlitter()->resolveDepthStencil(src, dst, dsResolve);
999 }
1000 
getClearFormat() const1001 VkFormat Image::getClearFormat() const
1002 {
1003 	// Set the proper format for the clear value, as described here:
1004 	// https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#clears-values
1005 	if(format.isSignedUnnormalizedInteger())
1006 	{
1007 		return VK_FORMAT_R32G32B32A32_SINT;
1008 	}
1009 	else if(format.isUnsignedUnnormalizedInteger())
1010 	{
1011 		return VK_FORMAT_R32G32B32A32_UINT;
1012 	}
1013 
1014 	return VK_FORMAT_R32G32B32A32_SFLOAT;
1015 }
1016 
getLastLayerIndex(const VkImageSubresourceRange & subresourceRange) const1017 uint32_t Image::getLastLayerIndex(const VkImageSubresourceRange &subresourceRange) const
1018 {
1019 	return ((subresourceRange.layerCount == VK_REMAINING_ARRAY_LAYERS) ? arrayLayers : (subresourceRange.baseArrayLayer + subresourceRange.layerCount)) - 1;
1020 }
1021 
getLastMipLevel(const VkImageSubresourceRange & subresourceRange) const1022 uint32_t Image::getLastMipLevel(const VkImageSubresourceRange &subresourceRange) const
1023 {
1024 	return ((subresourceRange.levelCount == VK_REMAINING_MIP_LEVELS) ? mipLevels : (subresourceRange.baseMipLevel + subresourceRange.levelCount)) - 1;
1025 }
1026 
clear(void * pixelData,VkFormat pixelFormat,const vk::Format & viewFormat,const VkImageSubresourceRange & subresourceRange,const VkRect2D & renderArea)1027 void Image::clear(void *pixelData, VkFormat pixelFormat, const vk::Format &viewFormat, const VkImageSubresourceRange &subresourceRange, const VkRect2D &renderArea)
1028 {
1029 	device->getBlitter()->clear(pixelData, pixelFormat, this, viewFormat, subresourceRange, &renderArea);
1030 }
1031 
clear(const VkClearColorValue & color,const VkImageSubresourceRange & subresourceRange)1032 void Image::clear(const VkClearColorValue &color, const VkImageSubresourceRange &subresourceRange)
1033 {
1034 	ASSERT(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
1035 
1036 	device->getBlitter()->clear((void *)color.float32, getClearFormat(), this, format, subresourceRange);
1037 }
1038 
clear(const VkClearDepthStencilValue & color,const VkImageSubresourceRange & subresourceRange)1039 void Image::clear(const VkClearDepthStencilValue &color, const VkImageSubresourceRange &subresourceRange)
1040 {
1041 	ASSERT((subresourceRange.aspectMask & ~(VK_IMAGE_ASPECT_DEPTH_BIT |
1042 	                                        VK_IMAGE_ASPECT_STENCIL_BIT)) == 0);
1043 
1044 	if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT)
1045 	{
1046 		VkImageSubresourceRange depthSubresourceRange = subresourceRange;
1047 		depthSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
1048 		device->getBlitter()->clear((void *)(&color.depth), VK_FORMAT_D32_SFLOAT, this, format, depthSubresourceRange);
1049 	}
1050 
1051 	if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT)
1052 	{
1053 		VkImageSubresourceRange stencilSubresourceRange = subresourceRange;
1054 		stencilSubresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
1055 		device->getBlitter()->clear((void *)(&color.stencil), VK_FORMAT_S8_UINT, this, format, stencilSubresourceRange);
1056 	}
1057 }
1058 
clear(const VkClearValue & clearValue,const vk::Format & viewFormat,const VkRect2D & renderArea,const VkImageSubresourceRange & subresourceRange)1059 void Image::clear(const VkClearValue &clearValue, const vk::Format &viewFormat, const VkRect2D &renderArea, const VkImageSubresourceRange &subresourceRange)
1060 {
