1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015 Sven Verdoolaege
5 *
6 * Use of this software is governed by the MIT license
7 *
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * 91893 Orsay, France
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12 */
13
14 #include <isl/constraint.h>
15 #include <isl/ilp.h>
16
17 #include "gpu_array_tile.h"
18 #include "gpu_group.h"
19 #include "gpu_tree.h"
20 #include "schedule.h"
21
22 /* Print the name of the local copy of a given group of array references.
23 */
gpu_array_ref_group_print_name(struct gpu_array_ref_group * group,__isl_take isl_printer * p)24 __isl_give isl_printer *gpu_array_ref_group_print_name(
25 struct gpu_array_ref_group *group, __isl_take isl_printer *p)
26 {
27 int global = 0;
28 enum ppcg_group_access_type type;
29
30 type = gpu_array_ref_group_type(group);
31 if (type == ppcg_access_private)
32 p = isl_printer_print_str(p, "private_");
33 else if (type == ppcg_access_shared)
34 p = isl_printer_print_str(p, "shared_");
35 else
36 global = 1;
37 p = isl_printer_print_str(p, group->array->name);
38 if (!global && group->local_array->n_group > 1) {
39 p = isl_printer_print_str(p, "_");
40 p = isl_printer_print_int(p, group->nr);
41 }
42
43 return p;
44 }
45
46 /* Return the union of all read (read = 1) and/or write (write = 1)
47 * access relations in the group.
48 */
gpu_array_ref_group_access_relation(struct gpu_array_ref_group * group,int read,int write)49 __isl_give isl_union_map *gpu_array_ref_group_access_relation(
50 struct gpu_array_ref_group *group, int read, int write)
51 {
52 int i;
53 isl_union_map *access;
54
55 access = isl_union_map_empty(isl_map_get_space(group->access));
56 for (i = 0; i < group->n_ref; ++i) {
57 isl_map *map_i;
58
59 if (!((read && group->refs[i]->read) ||
60 (write && group->refs[i]->write)))
61 continue;
62 map_i = isl_map_copy(group->refs[i]->access);
63 access = isl_union_map_union(access,
64 isl_union_map_from_map(map_i));
65 }
66
67 return access;
68 }
69
70 /* Should this array reference group be mapped to private, shared or global
71 * memory?
72 * If we have computed both a private and a shared tile, then
73 * the tile with the smallest depth is used. If both have the same depth,
74 * then the private tile is used.
75 */
gpu_array_ref_group_type(struct gpu_array_ref_group * group)76 enum ppcg_group_access_type gpu_array_ref_group_type(
77 struct gpu_array_ref_group *group)
78 {
79 if (group->private_tile && group->shared_tile &&
80 group->shared_tile->depth < group->private_tile->depth)
81 return ppcg_access_shared;
82 if (group->private_tile)
83 return ppcg_access_private;
84 if (group->shared_tile)
85 return ppcg_access_shared;
86 return ppcg_access_global;
87 }
88
89
90 /* Return the effective gpu_array_tile associated to "group" or
91 * NULL if there is no such gpu_array_tile.
92 */
gpu_array_ref_group_tile(struct gpu_array_ref_group * group)93 struct gpu_array_tile *gpu_array_ref_group_tile(
94 struct gpu_array_ref_group *group)
95 {
96 switch (gpu_array_ref_group_type(group)) {
97 case ppcg_access_global:
98 return NULL;
99 case ppcg_access_shared:
100 return group->shared_tile;
101 case ppcg_access_private:
102 return group->private_tile;
103 }
104 }
105
106 /* Does the tile associated to "group" require unrolling of the schedule
107 * dimensions mapped to threads?
108 * Note that this can only happen for private tiles.
109 */
gpu_array_ref_group_requires_unroll(struct gpu_array_ref_group * group)110 int gpu_array_ref_group_requires_unroll(struct gpu_array_ref_group *group)
111 {
112 struct gpu_array_tile *tile;
113
114 tile = gpu_array_ref_group_tile(group);
115 if (!tile)
116 return 0;
117 return tile->requires_unroll;
118 }
119
120 /* Given a constraint
121 *
122 * a(p,i) + j = g f(e)
123 *
124 * or -a(p,i) - j = g f(e) if sign < 0,
125 * store a(p,i) in bound->shift and g (stride) in bound->stride.
