1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes an abstract interface used to get information about a
10 // target machines register file.  This information is used for a variety of
11 // purposed, especially register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
16 #define LLVM_CODEGEN_TARGETREGISTERINFO_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/IR/CallingConv.h"
24 #include "llvm/MC/LaneBitmask.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MachineValueType.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Printable.h"
30 #include <cassert>
31 #include <cstdint>
32 #include <functional>
33 
34 namespace llvm {
35 
36 class BitVector;
37 class LiveRegMatrix;
38 class MachineFunction;
39 class MachineInstr;
40 class RegScavenger;
41 class VirtRegMap;
42 class LiveIntervals;
43 class LiveInterval;
44 
45 class TargetRegisterClass {
46 public:
47   using iterator = const MCPhysReg *;
48   using const_iterator = const MCPhysReg *;
49   using sc_iterator = const TargetRegisterClass* const *;
50 
51   // Instance variables filled by tablegen, do not use!
52   const MCRegisterClass *MC;
53   const uint32_t *SubClassMask;
54   const uint16_t *SuperRegIndices;
55   const LaneBitmask LaneMask;
56   /// Classes with a higher priority value are assigned first by register
57   /// allocators using a greedy heuristic. The value is in the range [0,63].
58   const uint8_t AllocationPriority;
59   /// Whether the class supports two (or more) disjunct subregister indices.
60   const bool HasDisjunctSubRegs;
61   /// Whether a combination of subregisters can cover every register in the
62   /// class. See also the CoveredBySubRegs description in Target.td.
63   const bool CoveredBySubRegs;
64   const sc_iterator SuperClasses;
65   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
66 
67   /// Return the register class ID number.
getID()68   unsigned getID() const { return MC->getID(); }
69 
70   /// begin/end - Return all of the registers in this class.
71   ///
begin()72   iterator       begin() const { return MC->begin(); }
end()73   iterator         end() const { return MC->end(); }
74 
75   /// Return the number of registers in this class.
getNumRegs()76   unsigned getNumRegs() const { return MC->getNumRegs(); }
77 
78   iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator>
getRegisters()79   getRegisters() const {
80     return make_range(MC->begin(), MC->end());
81   }
82 
83   /// Return the specified register in the class.
getRegister(unsigned i)84   MCRegister getRegister(unsigned i) const {
85     return MC->getRegister(i);
86   }
87 
88   /// Return true if the specified register is included in this register class.
89   /// This does not include virtual registers.
contains(Register Reg)90   bool contains(Register Reg) const {
91     /// FIXME: Historically this function has returned false when given vregs
92     ///        but it should probably only receive physical registers
93     if (!Reg.isPhysical())
94       return false;
95     return MC->contains(Reg.asMCReg());
96   }
97 
98   /// Return true if both registers are in this class.
contains(Register Reg1,Register Reg2)99   bool contains(Register Reg1, Register Reg2) const {
100     /// FIXME: Historically this function has returned false when given a vregs
101     ///        but it should probably only receive physical registers
102     if (!Reg1.isPhysical() || !Reg2.isPhysical())
103       return false;
104     return MC->contains(Reg1.asMCReg(), Reg2.asMCReg());
105   }
106 
107   /// Return the cost of copying a value between two registers in this class.
108   /// A negative number means the register class is very expensive
109   /// to copy e.g. status flag register classes.
getCopyCost()110   int getCopyCost() const { return MC->getCopyCost(); }
111 
112   /// Return true if this register class may be used to create virtual
113   /// registers.
isAllocatable()114   bool isAllocatable() const { return MC->isAllocatable(); }
115 
116   /// Return true if the specified TargetRegisterClass
117   /// is a proper sub-class of this TargetRegisterClass.
hasSubClass(const TargetRegisterClass * RC)118   bool hasSubClass(const TargetRegisterClass *RC) const {
119     return RC != this && hasSubClassEq(RC);
120   }
121 
122   /// Returns true if RC is a sub-class of or equal to this class.
hasSubClassEq(const TargetRegisterClass * RC)123   bool hasSubClassEq(const TargetRegisterClass *RC) const {
124     unsigned ID = RC->getID();
125     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
126   }
127 
128   /// Return true if the specified TargetRegisterClass is a
129   /// proper super-class of this TargetRegisterClass.
hasSuperClass(const TargetRegisterClass * RC)130   bool hasSuperClass(const TargetRegisterClass *RC) const {
131     return RC->hasSubClass(this);
132   }
133 
134   /// Returns true if RC is a super-class of or equal to this class.
hasSuperClassEq(const TargetRegisterClass * RC)135   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
136     return RC->hasSubClassEq(this);
137   }
138 
139   /// Returns a bit vector of subclasses, including this one.
140   /// The vector is indexed by class IDs.
141   ///
142   /// To use it, consider the returned array as a chunk of memory that
143   /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
144   /// contains a bitset of the ID of the subclasses in big-endian style.
145 
146   /// I.e., the representation of the memory from left to right at the
147   /// bit level looks like:
148   /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
149   ///                     [ XXX NumRegClasses NumRegClasses - 1 ... ]
150   /// Where the number represents the class ID and XXX bits that
151   /// should be ignored.
152   ///
153   /// See the implementation of hasSubClassEq for an example of how it
154   /// can be used.
getSubClassMask()155   const uint32_t *getSubClassMask() const {
156     return SubClassMask;
157   }
158 
159   /// Returns a 0-terminated list of sub-register indices that project some
160   /// super-register class into this register class. The list has an entry for
161   /// each Idx such that:
162   ///
163   ///   There exists SuperRC where:
164   ///     For all Reg in SuperRC:
165   ///       this->contains(Reg:Idx)
getSuperRegIndices()166   const uint16_t *getSuperRegIndices() const {
167     return SuperRegIndices;
168   }
169 
170   /// Returns a NULL-terminated list of super-classes.  The
171   /// classes are ordered by ID which is also a topological ordering from large
172   /// to small classes.  The list does NOT include the current class.
getSuperClasses()173   sc_iterator getSuperClasses() const {
174     return SuperClasses;
175   }
176 
177   /// Return true if this TargetRegisterClass is a subset
178   /// class of at least one other TargetRegisterClass.
isASubClass()179   bool isASubClass() const {
180     return SuperClasses[0] != nullptr;
181   }
182 
183   /// Returns the preferred order for allocating registers from this register
184   /// class in MF. The raw order comes directly from the .td file and may
185   /// include reserved registers that are not allocatable.