1061 	ASSERT((subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
1062 	       (subresourceRange.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT |
1063 	                                       VK_IMAGE_ASPECT_STENCIL_BIT)));
1064 
1065 	if(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT)
1066 	{
1067 		clear((void *)(clearValue.color.float32), getClearFormat(), viewFormat, subresourceRange, renderArea);
1068 	}
1069 	else
1070 	{
1071 		if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT)
1072 		{
1073 			VkImageSubresourceRange depthSubresourceRange = subresourceRange;
1074 			depthSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
1075 			clear((void *)(&clearValue.depthStencil.depth), VK_FORMAT_D32_SFLOAT, viewFormat, depthSubresourceRange, renderArea);
1076 		}
1077 
1078 		if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT)
1079 		{
1080 			VkImageSubresourceRange stencilSubresourceRange = subresourceRange;
1081 			stencilSubresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
1082 			clear((void *)(&clearValue.depthStencil.stencil), VK_FORMAT_S8_UINT, viewFormat, stencilSubresourceRange, renderArea);
1083 		}
1084 	}
1085 }
1086 
requiresPreprocessing() const1087 bool Image::requiresPreprocessing() const
1088 {
1089 	return (isCube() && (arrayLayers >= 6)) || decompressedImage;
1090 }
1091 
contentsChanged(const VkImageSubresourceRange & subresourceRange,ContentsChangedContext contentsChangedContext)1092 void Image::contentsChanged(const VkImageSubresourceRange &subresourceRange, ContentsChangedContext contentsChangedContext)
1093 {
1094 	// If this function is called after (possibly) writing to this image from a shader,
1095 	// this must have the VK_IMAGE_USAGE_STORAGE_BIT set for the write operation to be
1096 	// valid. Otherwise, we can't have legally written to this image, so we know we can
1097 	// skip updating dirtyResources.
1098 	if((contentsChangedContext == USING_STORAGE) && !(usage & VK_IMAGE_USAGE_STORAGE_BIT))
1099 	{
1100 		return;
1101 	}
1102 
1103 	// If this isn't a cube or a compressed image, we'll never need dirtyResources,
1104 	// so we can skip updating dirtyResources
1105 	if(!requiresPreprocessing())
1106 	{
1107 		return;
1108 	}
1109 
1110 	uint32_t lastLayer = getLastLayerIndex(subresourceRange);
1111 	uint32_t lastMipLevel = getLastMipLevel(subresourceRange);
1112 
1113 	VkImageSubresource subresource = {
1114 		subresourceRange.aspectMask,
1115 		subresourceRange.baseMipLevel,
1116 		subresourceRange.baseArrayLayer
1117 	};
1118 
1119 	marl::lock lock(mutex);
1120 	for(subresource.arrayLayer = subresourceRange.baseArrayLayer;
1121 	    subresource.arrayLayer <= lastLayer;
1122 	    subresource.arrayLayer++)
1123 	{
1124 		for(subresource.mipLevel = subresourceRange.baseMipLevel;
1125 		    subresource.mipLevel <= lastMipLevel;
1126 		    subresource.mipLevel++)
1127 		{
1128 			dirtySubresources.insert(subresource);
1129 		}
1130 	}
1131 }
1132 
prepareForSampling(const VkImageSubresourceRange & subresourceRange)1133 void Image::prepareForSampling(const VkImageSubresourceRange &subresourceRange)
1134 {
1135 	// If this isn't a cube or a compressed image, there's nothing to do
1136 	if(!requiresPreprocessing())
1137 	{
1138 		return;
1139 	}
1140 
1141 	uint32_t lastLayer = getLastLayerIndex(subresourceRange);
1142 	uint32_t lastMipLevel = getLastMipLevel(subresourceRange);
1143 
1144 	VkImageSubresource subresource = {
1145 		subresourceRange.aspectMask,
1146 		subresourceRange.baseMipLevel,