126 * a(p,i) is assumed to be an expression in only the parameters
127 * and the input dimensions.
128 */
extract_stride(__isl_keep isl_constraint * c,struct gpu_array_bound * bound,__isl_keep isl_val * stride,int sign)129 static void extract_stride(__isl_keep isl_constraint *c,
130 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
131 {
132 int i;
133 isl_val *v;
134 isl_space *space;
135 unsigned nparam;
136 unsigned nvar;
137 isl_aff *aff;
138
139 isl_val_free(bound->stride);
140 bound->stride = isl_val_copy(stride);
141
142 space = isl_constraint_get_space(c);
143 space = isl_space_domain(space);
144
145 nparam = isl_space_dim(space, isl_dim_param);
146 nvar = isl_space_dim(space, isl_dim_set);
147
148 v = isl_constraint_get_constant_val(c);
149 if (sign < 0)
150 v = isl_val_neg(v);
151 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
152 aff = isl_aff_set_constant_val(aff, v);
153
154 for (i = 0; i < nparam; ++i) {
155 if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
156 continue;
157 v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
158 if (sign < 0)
159 v = isl_val_neg(v);
160 aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
161 }
162
163 for (i = 0; i < nvar; ++i) {
164 if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
165 continue;
166 v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
167 if (sign < 0)
168 v = isl_val_neg(v);
169 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
170 }
171
172 bound->shift = aff;
173 }
174
175 /* Given an equality constraint of a map with a single output dimension j,
176 * check if the constraint is of the form
177 *
178 * a(p,i) + j = g f(e)
179 *
180 * with a(p,i) an expression in the parameters and input dimensions
181 * and f(e) an expression in the existentially quantified variables.
182 * If so, and if g is larger than any such g from a previously considered
183 * constraint, then call extract_stride to record the stride information
184 * in bound.
185 */
check_stride_constraint(__isl_take isl_constraint * c,void * user)186 static isl_stat check_stride_constraint(__isl_take isl_constraint *c,
187 void *user)
188 {
189 int i;
190 isl_ctx *ctx;
191 isl_val *v;
192 unsigned n_div;
193 struct gpu_array_bound *bound = user;
194
195 ctx = isl_constraint_get_ctx(c);
196 n_div = isl_constraint_dim(c, isl_dim_div);
197 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
198
199 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
200 int s = isl_val_sgn(v);
201 isl_val *stride = isl_val_zero(ctx);
202
203 isl_val_free(v);
204 for (i = 0; i < n_div; ++i) {
205 v = isl_constraint_get_coefficient_val(c,
206 isl_dim_div, i);
207 stride = isl_val_gcd(stride, v);
208 }
209 if (!isl_val_is_zero(stride) &&
210 isl_val_gt(stride, bound->stride))
211 extract_stride(c, bound, stride, s);
212
213 isl_val_free(stride);
214 } else
215 isl_val_free(v);
216
217 isl_constraint_free(c);
218 return isl_stat_ok;
219 }
220
221 /* Given contraints on an array index i, check if we can find
222 * a shift a(p) and a stride g such that
223 *
224 * a(p) + i = 0 mod g
225 *
226 * If so, record the information in bound and apply the mapping
227 * i -> (i + a(p))/g to the array index in bounds and return
228 * the new constraints.
229 * If not, simply return the original constraints.
230 *
231 * If bounds is a subset of the space
232 *
233 * D -> i
234 *
235 * then the bound recorded in bound->shift is of the form
236 *
237 * D -> s(D)
238 *
239 * with s(D) equal to a(p) above.
240 * Next, we construct a mapping of the form
241 *
242 * [D -> i] -> [D -> (i + S(D))/g]
243 *
244 * This mapping is computed as follows.