186   /// Register allocators should also make sure to allocate
187   /// callee-saved registers only after all the volatiles are used. The
188   /// RegisterClassInfo class provides filtered allocation orders with
189   /// callee-saved registers moved to the end.
190   ///
191   /// The MachineFunction argument can be used to tune the allocatable
192   /// registers based on the characteristics of the function, subtarget, or
193   /// other criteria.
194   ///
195   /// By default, this method returns all registers in the class.
getRawAllocationOrder(const MachineFunction & MF)196   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
197     return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
198   }
199 
200   /// Returns the combination of all lane masks of register in this class.
201   /// The lane masks of the registers are the combination of all lane masks
202   /// of their subregisters. Returns 1 if there are no subregisters.
getLaneMask()203   LaneBitmask getLaneMask() const {
204     return LaneMask;
205   }
206 };
207 
208 /// Extra information, not in MCRegisterDesc, about registers.
209 /// These are used by codegen, not by MC.
210 struct TargetRegisterInfoDesc {
211   unsigned CostPerUse;          // Extra cost of instructions using register.
212   bool inAllocatableClass;      // Register belongs to an allocatable regclass.
213 };
214 
215 /// Each TargetRegisterClass has a per register weight, and weight
216 /// limit which must be less than the limits of its pressure sets.
217 struct RegClassWeight {
218   unsigned RegWeight;
219   unsigned WeightLimit;
220 };
221 
222 /// TargetRegisterInfo base class - We assume that the target defines a static
223 /// array of TargetRegisterDesc objects that represent all of the machine
224 /// registers that the target has.  As such, we simply have to track a pointer
225 /// to this array so that we can turn register number into a register
226 /// descriptor.
227 ///
228 class TargetRegisterInfo : public MCRegisterInfo {
229 public:
230   using regclass_iterator = const TargetRegisterClass * const *;
231   using vt_iterator = const MVT::SimpleValueType *;
232   struct RegClassInfo {
233     unsigned RegSize, SpillSize, SpillAlignment;
234     vt_iterator VTList;
235   };
236 private:
237   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
238   const char *const *SubRegIndexNames;        // Names of subreg indexes.
239   // Pointer to array of lane masks, one per sub-reg index.
240   const LaneBitmask *SubRegIndexLaneMasks;
241 
242   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
243   LaneBitmask CoveringLanes;
244   const RegClassInfo *const RCInfos;
245   unsigned HwMode;
246 
247 protected:
248   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
249                      regclass_iterator RCB,
250                      regclass_iterator RCE,
251                      const char *const *SRINames,
252                      const LaneBitmask *SRILaneMasks,
253                      LaneBitmask CoveringLanes,
254                      const RegClassInfo *const RCIs,
255                      unsigned Mode = 0);
256   virtual ~TargetRegisterInfo();
257 
258 public:
259   // Register numbers can represent physical registers, virtual registers, and
260   // sometimes stack slots. The unsigned values are divided into these ranges:
261   //
262   //   0           Not a register, can be used as a sentinel.
263   //   [1;2^30)    Physical registers assigned by TableGen.
264   //   [2^30;2^31) Stack slots. (Rarely used.)
265   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
266   //
267   // Further sentinels can be allocated from the small negative integers.
268   // DenseMapInfo<unsigned> uses -1u and -2u.
269 
270   /// Return the size in bits of a register from class RC.
getRegSizeInBits(const TargetRegisterClass & RC)271   unsigned getRegSizeInBits(const TargetRegisterClass &RC) const {
272     return getRegClassInfo(RC).RegSize;
273   }
274 
275   /// Return the size in bytes of the stack slot allocated to hold a spilled
276   /// copy of a register from class RC.
getSpillSize(const TargetRegisterClass & RC)277   unsigned getSpillSize(const TargetRegisterClass &RC) const {
278     return getRegClassInfo(RC).SpillSize / 8;
279   }
280 
281   /// Return the minimum required alignment in bytes for a spill slot for
282   /// a register of this class.
getSpillAlignment(const TargetRegisterClass & RC)283   unsigned getSpillAlignment(const TargetRegisterClass &RC) const {
284     return getRegClassInfo(RC).SpillAlignment / 8;
285   }
286 
287   /// Return the minimum required alignment in bytes for a spill slot for
288   /// a register of this class.
getSpillAlign(const TargetRegisterClass & RC)289   Align getSpillAlign(const TargetRegisterClass &RC) const {
290     return Align(getRegClassInfo(RC).SpillAlignment / 8);
291   }
292 
293   /// Return true if the given TargetRegisterClass has the ValueType T.
isTypeLegalForClass(const TargetRegisterClass & RC,MVT T)294   bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const {
295     for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
296       if (MVT(*I) == T)
297         return true;
298     return false;
299   }
300 
301   /// Loop over all of the value types that can be represented by values
302   /// in the given register class.
legalclasstypes_begin(const TargetRegisterClass & RC)303   vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const {
304     return getRegClassInfo(RC).VTList;
305   }
306 
legalclasstypes_end(const TargetRegisterClass & RC)307   vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const {
308     vt_iterator I = legalclasstypes_begin(RC);
309     while (*I != MVT::Other)
310       ++I;
311     return I;
312   }
313 
314   /// Returns the Register Class of a physical register of the given type,
315   /// picking the most sub register class of the right type that contains this
316   /// physreg.
317   const TargetRegisterClass *getMinimalPhysRegClass(MCRegister Reg,
318                                                     MVT VT = MVT::Other) const;
319 
320   /// Return the maximal subclass of the given register class that is
321   /// allocatable or NULL.
322   const TargetRegisterClass *
323     getAllocatableClass(const TargetRegisterClass *RC) const;
324 
325   /// Returns a bitset indexed by register number indicating if a register is
326   /// allocatable or not. If a register class is specified, returns the subset
327   /// for the class.