1147 		subresourceRange.baseArrayLayer
1148 	};
1149 
1150 	marl::lock lock(mutex);
1151 
1152 	if(dirtySubresources.empty())
1153 	{
1154 		return;
1155 	}
1156 
1157 	// First, decompress all relevant dirty subregions
1158 	for(subresource.arrayLayer = subresourceRange.baseArrayLayer;
1159 	    subresource.arrayLayer <= lastLayer;
1160 	    subresource.arrayLayer++)
1161 	{
1162 		for(subresource.mipLevel = subresourceRange.baseMipLevel;
1163 		    subresource.mipLevel <= lastMipLevel;
1164 		    subresource.mipLevel++)
1165 		{
1166 			auto it = dirtySubresources.find(subresource);
1167 			if(it != dirtySubresources.end())
1168 			{
1169 				decompress(subresource);
1170 			}
1171 		}
1172 	}
1173 
1174 	// Second, update cubemap borders
1175 	for(subresource.arrayLayer = subresourceRange.baseArrayLayer;
1176 	    subresource.arrayLayer <= lastLayer;
1177 	    subresource.arrayLayer++)
1178 	{
1179 		for(subresource.mipLevel = subresourceRange.baseMipLevel;
1180 		    subresource.mipLevel <= lastMipLevel;
1181 		    subresource.mipLevel++)
1182 		{
1183 			auto it = dirtySubresources.find(subresource);
1184 			if(it != dirtySubresources.end())
1185 			{
1186 				if(updateCube(subresource))
1187 				{
1188 					// updateCube() updates all layers of all cubemaps at once, so remove entries to avoid duplicating effort
1189 					VkImageSubresource cleanSubresource = subresource;
1190 					for(cleanSubresource.arrayLayer = 0; cleanSubresource.arrayLayer < arrayLayers - 5;)
1191 					{
1192 						// Delete one cube's worth of dirty subregions
1193 						for(uint32_t i = 0; i < 6; i++, cleanSubresource.arrayLayer++)
1194 						{
1195 							auto it = dirtySubresources.find(cleanSubresource);
1196 							if(it != dirtySubresources.end())
1197 							{
1198 								dirtySubresources.erase(it);
1199 							}
1200 						}
1201 					}
1202 				}
1203 			}
1204 		}
1205 	}
1206 
1207 	// Finally, mark all updated subregions clean
1208 	for(subresource.arrayLayer = subresourceRange.baseArrayLayer;
1209 	    subresource.arrayLayer <= lastLayer;
1210 	    subresource.arrayLayer++)
1211 	{
1212 		for(subresource.mipLevel = subresourceRange.baseMipLevel;
1213 		    subresource.mipLevel <= lastMipLevel;
1214 		    subresource.mipLevel++)
1215 		{
1216 			auto it = dirtySubresources.find(subresource);
1217 			if(it != dirtySubresources.end())
1218 			{
1219 				dirtySubresources.erase(it);
1220 			}
1221 		}
1222 	}
1223 }
1224 
decompress(const VkImageSubresource & subresource)1225 void Image::decompress(const VkImageSubresource &subresource)
1226 {
1227 	if(decompressedImage)
1228 	{
1229 		switch(format)
1230 		{
1231 			case VK_FORMAT_EAC_R11_UNORM_BLOCK:
1232 			case VK_FORMAT_EAC_R11_SNORM_BLOCK:
1233 			case VK_FORMAT_EAC_R11G11_UNORM_BLOCK:
1234 			case VK_FORMAT_EAC_R11G11_SNORM_BLOCK:
1235 			case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
1236 			case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
1237 			case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
1238 			case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
1239 			case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
1240 			case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
1241 				decodeETC2(subresource);
1242 				break;
1243 			case VK_FORMAT_BC1_RGB_UNORM_BLOCK:
1244 			case VK_FORMAT_BC1_RGB_SRGB_BLOCK:
1245 			case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
1246 			case VK_FORMAT_BC1_RGBA_SRGB_BLOCK:
1247 			case VK_FORMAT_BC2_UNORM_BLOCK:
1248 			case VK_FORMAT_BC2_SRGB_BLOCK:
1249 			case VK_FORMAT_BC3_UNORM_BLOCK:
1250 			case VK_FORMAT_BC3_SRGB_BLOCK:
1251 			case VK_FORMAT_BC4_UNORM_BLOCK:
1252 			case VK_FORMAT_BC4_SNORM_BLOCK:
1253 			case VK_FORMAT_BC5_UNORM_BLOCK:
1254 			case VK_FORMAT_BC5_SNORM_BLOCK:
1255 			case VK_FORMAT_BC6H_UFLOAT_BLOCK:
1256 			case VK_FORMAT_BC6H_SFLOAT_BLOCK:
1257 			case VK_FORMAT_BC7_UNORM_BLOCK:
1258 			case VK_FORMAT_BC7_SRGB_BLOCK:
1259 				decodeBC(subresource);
1260 				break;
1261 			case VK_FORMAT_ASTC_4x4_UNORM_BLOCK:
1262 			case VK_FORMAT_ASTC_5x4_UNORM_BLOCK:
1263 			case VK_FORMAT_ASTC_5x5_UNORM_BLOCK:
1264 			case VK_FORMAT_ASTC_6x5_UNORM_BLOCK:
1265 			case VK_FORMAT_ASTC_6x6_UNORM_BLOCK:
1266 			case VK_FORMAT_ASTC_8x5_UNORM_BLOCK:
1267 			case VK_FORMAT_ASTC_8x6_UNORM_BLOCK:
1268 			case VK_FORMAT_ASTC_8x8_UNORM_BLOCK:
1269 			case VK_FORMAT_ASTC_10x5_UNORM_BLOCK:
1270 			case VK_FORMAT_ASTC_10x6_UNORM_BLOCK:
1271 			case VK_FORMAT_ASTC_10x8_UNORM_BLOCK:
1272 			case VK_FORMAT_ASTC_10x10_UNORM_BLOCK:
1273 			case VK_FORMAT_ASTC_12x10_UNORM_BLOCK:
1274 			case VK_FORMAT_ASTC_12x12_UNORM_BLOCK:
1275 			case VK_FORMAT_ASTC_4x4_SRGB_BLOCK:
1276 			case VK_FORMAT_ASTC_5x4_SRGB_BLOCK:
1277 			case VK_FORMAT_ASTC_5x5_SRGB_BLOCK:
1278 			case VK_FORMAT_ASTC_6x5_SRGB_BLOCK:
1279 			case VK_FORMAT_ASTC_6x6_SRGB_BLOCK:
1280 			case VK_FORMAT_ASTC_8x5_SRGB_BLOCK:
1281 			case VK_FORMAT_ASTC_8x6_SRGB_BLOCK:
1282 			case VK_FORMAT_ASTC_8x8_SRGB_BLOCK:
1283 			case VK_FORMAT_ASTC_10x5_SRGB_BLOCK:
1284 			case VK_FORMAT_ASTC_10x6_SRGB_BLOCK:
1285 			case VK_FORMAT_ASTC_10x8_SRGB_BLOCK:
1286 			case VK_FORMAT_ASTC_10x10_SRGB_BLOCK:
1287 			case VK_FORMAT_ASTC_12x10_SRGB_BLOCK:
1288 			case VK_FORMAT_ASTC_12x12_SRGB_BLOCK:
1289 				decodeASTC(subresource);
1290 				break;
1291 			default:
1292 				break;
1293 		}
1294 	}
1295 }
1296 
updateCube(const VkImageSubresource & subres)1297 bool Image::updateCube(const VkImageSubresource &subres)
1298 {
1299 	if(isCube() && (arrayLayers >= 6))
1300 	{
1301 		VkImageSubresource subresource = subres;
1302 
1303 		// Update the borders of all the groups of 6 layers that can be part of a cubemaps but don't
1304 		// touch leftover layers that cannot be part of cubemaps.
1305 		for(subresource.arrayLayer = 0; subresource.arrayLayer < arrayLayers - 5; subresource.arrayLayer += 6)
1306 		{
1307 			device->getBlitter()->updateBorders(decompressedImage ? decompressedImage : this, subresource);
1308 		}
1309 
1310 		return true;
1311 	}
1312 
1313 	return false;
1314 }
1315 
decodeETC2(const VkImageSubresource & subresource)1316 void Image::decodeETC2(const VkImageSubresource &subresource)
1317 {
1318 	ASSERT(decompressedImage);
1319 
1320 	ETC_Decoder::InputType inputType = GetInputType(format);
1321 
1322 	int bytes = decompressedImage->format.bytes();
1323 	bool fakeAlpha = (format == VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK) || (format == VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK);
1324 	size_t sizeToWrite = 0;
1325 
1326 	VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast<VkImageAspectFlagBits>(subresource.aspectMask), subresource.mipLevel);
1327 
1328 	int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel);
1329 
1330 	if(fakeAlpha)
1331 	{
1332 		// To avoid overflow in case of cube textures, which are offset in memory to account for the border,
1333 		// compute the size from the first pixel to the last pixel, excluding any padding or border before
1334 		// the first pixel or after the last pixel.