245 * We first introduce "i" in the domain through precomposition
246 * with [D -> i] -> D obtaining
247 *
248 * [D -> i] -> s(D)
249 *
250 * Adding [D -> i] -> i produces
251 *
252 * [D -> i] -> i + s(D)
253 *
254 * and the domain product with [D -> i] -> D yields
255 *
256 * [D -> i] -> [D -> i + s(D)]
257 *
258 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
259 */
check_stride(struct gpu_array_bound * bound,__isl_take isl_basic_map * bounds)260 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
261 __isl_take isl_basic_map *bounds)
262 {
263 isl_space *space;
264 isl_basic_map *hull;
265 isl_basic_map *shift, *id, *bmap, *scale;
266 isl_basic_set *bset;
267 isl_aff *aff;
268
269 bound->stride = NULL;
270
271 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
272
273 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
274
275 isl_basic_map_free(hull);
276
277 if (!bound->stride)
278 return bounds;
279
280 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
281 space = isl_basic_map_get_space(bounds);
282 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
283 shift = isl_basic_map_apply_range(bmap, shift);
284 space = isl_basic_map_get_space(bounds);
285 id = isl_basic_map_range_map(isl_basic_map_universe(space));
286 shift = isl_basic_map_sum(id, shift);
287 space = isl_basic_map_get_space(bounds);
288 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
289 shift = isl_basic_map_range_product(id, shift);
290
291 space = isl_space_domain(isl_basic_map_get_space(bounds));
292 id = isl_basic_map_identity(isl_space_map_from_set(space));
293 space = isl_space_range(isl_basic_map_get_space(bounds));
294 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
295 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
296 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
297 scale = isl_basic_map_from_aff(aff);
298 scale = isl_basic_map_product(id, scale);
299
300 bmap = isl_basic_map_apply_range(shift, scale);
301 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
302 bounds = isl_basic_set_unwrap(bset);
303
304 return bounds;
305 }
306
307 /* Data used in compute_array_dim_size and compute_size_in_direction.
308 *
309 * pos is the position of the variable representing the array index,
310 * i.e., the variable for which want to compute the size. This variable
311 * is also the last variable in the set.
312 */
313 struct gpu_size_info {
314 isl_basic_set *bset;
315 struct gpu_array_bound *bound;
316 int pos;
317 };
318
319 /* Given a constraint from the basic set describing the bounds on
320 * an array index, check if it is a lower bound, say m i >= b(x), and,
321 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
322 * upper bound. If so, and if this bound is smaller than any bound
323 * derived from earlier constraints, set the size to this bound on
324 * the expression and the lower bound to ceil(b(x)/m).
325 */
compute_size_in_direction(__isl_take isl_constraint * c,void * user)326 static isl_stat compute_size_in_direction(__isl_take isl_constraint *c,
327 void *user)
328 {
329 struct gpu_size_info *size = user;
330 unsigned nparam;
331 unsigned n_div;
332 isl_val *v;
333 isl_aff *aff;
334 isl_aff *lb;
335
336 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
337 n_div = isl_constraint_dim(c, isl_dim_div);
338
339 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
340 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
341 isl_constraint_free(c);
342 return isl_stat_ok;
343 }
344
345 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
346 aff = isl_aff_ceil(aff);
347
348 lb = isl_aff_copy(aff);
349
350 aff = isl_aff_neg(aff);
351 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
352
353 v = isl_basic_set_max_val(size->bset, aff);
354 isl_aff_free(aff);
355
356 if (isl_val_is_int(v)) {
357 v = isl_val_add_ui(v, 1);
358 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
359 isl_val_free(size->bound->size);
360 size->bound->size = isl_val_copy(v);
361 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
362 isl_aff_free(size->bound->lb);
363 size->bound->lb = isl_aff_copy(lb);
364 }
365 }
366 isl_val_free(v);
367 isl_aff_free(lb);
368
369 isl_constraint_free(c);
370
371 return isl_stat_ok;
372 }
373
374 /* Given a basic map "bounds" that maps parameters and input dimensions
375 * to a single output dimension, look for an expression in the parameters
376 * and input dimensions such that the range of the output dimension shifted
377 * by this expression is a constant.