328   BitVector getAllocatableSet(const MachineFunction &MF,
329                               const TargetRegisterClass *RC = nullptr) const;
330 
331   /// Return the additional cost of using this register instead
332   /// of other registers in its class.
getCostPerUse(MCRegister RegNo)333   unsigned getCostPerUse(MCRegister RegNo) const {
334     return InfoDesc[RegNo].CostPerUse;
335   }
336 
337   /// Return true if the register is in the allocation of any register class.
isInAllocatableClass(MCRegister RegNo)338   bool isInAllocatableClass(MCRegister RegNo) const {
339     return InfoDesc[RegNo].inAllocatableClass;
340   }
341 
342   /// Return the human-readable symbolic target-specific
343   /// name for the specified SubRegIndex.
getSubRegIndexName(unsigned SubIdx)344   const char *getSubRegIndexName(unsigned SubIdx) const {
345     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
346            "This is not a subregister index");
347     return SubRegIndexNames[SubIdx-1];
348   }
349 
350   /// Return a bitmask representing the parts of a register that are covered by
351   /// SubIdx \see LaneBitmask.
352   ///
353   /// SubIdx == 0 is allowed, it has the lane mask ~0u.
getSubRegIndexLaneMask(unsigned SubIdx)354   LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
355     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
356     return SubRegIndexLaneMasks[SubIdx];
357   }
358 
359   /// The lane masks returned by getSubRegIndexLaneMask() above can only be
360   /// used to determine if sub-registers overlap - they can't be used to
361   /// determine if a set of sub-registers completely cover another
362   /// sub-register.
363   ///
364   /// The X86 general purpose registers have two lanes corresponding to the
365   /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
366   /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
367   /// sub_32bit sub-register.
368   ///
369   /// On the other hand, the ARM NEON lanes fully cover their registers: The
370   /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
371   /// This is related to the CoveredBySubRegs property on register definitions.
372   ///
373   /// This function returns a bit mask of lanes that completely cover their
374   /// sub-registers. More precisely, given:
375   ///
376   ///   Covering = getCoveringLanes();
377   ///   MaskA = getSubRegIndexLaneMask(SubA);
378   ///   MaskB = getSubRegIndexLaneMask(SubB);
379   ///
380   /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
381   /// SubB.
getCoveringLanes()382   LaneBitmask getCoveringLanes() const { return CoveringLanes; }
383 
384   /// Returns true if the two registers are equal or alias each other.
385   /// The registers may be virtual registers.
regsOverlap(Register regA,Register regB)386   bool regsOverlap(Register regA, Register regB) const {
387     if (regA == regB) return true;
388     if (!regA.isPhysical() || !regB.isPhysical())
389       return false;
390 
391     // Regunits are numerically ordered. Find a common unit.
392     MCRegUnitIterator RUA(regA.asMCReg(), this);
393     MCRegUnitIterator RUB(regB.asMCReg(), this);
394     do {
395       if (*RUA == *RUB) return true;
396       if (*RUA < *RUB) ++RUA;
397       else             ++RUB;
398     } while (RUA.isValid() && RUB.isValid());
399     return false;
400   }
401 
402   /// Returns true if Reg contains RegUnit.
hasRegUnit(MCRegister Reg,Register RegUnit)403   bool hasRegUnit(MCRegister Reg, Register RegUnit) const {
404     for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
405       if (Register(*Units) == RegUnit)
406         return true;
407     return false;
408   }
409 
410   /// Returns the original SrcReg unless it is the target of a copy-like
411   /// operation, in which case we chain backwards through all such operations
412   /// to the ultimate source register.  If a physical register is encountered,
413   /// we stop the search.
414   virtual Register lookThruCopyLike(Register SrcReg,
415                                     const MachineRegisterInfo *MRI) const;
416 
417   /// Return a null-terminated list of all of the callee-saved registers on
418   /// this target. The register should be in the order of desired callee-save
419   /// stack frame offset. The first register is closest to the incoming stack
420   /// pointer if stack grows down, and vice versa.
421   /// Notice: This function does not take into account disabled CSRs.
422   ///         In most cases you will want to use instead the function
423   ///         getCalleeSavedRegs that is implemented in MachineRegisterInfo.
424   virtual const MCPhysReg*
425   getCalleeSavedRegs(const MachineFunction *MF) const = 0;
426 
427   /// Return a mask of call-preserved registers for the given calling convention
428   /// on the current function. The mask should include all call-preserved
429   /// aliases. This is used by the register allocator to determine which
430   /// registers can be live across a call.
431   ///
432   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
433   /// A set bit indicates that all bits of the corresponding register are
434   /// preserved across the function call.  The bit mask is expected to be
435   /// sub-register complete, i.e. if A is preserved, so are all its
436   /// sub-registers.
437   ///
438   /// Bits are numbered from the LSB, so the bit for physical register Reg can
439   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
440   ///
441   /// A NULL pointer means that no register mask will be used, and call
442   /// instructions should use implicit-def operands to indicate call clobbered
443   /// registers.
444   ///
getCallPreservedMask(const MachineFunction & MF,CallingConv::ID)445   virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
446                                                CallingConv::ID) const {
447     // The default mask clobbers everything.  All targets should override.
448     return nullptr;
449   }
450 
451   /// Return a register mask for the registers preserved by the unwinder,
452   /// or nullptr if no custom mask is needed.
453   virtual const uint32_t *
getCustomEHPadPreservedMask(const MachineFunction & MF)454   getCustomEHPadPreservedMask(const MachineFunction &MF) const {
455     return nullptr;
456   }
457 
458   /// Return a register mask that clobbers everything.
getNoPreservedMask()459   virtual const uint32_t *getNoPreservedMask() const {
460     llvm_unreachable("target does not provide no preserved mask");
461   }
462 
463   /// Return a list of all of the registers which are clobbered "inside" a call
464   /// to the given function. For example, these might be needed for PLT
465   /// sequences of long-branch veneers.
466   virtual ArrayRef<MCPhysReg>
getIntraCallClobberedRegs(const MachineFunction * MF)467   getIntraCallClobberedRegs(const MachineFunction *MF) const {
468     return {};
469   }
470 
471   /// Return true if all bits that are set in mask \p mask0 are also set in
472   /// \p mask1.
473   bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
474 
475   /// Return all the call-preserved register masks defined for this target.