1335 		sizeToWrite = ((mipLevelExtent.height - 1) * pitchB) + (mipLevelExtent.width * bytes);
1336 	}
1337 
1338 	for(int32_t depth = 0; depth < static_cast<int32_t>(mipLevelExtent.depth); depth++)
1339 	{
1340 		uint8_t *source = static_cast<uint8_t *>(getTexelPointer({ 0, 0, depth }, subresource));
1341 		uint8_t *dest = static_cast<uint8_t *>(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource));
1342 
1343 		if(fakeAlpha)
1344 		{
1345 			ASSERT((dest + sizeToWrite) < decompressedImage->end());
1346 			memset(dest, 0xFF, sizeToWrite);
1347 		}
1348 
1349 		ETC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height,
1350 		                    pitchB, bytes, inputType);
1351 	}
1352 }
1353 
decodeBC(const VkImageSubresource & subresource)1354 void Image::decodeBC(const VkImageSubresource &subresource)
1355 {
1356 	ASSERT(decompressedImage);
1357 
1358 	int n = GetBCn(format);
1359 	int noAlphaU = GetNoAlphaOrUnsigned(format);
1360 
1361 	int bytes = decompressedImage->format.bytes();
1362 
1363 	VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast<VkImageAspectFlagBits>(subresource.aspectMask), subresource.mipLevel);
1364 
1365 	int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel);
1366 
1367 	for(int32_t depth = 0; depth < static_cast<int32_t>(mipLevelExtent.depth); depth++)
1368 	{
1369 		uint8_t *source = static_cast<uint8_t *>(getTexelPointer({ 0, 0, depth }, subresource));
1370 		uint8_t *dest = static_cast<uint8_t *>(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource));
1371 
1372 		BC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height,
1373 		                   pitchB, bytes, n, noAlphaU);
1374 	}
1375 }
1376 
decodeASTC(const VkImageSubresource & subresource)1377 void Image::decodeASTC(const VkImageSubresource &subresource)
1378 {
1379 	ASSERT(decompressedImage);
1380 
1381 	int xBlockSize = format.blockWidth();
1382 	int yBlockSize = format.blockHeight();
1383 	int zBlockSize = 1;
1384 	bool isUnsigned = format.isUnsignedComponent(0);
1385 
1386 	int bytes = decompressedImage->format.bytes();
1387 
1388 	VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast<VkImageAspectFlagBits>(subresource.aspectMask), subresource.mipLevel);
1389 
1390 	int xblocks = (mipLevelExtent.width + xBlockSize - 1) / xBlockSize;
1391 	int yblocks = (mipLevelExtent.height + yBlockSize - 1) / yBlockSize;
1392 	int zblocks = (zBlockSize > 1) ? (mipLevelExtent.depth + zBlockSize - 1) / zBlockSize : 1;
1393 
1394 	if(xblocks <= 0 || yblocks <= 0 || zblocks <= 0)
1395 	{
1396 		return;
1397 	}
1398 
1399 	int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel);
1400 	int sliceB = decompressedImage->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel);
1401 
1402 	for(int32_t depth = 0; depth < static_cast<int32_t>(mipLevelExtent.depth); depth++)
1403 	{
1404 		uint8_t *source = static_cast<uint8_t *>(getTexelPointer({ 0, 0, depth }, subresource));
1405 		uint8_t *dest = static_cast<uint8_t *>(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource));
1406 
1407 		ASTC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height, mipLevelExtent.depth, bytes, pitchB, sliceB,
1408 		                     xBlockSize, yBlockSize, zBlockSize, xblocks, yblocks, zblocks, isUnsigned);
1409 	}
1410 }
1411 
1412 }  // namespace vk
1413