378 *
379 * In particular, we currently only consider lower bounds on the output
380 * dimension as candidate expressions.
381 */
compute_array_dim_size(struct gpu_array_bound * bound,__isl_take isl_basic_map * bounds)382 static int compute_array_dim_size(struct gpu_array_bound *bound,
383 __isl_take isl_basic_map *bounds)
384 {
385 struct gpu_size_info size;
386
387 bounds = isl_basic_map_detect_equalities(bounds);
388 bounds = check_stride(bound, bounds);
389
390 bound->size = NULL;
391 bound->lb = NULL;
392
393 size.bound = bound;
394 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
395 size.bset = isl_basic_map_wrap(bounds);
396 size.bset = isl_basic_set_flatten(size.bset);
397 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
398 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
399 &size);
400 isl_basic_set_free(size.bset);
401
402 return bound->size ? 0 : -1;
403 }
404
405 /* Check if we can find a memory tile for the given array
406 * based on the given accesses, and if so, put the results in "tile".
407 *
408 * We project the accesses on each index in turn and look for a parametric
409 * offset such that the size is constant.
410 *
411 * tile->depth is initialized to the input dimension of the computed bounds.
412 */
can_tile(__isl_keep isl_map * access,struct gpu_array_tile * tile)413 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
414 {
415 int i;
416
417 tile->depth = isl_map_dim(access, isl_dim_in);
418
419 for (i = 0; i < tile->n; ++i) {
420 isl_map *access_i;
421 isl_basic_map *hull;
422
423 access_i = isl_map_copy(access);
424 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
425 access_i = isl_map_project_out(access_i, isl_dim_out,
426 1, tile->n - (i + 1));
427 access_i = isl_map_compute_divs(access_i);
428 hull = isl_map_simple_hull(access_i);
429 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
430 return 0;
431 }
432
433 return 1;
434 }
435
436 /* Internal data structure for gpu_group_references.
437 *
438 * scop represents the input scop.
439 * kernel_depth is the schedule depth where the kernel launch will
440 * be introduced, i.e., it is the depth of the band that is mapped
441 * to blocks.
442 * shared_depth is the schedule depth at which the copying to/from
443 * shared memory is computed. The copy operation may then
444 * later be hoisted to a higher level.
445 * thread_depth is the schedule depth where the thread mark is located,
446 * i.e., it is the depth of the band that is mapped to threads and also
447 * the schedule depth at which the copying to/from private memory
448 * is computed. The copy operation may then later be hoisted to
449 * a higher level.
450 * n_thread is the number of schedule dimensions in the band that
451 * is mapped to threads.
452 * privatization lives in the range of thread_sched (i.e., it is
453 * of dimension thread_depth + n_thread) and encodes the mapping
454 * to thread identifiers (as parameters).
455 * host_sched contains the kernel_depth dimensions of the host schedule.
456 * shared_sched contains the first shared_depth dimensions of the
457 * kernel schedule.
458 * copy_sched contains the first thread_depth dimensions of the
459 * kernel schedule.
460 * thread_sched contains the first (thread_depth + n_thread) dimensions
461 * of the kernel schedule.
462 * full_sched is a union_map representation of the entire kernel schedule.
463 * The schedules are all formulated in terms of the original statement
464 * instances, i.e., those that appear in the domains of the access
465 * relations.
466 */
467 struct gpu_group_data {
468 struct ppcg_scop *scop;
469 int kernel_depth;
470 int shared_depth;
471 int thread_depth;
472 int n_thread;
473 isl_set *privatization;
474 isl_union_map *host_sched;
475 isl_union_map *shared_sched;
476 isl_union_map *copy_sched;
477 isl_union_map *thread_sched;
478 isl_union_map *full_sched;
479 };
480
481 /* Construct a map from domain_space to domain_space that increments
482 * the dimension at position "pos" and leaves all other dimensions
483 * constant.