476   virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
477   virtual ArrayRef<const char *> getRegMaskNames() const = 0;
478 
479   /// Returns a bitset indexed by physical register number indicating if a
480   /// register is a special register that has particular uses and should be
481   /// considered unavailable at all times, e.g. stack pointer, return address.
482   /// A reserved register:
483   /// - is not allocatable
484   /// - is considered always live
485   /// - is ignored by liveness tracking
486   /// It is often necessary to reserve the super registers of a reserved
487   /// register as well, to avoid them getting allocated indirectly. You may use
488   /// markSuperRegs() and checkAllSuperRegsMarked() in this case.
489   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
490 
491   /// Returns false if we can't guarantee that Physreg, specified as an IR asm
492   /// clobber constraint, will be preserved across the statement.
isAsmClobberable(const MachineFunction & MF,MCRegister PhysReg)493   virtual bool isAsmClobberable(const MachineFunction &MF,
494                                 MCRegister PhysReg) const {
495     return true;
496   }
497 
498   /// Returns true if PhysReg cannot be written to in inline asm statements.
isInlineAsmReadOnlyReg(const MachineFunction & MF,unsigned PhysReg)499   virtual bool isInlineAsmReadOnlyReg(const MachineFunction &MF,
500                                       unsigned PhysReg) const {
501     return false;
502   }
503 
504   /// Returns true if PhysReg is unallocatable and constant throughout the
505   /// function.  Used by MachineRegisterInfo::isConstantPhysReg().
isConstantPhysReg(MCRegister PhysReg)506   virtual bool isConstantPhysReg(MCRegister PhysReg) const { return false; }
507 
508   /// Returns true if the register class is considered divergent.
isDivergentRegClass(const TargetRegisterClass * RC)509   virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const {
510     return false;
511   }
512 
513   /// Physical registers that may be modified within a function but are
514   /// guaranteed to be restored before any uses. This is useful for targets that
515   /// have call sequences where a GOT register may be updated by the caller
516   /// prior to a call and is guaranteed to be restored (also by the caller)
517   /// after the call.
isCallerPreservedPhysReg(MCRegister PhysReg,const MachineFunction & MF)518   virtual bool isCallerPreservedPhysReg(MCRegister PhysReg,
519                                         const MachineFunction &MF) const {
520     return false;
521   }
522 
523   /// This is a wrapper around getCallPreservedMask().
524   /// Return true if the register is preserved after the call.
525   virtual bool isCalleeSavedPhysReg(MCRegister PhysReg,
526                                     const MachineFunction &MF) const;
527 
528   /// Prior to adding the live-out mask to a stackmap or patchpoint
529   /// instruction, provide the target the opportunity to adjust it (mainly to
530   /// remove pseudo-registers that should be ignored).
adjustStackMapLiveOutMask(uint32_t * Mask)531   virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
532 
533   /// Return a super-register of the specified register
534   /// Reg so its sub-register of index SubIdx is Reg.
getMatchingSuperReg(MCRegister Reg,unsigned SubIdx,const TargetRegisterClass * RC)535   MCRegister getMatchingSuperReg(MCRegister Reg, unsigned SubIdx,
536                                  const TargetRegisterClass *RC) const {
537     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
538   }
539 
540   /// Return a subclass of the specified register
541   /// class A so that each register in it has a sub-register of the
542   /// specified sub-register index which is in the specified register class B.
543   ///
544   /// TableGen will synthesize missing A sub-classes.
545   virtual const TargetRegisterClass *
546   getMatchingSuperRegClass(const TargetRegisterClass *A,
547                            const TargetRegisterClass *B, unsigned Idx) const;
548 
549   // For a copy-like instruction that defines a register of class DefRC with
550   // subreg index DefSubReg, reading from another source with class SrcRC and
551   // subregister SrcSubReg return true if this is a preferable copy
552   // instruction or an earlier use should be used.
553   virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
554                                     unsigned DefSubReg,
555                                     const TargetRegisterClass *SrcRC,
556                                     unsigned SrcSubReg) const;
557 
558   /// Returns the largest legal sub-class of RC that
559   /// supports the sub-register index Idx.
560   /// If no such sub-class exists, return NULL.
561   /// If all registers in RC already have an Idx sub-register, return RC.
562   ///
563   /// TableGen generates a version of this function that is good enough in most
564   /// cases.  Targets can override if they have constraints that TableGen
565   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
566   /// supported by the full GR32 register class in 64-bit mode, but only by the
567   /// GR32_ABCD regiister class in 32-bit mode.
568   ///
569   /// TableGen will synthesize missing RC sub-classes.
570   virtual const TargetRegisterClass *
getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx)571   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
572     assert(Idx == 0 && "Target has no sub-registers");
573     return RC;
574   }
575 
576   /// Return the subregister index you get from composing
577   /// two subregister indices.
578   ///
579   /// The special null sub-register index composes as the identity.
580   ///
581   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
582   /// returns c. Note that composeSubRegIndices does not tell you about illegal
583   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
584   /// b, composeSubRegIndices doesn't tell you.
585   ///
586   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
587   /// ssub_0:S0 - ssub_3:S3 subregs.
588   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
composeSubRegIndices(unsigned a,unsigned b)589   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
590     if (!a) return b;
591     if (!b) return a;
592     return composeSubRegIndicesImpl(a, b);
593   }
594 
595   /// Transforms a LaneMask computed for one subregister to the lanemask that
596   /// would have been computed when composing the subsubregisters with IdxA
597   /// first. @sa composeSubRegIndices()
composeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask Mask)598   LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
599                                          LaneBitmask Mask) const {
600     if (!IdxA)
601       return Mask;
602     return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
603   }
604 
605   /// Transform a lanemask given for a virtual register to the corresponding
606   /// lanemask before using subregister with index \p IdxA.
607   /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
608   /// valie lane mask (no invalid bits set) the following holds:
609   /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
610   /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
611   /// => X1 == Mask
reverseComposeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask LaneMask)612   LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
613                                                 LaneBitmask LaneMask) const {
614     if (!IdxA)
615       return LaneMask;
616     return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
617   }
618 
619   /// Debugging helper: dump register in human readable form to dbgs() stream.
620   static void dumpReg(Register Reg, unsigned SubRegIndex = 0,
621                       const TargetRegisterInfo *TRI = nullptr);
622 
623 protected:
624   /// Overridden by TableGen in targets that have sub-registers.
composeSubRegIndicesImpl(unsigned,unsigned)625   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
626     llvm_unreachable("Target has no sub-registers");
627   }
628 
629   /// Overridden by TableGen in targets that have sub-registers.
630   virtual LaneBitmask
composeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)631   composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
632     llvm_unreachable("Target has no sub-registers");
633   }
634 
reverseComposeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)635   virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
636                                                             LaneBitmask) const {
637     llvm_unreachable("Target has no sub-registers");
638   }
639 
640 public:
641   /// Find a common super-register class if it exists.
642   ///
643   /// Find a register class, SuperRC and two sub-register indices, PreA and
644   /// PreB, such that:
645   ///
646   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
647   ///
648   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
649   ///
650   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
651   ///
652   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
653   /// requirements, and there is no register class with a smaller spill size
654   /// that satisfies the requirements.
655   ///
656   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
657   ///
658   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
659   /// that case, the returned register class will be a sub-class of the
660   /// corresponding argument register class.
661   ///
662   /// The function returns NULL if no register class can be found.
663   const TargetRegisterClass*
664   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
665                          const TargetRegisterClass *RCB, unsigned SubB,
666                          unsigned &PreA, unsigned &PreB) const;
667 
668   //===--------------------------------------------------------------------===//
669   // Register Class Information
670   //
671 protected:
getRegClassInfo(const TargetRegisterClass & RC)672   const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const {
673     return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
674   }
675 
676 public:
677   /// Register class iterators
regclass_begin()678   regclass_iterator regclass_begin() const { return RegClassBegin; }
regclass_end()679   regclass_iterator regclass_end() const { return RegClassEnd; }
regclasses()680   iterator_range<regclass_iterator> regclasses() const {
681     return make_range(regclass_begin(), regclass_end());
682   }
683 
getNumRegClasses()684   unsigned getNumRegClasses() const {
685     return (unsigned)(regclass_end()-regclass_begin());
686   }
687 
688   /// Returns the register class associated with the enumeration value.
689   /// See class MCOperandInfo.
getRegClass(unsigned i)690   const TargetRegisterClass *getRegClass(unsigned i) const {
691     assert(i < getNumRegClasses() && "Register Class ID out of range");
692     return RegClassBegin[i];
693   }
694 
695   /// Returns the name of the register class.
getRegClassName(const TargetRegisterClass * Class)696   const char *getRegClassName(const TargetRegisterClass *Class) const {
697     return MCRegisterInfo::getRegClassName(Class->MC);
698   }
699 
700   /// Find the largest common subclass of A and B.
701   /// Return NULL if there is no common subclass.
702   const TargetRegisterClass *
703   getCommonSubClass(const TargetRegisterClass *A,
704                     const TargetRegisterClass *B) const;
705 
706   /// Returns a TargetRegisterClass used for pointer values.
707   /// If a target supports multiple different pointer register classes,
708   /// kind specifies which one is indicated.
709   virtual const TargetRegisterClass *
710   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
711     llvm_unreachable("Target didn't implement getPointerRegClass!");
712   }
713 
714   /// Returns a legal register class to copy a register in the specified class
715   /// to or from. If it is possible to copy the register directly without using
716   /// a cross register class copy, return the specified RC. Returns NULL if it
717   /// is not possible to copy between two registers of the specified class.
718   virtual const TargetRegisterClass *
getCrossCopyRegClass(const TargetRegisterClass * RC)719   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
720     return RC;
721   }
722 
723   /// Returns the largest super class of RC that is legal to use in the current
724   /// sub-target and has the same spill size.
725   /// The returned register class can be used to create virtual registers which
726   /// means that all its registers can be copied and spilled.
727   virtual const TargetRegisterClass *
getLargestLegalSuperClass(const TargetRegisterClass * RC,const MachineFunction &)728   getLargestLegalSuperClass(const TargetRegisterClass *RC,
729                             const MachineFunction &) const {
730     /// The default implementation is very conservative and doesn't allow the
731     /// register allocator to inflate register classes.
732     return RC;
733   }
734 
735   /// Return the register pressure "high water mark" for the specific register
736   /// class. The scheduler is in high register pressure mode (for the specific
737   /// register class) if it goes over the limit.
738   ///
739   /// Note: this is the old register pressure model that relies on a manually
740   /// specified representative register class per value type.
getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF)741   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
742                                        MachineFunction &MF) const {
743     return 0;
744   }
745 
746   /// Return a heuristic for the machine scheduler to compare the profitability
747   /// of increasing one register pressure set versus another.  The scheduler
748   /// will prefer increasing the register pressure of the set which returns
749   /// the largest value for this function.
getRegPressureSetScore(const MachineFunction & MF,unsigned PSetID)750   virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
751                                           unsigned PSetID) const {
752     return PSetID;
753   }
754 
755   /// Get the weight in units of pressure for this register class.
756   virtual const RegClassWeight &getRegClassWeight(
757     const TargetRegisterClass *RC) const = 0;
758 
759   /// Returns size in bits of a phys/virtual/generic register.
760   unsigned getRegSizeInBits(Register Reg, const MachineRegisterInfo &MRI) const;
761 
762   /// Get the weight in units of pressure for this register unit.
763   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
764 
765   /// Get the number of dimensions of register pressure.
766   virtual unsigned getNumRegPressureSets() const = 0;
767 
768   /// Get the name of this register unit pressure set.
769   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
770 
771   /// Get the register unit pressure limit for this dimension.
772   /// This limit must be adjusted dynamically for reserved registers.
773   virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
774                                           unsigned Idx) const = 0;
775 
776   /// Get the dimensions of register pressure impacted by this register class.
777   /// Returns a -1 terminated array of pressure set IDs.
778   virtual const int *getRegClassPressureSets(
779     const TargetRegisterClass *RC) const = 0;
780 
781   /// Get the dimensions of register pressure impacted by this register unit.
782   /// Returns a -1 terminated array of pressure set IDs.
783   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
784 
785   /// Get a list of 'hint' registers that the register allocator should try
786   /// first when allocating a physical register for the virtual register
787   /// VirtReg. These registers are effectively moved to the front of the
788   /// allocation order. If true is returned, regalloc will try to only use
789   /// hints to the greatest extent possible even if it means spilling.