484 */
next(__isl_take isl_space * domain_space,int pos)485 static __isl_give isl_map *next(__isl_take isl_space *domain_space, int pos)
486 {
487 isl_space *space;
488 isl_aff *aff;
489 isl_multi_aff *next;
490
491 space = isl_space_map_from_set(domain_space);
492 next = isl_multi_aff_identity(space);
493 aff = isl_multi_aff_get_aff(next, pos);
494 aff = isl_aff_add_constant_si(aff, 1);
495 next = isl_multi_aff_set_aff(next, pos, aff);
496
497 return isl_map_from_multi_aff(next);
498 }
499
500 /* Check if the given access is coalesced (or if there is no point
501 * in trying to coalesce the access by mapping the array to shared memory).
502 * That is, check whether incrementing the dimension that will get
503 * wrapped over the last thread index results in incrementing
504 * the last array index.
505 *
506 * If no two consecutive array elements are ever accessed by "access",
507 * then mapping the corresponding array to shared memory will not
508 * improve coalescing. In fact, the copying will likely be performed
509 * by a single thread. Consider the access as coalesced such that
510 * the caller will not try and map the array to shared memory just
511 * to improve coalescing.
512 *
513 * This function is only called for access relations without reuse and
514 * kernels with at least one thread identifier.
515 */
access_is_coalesced(struct gpu_group_data * data,__isl_keep isl_union_map * access)516 static int access_is_coalesced(struct gpu_group_data *data,
517 __isl_keep isl_union_map *access)
518 {
519 int dim;
520 isl_space *space;
521 isl_set *accessed;
522 isl_map *access_map;
523 isl_map *next_thread_x;
524 isl_map *next_element;
525 isl_map *map;
526 int coalesced, empty;
527
528 access = isl_union_map_copy(access);
529 access = isl_union_map_apply_domain(access,
530 isl_union_map_copy(data->full_sched));
531 access_map = isl_map_from_union_map(access);
532
533 space = isl_map_get_space(access_map);
534 space = isl_space_range(space);
535 dim = isl_space_dim(space, isl_dim_set);
536 if (dim == 0)
537 next_element = isl_map_empty(isl_space_map_from_set(space));
538 else
539 next_element = next(space, dim - 1);
540
541 accessed = isl_map_range(isl_map_copy(access_map));
542 map = isl_map_copy(next_element);
543 map = isl_map_intersect_domain(map, isl_set_copy(accessed));
544 map = isl_map_intersect_range(map, accessed);
545 empty = isl_map_is_empty(map);
546 isl_map_free(map);
547
548 if (empty < 0 || empty) {
549 isl_map_free(next_element);
550 isl_map_free(access_map);
551 return empty;
552 }
553
554 space = isl_map_get_space(access_map);
555 space = isl_space_domain(space);
556 next_thread_x = next(space, data->thread_depth + data->n_thread - 1);
557
558 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
559 map = isl_map_apply_range(map, access_map);
560
561 coalesced = isl_map_is_subset(map, next_element);
562
563 isl_map_free(next_element);
564 isl_map_free(map);
565
566 return coalesced;
567 }
568
569 /* Replace the host schedule dimensions in the access relation "access"
570 * by parameters, so that they are treated as fixed when checking for reuse
571 * (within a kernel) or whether two consecutive elements are accessed
572 * (within a kernel).
573 */
localize_access(struct gpu_group_data * data,__isl_take isl_union_map * access)574 static __isl_give isl_union_map *localize_access(struct gpu_group_data *data,
575 __isl_take isl_union_map *access)
576 {
577 int n;
578 isl_space *space;
579 isl_set *param;
580 isl_union_map *umap;
581 isl_id_list *ids;
582
583 umap = isl_union_map_copy(data->host_sched);
584 space = isl_union_map_get_space(umap);
585 n = data->kernel_depth;
586 ids = ppcg_scop_generate_names(data->scop, n, "__ppcg_host_");
587 param = parametrization(space, n, 0, ids);
588 isl_id_list_free(ids);
589 umap = isl_union_map_intersect_range(umap,
590 isl_union_set_from_set(param));
591 access = isl_union_map_intersect_domain(access,
592 isl_union_map_domain(umap));
593
594 return access;
595 }
596
597 /* Given an access relation in terms of at least data->thread_depth initial
598 * dimensions of the computed schedule, check if it is bijective for
599 * fixed values of the first data->thread_depth dimensions.