790   ///
791   /// The Order argument is the allocation order for VirtReg's register class
792   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
793   /// come from Order, and they must not be reserved.
794   ///
795   /// The default implementation of this function will only add target
796   /// independent register allocation hints. Targets that override this
797   /// function should typically call this default implementation as well and
798   /// expect to see generic copy hints added.
799   virtual bool
800   getRegAllocationHints(Register VirtReg, ArrayRef<MCPhysReg> Order,
801                         SmallVectorImpl<MCPhysReg> &Hints,
802                         const MachineFunction &MF,
803                         const VirtRegMap *VRM = nullptr,
804                         const LiveRegMatrix *Matrix = nullptr) const;
805 
806   /// A callback to allow target a chance to update register allocation hints
807   /// when a register is "changed" (e.g. coalesced) to another register.
808   /// e.g. On ARM, some virtual registers should target register pairs,
809   /// if one of pair is coalesced to another register, the allocation hint of
810   /// the other half of the pair should be changed to point to the new register.
updateRegAllocHint(Register Reg,Register NewReg,MachineFunction & MF)811   virtual void updateRegAllocHint(Register Reg, Register NewReg,
812                                   MachineFunction &MF) const {
813     // Do nothing.
814   }
815 
816   /// Allow the target to reverse allocation order of local live ranges. This
817   /// will generally allocate shorter local live ranges first. For targets with
818   /// many registers, this could reduce regalloc compile time by a large
819   /// factor. It is disabled by default for three reasons:
820   /// (1) Top-down allocation is simpler and easier to debug for targets that
821   /// don't benefit from reversing the order.
822   /// (2) Bottom-up allocation could result in poor evicition decisions on some
823   /// targets affecting the performance of compiled code.
824   /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
reverseLocalAssignment()825   virtual bool reverseLocalAssignment() const { return false; }
826 
827   /// Allow the target to override the cost of using a callee-saved register for
828   /// the first time. Default value of 0 means we will use a callee-saved
829   /// register if it is available.
getCSRFirstUseCost()830   virtual unsigned getCSRFirstUseCost() const { return 0; }
831 
832   /// Returns true if the target requires (and can make use of) the register
833   /// scavenger.
requiresRegisterScavenging(const MachineFunction & MF)834   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
835     return false;
836   }
837 
838   /// Returns true if the target wants to use frame pointer based accesses to
839   /// spill to the scavenger emergency spill slot.
useFPForScavengingIndex(const MachineFunction & MF)840   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
841     return true;
842   }
843 
844   /// Returns true if the target requires post PEI scavenging of registers for
845   /// materializing frame index constants.
requiresFrameIndexScavenging(const MachineFunction & MF)846   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
847     return false;
848   }
849 
850   /// Returns true if the target requires using the RegScavenger directly for
851   /// frame elimination despite using requiresFrameIndexScavenging.
requiresFrameIndexReplacementScavenging(const MachineFunction & MF)852   virtual bool requiresFrameIndexReplacementScavenging(
853       const MachineFunction &MF) const {
854     return false;
855   }
856 
857   /// Returns true if the target wants the LocalStackAllocation pass to be run
858   /// and virtual base registers used for more efficient stack access.
requiresVirtualBaseRegisters(const MachineFunction & MF)859   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
860     return false;
861   }
862 
863   /// Return true if target has reserved a spill slot in the stack frame of
864   /// the given function for the specified register. e.g. On x86, if the frame
865   /// register is required, the first fixed stack object is reserved as its
866   /// spill slot. This tells PEI not to create a new stack frame
867   /// object for the given register. It should be called only after
868   /// determineCalleeSaves().
hasReservedSpillSlot(const MachineFunction & MF,Register Reg,int & FrameIdx)869   virtual bool hasReservedSpillSlot(const MachineFunction &MF, Register Reg,
870                                     int &FrameIdx) const {
871     return false;
872   }
873 
874   /// Returns true if the live-ins should be tracked after register allocation.
trackLivenessAfterRegAlloc(const MachineFunction & MF)875   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
876     return true;
877   }
878 
879   /// True if the stack can be realigned for the target.
880   virtual bool canRealignStack(const MachineFunction &MF) const;
881 
882   /// True if storage within the function requires the stack pointer to be
883   /// aligned more than the normal calling convention calls for.
884   /// This cannot be overriden by the target, but canRealignStack can be
885   /// overridden.
886   bool needsStackRealignment(const MachineFunction &MF) const;
887 
888   /// Get the offset from the referenced frame index in the instruction,
889   /// if there is one.
getFrameIndexInstrOffset(const MachineInstr * MI,int Idx)890   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
891                                            int Idx) const {
892     return 0;
893   }
894 
895   /// Returns true if the instruction's frame index reference would be better
896   /// served by a base register other than FP or SP.
897   /// Used by LocalStackFrameAllocation to determine which frame index
898   /// references it should create new base registers for.
needsFrameBaseReg(MachineInstr * MI,int64_t Offset)899   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
900     return false;
901   }
902 
903   /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
904   /// before insertion point I.
materializeFrameBaseRegister(MachineBasicBlock * MBB,Register BaseReg,int FrameIdx,int64_t Offset)905   virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
906                                             Register BaseReg, int FrameIdx,
907                                             int64_t Offset) const {
908     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
909                      "target");
910   }
911 
912   /// Resolve a frame index operand of an instruction
913   /// to reference the indicated base register plus offset instead.
resolveFrameIndex(MachineInstr & MI,Register BaseReg,int64_t Offset)914   virtual void resolveFrameIndex(MachineInstr &MI, Register BaseReg,
915                                  int64_t Offset) const {
916     llvm_unreachable("resolveFrameIndex does not exist on this target");
917   }
918 
919   /// Determine whether a given base register plus offset immediate is
920   /// encodable to resolve a frame index.
isFrameOffsetLegal(const MachineInstr * MI,Register BaseReg,int64_t Offset)921   virtual bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg,
922                                   int64_t Offset) const {
923     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
924   }
925 
926   /// Spill the register so it can be used by the register scavenger.
927   /// Return true if the register was spilled, false otherwise.
928   /// If this function does not spill the register, the scavenger
929   /// will instead spill it to the emergency spill slot.
saveScavengerRegister(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,MachineBasicBlock::iterator & UseMI,const TargetRegisterClass * RC,Register Reg)930   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
931                                      MachineBasicBlock::iterator I,
932                                      MachineBasicBlock::iterator &UseMI,
933                                      const TargetRegisterClass *RC,
934                                      Register Reg) const {
935     return false;
936   }
937 
938   /// This method must be overriden to eliminate abstract frame indices from
939   /// instructions which may use them. The instruction referenced by the
940   /// iterator contains an MO_FrameIndex operand which must be eliminated by
941   /// this method. This method may modify or replace the specified instruction,
942   /// as long as it keeps the iterator pointing at the finished product.
943   /// SPAdj is the SP adjustment due to call frame setup instruction.
944   /// FIOperandNum is the FI operand number.
945   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
946                                    int SPAdj, unsigned FIOperandNum,
947                                    RegScavenger *RS = nullptr) const = 0;
948 
949   /// Return the assembly name for \p Reg.
getRegAsmName(MCRegister Reg)950   virtual StringRef getRegAsmName(MCRegister Reg) const {
951     // FIXME: We are assuming that the assembly name is equal to the TableGen
952     // name converted to lower case
953     //
954     // The TableGen name is the name of the definition for this register in the
955     // target's tablegen files.  For example, the TableGen name of
956     // def EAX : Register <...>; is "EAX"
957     return StringRef(getName(Reg));
958   }
959 
960   //===--------------------------------------------------------------------===//
961   /// Subtarget Hooks
962 
963   /// SrcRC and DstRC will be morphed into NewRC if this returns true.
shouldCoalesce(MachineInstr * MI,const TargetRegisterClass * SrcRC,unsigned SubReg,const TargetRegisterClass * DstRC,unsigned DstSubReg,const TargetRegisterClass * NewRC,LiveIntervals & LIS)964   virtual bool shouldCoalesce(MachineInstr *MI,
965                               const TargetRegisterClass *SrcRC,
966                               unsigned SubReg,
967                               const TargetRegisterClass *DstRC,
968                               unsigned DstSubReg,
969                               const TargetRegisterClass *NewRC,
970                               LiveIntervals &LIS) const
971   { return true; }
972 
973   /// Region split has a high compile time cost especially for large live range.
974   /// This method is used to decide whether or not \p VirtReg should
975   /// go through this expensive splitting heuristic.
976   virtual bool shouldRegionSplitForVirtReg(const MachineFunction &MF,
977                                            const LiveInterval &VirtReg) const;
978 
979   /// Last chance recoloring has a high compile time cost especially for
980   /// targets with a lot of registers.
981   /// This method is used to decide whether or not \p VirtReg should
982   /// go through this expensive heuristic.
983   /// When this target hook is hit, by returning false, there is a high
984   /// chance that the register allocation will fail altogether (usually with
985   /// "ran out of registers").
986   /// That said, this error usually points to another problem in the
987   /// optimization pipeline.
988   virtual bool
shouldUseLastChanceRecoloringForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg)989   shouldUseLastChanceRecoloringForVirtReg(const MachineFunction &MF,
990                                           const LiveInterval &VirtReg) const {
991     return true;
992   }
993 
994   /// Deferred spilling delays the spill insertion of a virtual register
995   /// after every other allocation. By deferring the spilling, it is
996   /// sometimes possible to eliminate that spilling altogether because
997   /// something else could have been eliminated, thus leaving some space
998   /// for the virtual register.
999   /// However, this comes with a compile time impact because it adds one
1000   /// more stage to the greedy register allocator.
1001   /// This method is used to decide whether \p VirtReg should use the deferred
1002   /// spilling stage instead of being spilled right away.
1003   virtual bool
shouldUseDeferredSpillingForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg)1004   shouldUseDeferredSpillingForVirtReg(const MachineFunction &MF,
1005                                       const LiveInterval &VirtReg) const {
1006     return false;
1007   }
1008 
1009   //===--------------------------------------------------------------------===//
1010   /// Debug information queries.
1011 
1012   /// getFrameRegister - This method should return the register used as a base
1013   /// for values allocated in the current stack frame.
1014   virtual Register getFrameRegister(const MachineFunction &MF) const = 0;
1015 
1016   /// Mark a register and all its aliases as reserved in the given set.
1017   void markSuperRegs(BitVector &RegisterSet, MCRegister Reg) const;
1018 
1019   /// Returns true if for every register in the set all super registers are part
1020   /// of the set as well.
1021   bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
1022       ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
1023 
1024   virtual const TargetRegisterClass *
getConstrainedRegClassForOperand(const MachineOperand & MO,const MachineRegisterInfo & MRI)1025   getConstrainedRegClassForOperand(const MachineOperand &MO,
1026                                    const MachineRegisterInfo &MRI) const {
1027     return nullptr;
1028   }
1029 
1030   /// Returns the physical register number of sub-register "Index"
1031   /// for physical register RegNo. Return zero if the sub-register does not
1032   /// exist.
getSubReg(MCRegister Reg,unsigned Idx)1033   inline MCRegister getSubReg(MCRegister Reg, unsigned Idx) const {
1034     return static_cast<const MCRegisterInfo *>(this)->getSubReg(Reg, Idx);
1035   }
1036 };
1037 
1038 //===----------------------------------------------------------------------===//
1039 //                           SuperRegClassIterator
1040 //===----------------------------------------------------------------------===//
1041 //
1042 // Iterate over the possible super-registers for a given register class. The
1043 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
1044 // possible classes of super-registers.
1045 //
1046 // Each bit mask will have at least one set bit, and each set bit in Mask
1047 // corresponds to a SuperRC such that:
1048 //
1049 //   For all Reg in SuperRC: Reg:Idx is in RC.
1050 //
1051 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
1052 // also satisfies the above requirement, assuming Reg:0 == Reg.