600 * We perform this check by equating these dimensions to parameters.
601 */
access_is_bijective(struct gpu_group_data * data,__isl_keep isl_map * access)602 static int access_is_bijective(struct gpu_group_data *data,
603 __isl_keep isl_map *access)
604 {
605 int res;
606 int dim;
607 isl_set *par;
608 isl_space *space;
609 isl_id_list *ids;
610
611 access = isl_map_copy(access);
612 space = isl_space_params(isl_map_get_space(access));
613 ids = ppcg_scop_generate_names(data->scop, data->thread_depth, "s");
614 dim = isl_map_dim(access, isl_dim_in);
615 par = parametrization(space, dim, 0, ids);
616 isl_id_list_free(ids);
617 access = isl_map_intersect_domain(access, par);
618 res = isl_map_is_bijective(access);
619 isl_map_free(access);
620
621 return res;
622 }
623
624 /* Compute the number of outer schedule tile dimensions that affect
625 * the offset of "tile".
626 * If there is no such dimension, then return the index
627 * of the first kernel dimension, i.e., data->kernel_depth.
628 */
compute_tile_depth(struct gpu_group_data * data,struct gpu_array_tile * tile)629 static int compute_tile_depth(struct gpu_group_data *data,
630 struct gpu_array_tile *tile)
631 {
632 int i, j;
633
634 for (j = tile->depth - 1; j >= data->kernel_depth; --j) {
635 for (i = 0; i < tile->n; ++i) {
636 isl_aff *lb;
637 isl_aff *shift;
638
639 lb = tile->bound[i].lb;
640 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
641 break;
642
643 shift = tile->bound[i].shift;
644 if (!shift)
645 continue;
646 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
647 break;
648 }
649 if (i < tile->n)
650 break;
651 }
652
653 return ++j;
654 }
655
656 /* Return the lowest depth between data->kernel_depth and data->thread_depth
657 * at which every array element accessed through "acc" is accessed
658 * by a single thread. The input dimension of "acc" is
659 * data->thread_depth + data->n_thread, where the final data->n_thread
660 * dimensions are those that will be mapped to threads.
661 * If the values for these dimensions are uniquely determined
662 * by the array index and a given number of outer dimensions, then
663 * there is only one thread accessing that array element within those
664 * outer dimensions.
665 *
666 * The input space of "acc" is first split up, such that it has the form
667 *
668 * [O -> T] -> A
669 *
670 * with O the outer dimensions, T the dimensions that will be mapped to threads
671 * and A the array index.
672 *
673 * Then the positions of T and A are interchanged to simplify the test
674 * whether T uniquely depends on O and A.
675 * In particular, the above access relation is first combined with
676 *
677 * [O -> T] -> T
678 *
679 * to form
680 *
681 * [O -> T] -> [A -> T]
682 *
683 * from which
684 *
685 * O -> [A -> T]
686 *
687 * is extracted, which is then uncurried to
688 *
689 * [O -> A] -> T
690 *
691 * Finally, the final dimensions of O are projected out one by one
692 * until T is no longer uniquely determined by A and the remaining
693 * dimensions in O. The value returned is that of the last dimension
694 * that was successfully projected out.
695 * Note that there is no need to test whether [O -> A] -> T itself
696 * is single-valued as that was already tested in access_is_bijective.
697 */
compute_accessed_by_single_thread_depth(struct gpu_group_data * data,__isl_keep isl_map * acc)698 static int compute_accessed_by_single_thread_depth(struct gpu_group_data *data,
699 __isl_keep isl_map *acc)
700 {
701 int i;
702 isl_space *space;
703 isl_map *map;
704 isl_bool sv;
705
706 if (data->thread_depth == data->kernel_depth)
707 return data->thread_depth;
708
709 acc = isl_map_copy(acc);
710
711 space = isl_map_get_space(acc);
712 space = isl_space_params(space);
713 space = isl_space_set_from_params(space);
714 space = isl_space_add_dims(space, isl_dim_set, data->thread_depth);
715 space = isl_space_from_domain(space);
716 space = isl_space_add_dims(space, isl_dim_out, data->n_thread);
717 space = isl_space_wrap(space);
718 map = isl_set_flatten_map(isl_set_universe(space));
719 acc = isl_map_apply_range(map, acc);
720
721 space = isl_space_domain(isl_map_get_space(acc));
722 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
723 acc = isl_map_range_product(acc, map);
724 acc = isl_map_domain_factor_domain(acc);
725 acc = isl_map_uncurry(acc);
726
727 for (i = data->thread_depth - 1; i >= data->kernel_depth; --i) {
728 acc = isl_map_project_out(acc, isl_dim_in, i, 1);
729 sv = isl_map_is_single_valued(acc);
730 if (sv < 0)
731 return -1;
732 if (!sv)
733 break;
734 }
735
736 isl_map_free(acc);
737
738 return ++i;
739 }
740
741 /* Adjust the fields of "tile" to reflect the new input dimension "depth".
742 * The dimension beyond "depth" are assumed not to affect the tile,
743 * so they can simply be dropped.
744 */
tile_adjust_depth(struct gpu_array_tile * tile,int depth)745 static int tile_adjust_depth(struct gpu_array_tile *tile, int depth)
746 {
747 int i;
748
749 if (tile->depth == depth)
750 return 0;
751
752 for (i = 0; i < tile->n; ++i) {
753 tile->bound[i].lb = isl_aff_drop_dims(tile->bound[i].lb,
754 isl_dim_in, depth, tile->depth - depth);
755 if (!tile->bound[i].lb)
756 return -1;
757 if (!tile->bound[i].shift)
758 continue;
759 tile->bound[i].shift = isl_aff_drop_dims(tile->bound[i].shift,
760 isl_dim_in, depth, tile->depth - depth);
761 if (!tile->bound[i].shift)
762 return -1;
763 }
764
765 tile->depth = depth;
766
767 return 0;
768 }
769
770 /* Determine the number of schedule dimensions that affect the offset of the
771 * shared or private tile "tile" and store the result in tile->depth, with
772 * a lower bound of data->kernel_depth.
773 * Also adjust the fields of the tile to only refer to the tile->depth
774 * outer schedule dimensions.
775 */
tile_set_depth(struct gpu_group_data * data,struct gpu_array_tile * tile)776 static isl_stat tile_set_depth(struct gpu_group_data *data,
777 struct gpu_array_tile *tile)
778 {
779 if (tile_adjust_depth(tile, compute_tile_depth(data, tile)) < 0)
780 return isl_stat_error;
781
782 return isl_stat_ok;
783 }
784
785 /* Determine the number of schedule dimensions that affect the offset of the
786 * shared tile and store the minimum of the private and shared tile depth
787 * in group->min_depth, with a lower bound of data->kernel_depth.
788 * If there is no tile defined on the array reference group,
789 * then set group->min_depth to data->thread_depth.
790 */
set_depth(struct gpu_group_data * data,struct gpu_array_ref_group * group)791 static int set_depth(struct gpu_group_data *data,
792 struct gpu_array_ref_group *group)
793 {
794 group->min_depth = data->thread_depth;
795
796 if (group->private_tile) {
797 if (group->private_tile->depth < group->min_depth)
798 group->min_depth = group->private_tile->depth;
799 }
800 if (group->shared_tile) {
801 if (tile_set_depth(data, group->shared_tile) < 0)
802 return -1;
803 if (group->shared_tile->depth < group->min_depth)
804 group->min_depth = group->shared_tile->depth;
805 }
806
807 return 0;
808 }
809
810 /* Fill up the groups array with singleton groups, i.e., one group
811 * per reference, initializing the array, access, write, n_ref and refs fields.