1053 //
1054 class SuperRegClassIterator {
1055   const unsigned RCMaskWords;
1056   unsigned SubReg = 0;
1057   const uint16_t *Idx;
1058   const uint32_t *Mask;
1059 
1060 public:
1061   /// Create a SuperRegClassIterator that visits all the super-register classes
1062   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
1063   SuperRegClassIterator(const TargetRegisterClass *RC,
1064                         const TargetRegisterInfo *TRI,
1065                         bool IncludeSelf = false)
1066     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
1067       Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
1068     if (!IncludeSelf)
1069       ++*this;
1070   }
1071 
1072   /// Returns true if this iterator is still pointing at a valid entry.
isValid()1073   bool isValid() const { return Idx; }
1074 
1075   /// Returns the current sub-register index.
getSubReg()1076   unsigned getSubReg() const { return SubReg; }
1077 
1078   /// Returns the bit mask of register classes that getSubReg() projects into
1079   /// RC.
1080   /// See TargetRegisterClass::getSubClassMask() for how to use it.
getMask()1081   const uint32_t *getMask() const { return Mask; }
1082 
1083   /// Advance iterator to the next entry.
1084   void operator++() {
1085     assert(isValid() && "Cannot move iterator past end.");
1086     Mask += RCMaskWords;
1087     SubReg = *Idx++;
1088     if (!SubReg)
1089       Idx = nullptr;
1090   }
1091 };
1092 
1093 //===----------------------------------------------------------------------===//
1094 //                           BitMaskClassIterator
1095 //===----------------------------------------------------------------------===//
1096 /// This class encapuslates the logic to iterate over bitmask returned by
1097 /// the various RegClass related APIs.
1098 /// E.g., this class can be used to iterate over the subclasses provided by
1099 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
1100 class BitMaskClassIterator {
1101   /// Total number of register classes.
1102   const unsigned NumRegClasses;
1103   /// Base index of CurrentChunk.
1104   /// In other words, the number of bit we read to get at the
1105   /// beginning of that chunck.
1106   unsigned Base = 0;
1107   /// Adjust base index of CurrentChunk.
1108   /// Base index + how many bit we read within CurrentChunk.
1109   unsigned Idx = 0;
1110   /// Current register class ID.
1111   unsigned ID = 0;
1112   /// Mask we are iterating over.
1113   const uint32_t *Mask;
1114   /// Current chunk of the Mask we are traversing.
1115   uint32_t CurrentChunk;
1116 
1117   /// Move ID to the next set bit.
moveToNextID()1118   void moveToNextID() {
1119     // If the current chunk of memory is empty, move to the next one,
1120     // while making sure we do not go pass the number of register
1121     // classes.
1122     while (!CurrentChunk) {
1123       // Move to the next chunk.
1124       Base += 32;
1125       if (Base >= NumRegClasses) {
1126         ID = NumRegClasses;
1127         return;
1128       }
1129       CurrentChunk = *++Mask;
1130       Idx = Base;
1131     }
1132     // Otherwise look for the first bit set from the right
1133     // (representation of the class ID is big endian).
1134     // See getSubClassMask for more details on the representation.
1135     unsigned Offset = countTrailingZeros(CurrentChunk);
1136     // Add the Offset to the adjusted base number of this chunk: Idx.
1137     // This is the ID of the register class.
1138     ID = Idx + Offset;
1139 
1140     // Consume the zeros, if any, and the bit we just read
1141     // so that we are at the right spot for the next call.
1142     // Do not do Offset + 1 because Offset may be 31 and 32
1143     // will be UB for the shift, though in that case we could
1144     // have make the chunk being equal to 0, but that would
1145     // have introduced a if statement.
1146     moveNBits(Offset);
1147     moveNBits(1);
1148   }
1149 
1150   /// Move \p NumBits Bits forward in CurrentChunk.
moveNBits(unsigned NumBits)1151   void moveNBits(unsigned NumBits) {
1152     assert(NumBits < 32 && "Undefined behavior spotted!");
1153     // Consume the bit we read for the next call.
1154     CurrentChunk >>= NumBits;
1155     // Adjust the base for the chunk.
1156     Idx += NumBits;
1157   }
1158 
1159 public:
1160   /// Create a BitMaskClassIterator that visits all the register classes
1161   /// represented by \p Mask.
1162   ///
1163   /// \pre \p Mask != nullptr
BitMaskClassIterator(const uint32_t * Mask,const TargetRegisterInfo & TRI)1164   BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
1165       : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
1166     // Move to the first ID.
1167     moveToNextID();
1168   }
1169 
1170   /// Returns true if this iterator is still pointing at a valid entry.
isValid()1171   bool isValid() const { return getID() != NumRegClasses; }
1172 
1173   /// Returns the current register class ID.
getID()1174   unsigned getID() const { return ID; }
1175 
1176   /// Advance iterator to the next entry.
1177   void operator++() {
1178     assert(isValid() && "Cannot move iterator past end.");
1179     moveToNextID();
1180   }
1181 };
1182 
1183 // This is useful when building IndexedMaps keyed on virtual registers
1184 struct VirtReg2IndexFunctor {
1185   using argument_type = Register;
operatorVirtReg2IndexFunctor1186   unsigned operator()(Register Reg) const {
1187     return Register::virtReg2Index(Reg);
1188   }
1189 };
1190 
1191 /// Prints virtual and physical registers with or without a TRI instance.
1192 ///
1193 /// The format is:
1194 ///   %noreg          - NoRegister
1195 ///   %5              - a virtual register.
1196 ///   %5:sub_8bit     - a virtual register with sub-register index (with TRI).
1197 ///   %eax            - a physical register
1198 ///   %physreg17      - a physical register when no TRI instance given.
1199 ///
1200 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
1201 Printable printReg(Register Reg, const TargetRegisterInfo *TRI = nullptr,
1202                    unsigned SubIdx = 0,
1203                    const MachineRegisterInfo *MRI = nullptr);
1204 
1205 /// Create Printable object to print register units on a \ref raw_ostream.
1206 ///
1207 /// Register units are named after their root registers:
1208 ///
1209 ///   al      - Single root.
1210 ///   fp0~st7 - Dual roots.
1211 ///
1212 /// Usage: OS << printRegUnit(Unit, TRI) << '\n';
1213 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
1214 
1215 /// Create Printable object to print virtual registers and physical
1216 /// registers on a \ref raw_ostream.
1217 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
1218 
1219 /// Create Printable object to print register classes or register banks
1220 /// on a \ref raw_ostream.
1221 Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo,
1222                               const TargetRegisterInfo *TRI);
1223 
1224 } // end namespace llvm
1225 
1226 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H
1227