812 * In particular the access field is initialized to the scheduled
813 * access relation of the array reference.
814 *
815 * Return the number of elements initialized, i.e., the number of
816 * active references in the current kernel.
817 */
populate_array_references(struct gpu_local_array_info * local,struct gpu_array_ref_group ** groups,struct gpu_group_data * data)818 static int populate_array_references(struct gpu_local_array_info *local,
819 struct gpu_array_ref_group **groups, struct gpu_group_data *data)
820 {
821 int i;
822 int n;
823 isl_ctx *ctx = isl_union_map_get_ctx(data->copy_sched);
824
825 n = 0;
826 for (i = 0; i < local->array->n_ref; ++i) {
827 isl_union_map *umap;
828 isl_map *map;
829 struct gpu_array_ref_group *group;
830 struct gpu_stmt_access *access = local->array->refs[i];
831
832 map = isl_map_copy(access->access);
833 umap = isl_union_map_from_map(map);
834 umap = isl_union_map_apply_domain(umap,
835 isl_union_map_copy(data->copy_sched));
836
837 if (isl_union_map_is_empty(umap)) {
838 isl_union_map_free(umap);
839 continue;
840 }
841
842 map = isl_map_from_union_map(umap);
843 map = isl_map_detect_equalities(map);
844
845 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
846 if (!group)
847 return -1;
848 group->local_array = local;
849 group->array = local->array;
850 group->access = map;
851 group->write = access->write;
852 group->exact_write = access->exact_write;
853 group->slice = access->n_index < local->array->n_index;
854 group->refs = &local->array->refs[i];
855 group->n_ref = 1;
856
857 groups[n++] = group;
858 }
859
860 return n;
861 }
862
863 /* If group->n_ref == 1, then group->refs was set by
864 * populate_array_references to point directly into
865 * group->array->refs and should not be freed.
866 * If group->n_ref > 1, then group->refs was set by join_groups
867 * to point to a newly allocated array.
868 */
gpu_array_ref_group_free(struct gpu_array_ref_group * group)869 struct gpu_array_ref_group *gpu_array_ref_group_free(
870 struct gpu_array_ref_group *group)
871 {
872 if (!group)
873 return NULL;
874 gpu_array_tile_free(group->shared_tile);
875 gpu_array_tile_free(group->private_tile);
876 isl_map_free(group->access);
877 if (group->n_ref > 1)
878 free(group->refs);
879 free(group);
880 return NULL;
881 }
882
883 /* Check if the access relations of group1 and group2 overlap within
884 * copy_sched.
885 */
accesses_overlap(struct gpu_array_ref_group * group1,struct gpu_array_ref_group * group2)886 static int accesses_overlap(struct gpu_array_ref_group *group1,
887 struct gpu_array_ref_group *group2)
888 {
889 int disjoint;
890
891 disjoint = isl_map_is_disjoint(group1->access, group2->access);
892 if (disjoint < 0)
893 return -1;
894
895 return !disjoint;
896 }
897
898 /* Combine the given two groups into a single group, containing
899 * the references of both groups.
900 */
join_groups(struct gpu_array_ref_group * group1,struct gpu_array_ref_group * group2)901 static struct gpu_array_ref_group *join_groups(
902 struct gpu_array_ref_group *group1,
903 struct gpu_array_ref_group *group2)
904 {
905 int i;
906 isl_ctx *ctx;
907 struct gpu_array_ref_group *group;
908
909 if (!group1 || !group2)
910 return NULL;
911
912 ctx = isl_map_get_ctx(group1->access);
913 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
914 if (!group)
915 return NULL;
916 group->local_array = group1->local_array;
917 group->array = group1->array;
918 group->access = isl_map_union(isl_map_copy(group1->access),
919 isl_map_copy(group2->access));
920 group->write = group1->write || group2->write;
921 group->exact_write = group1->exact_write && group2->exact_write;
922 group->slice = group1->slice || group2->slice;
923 group->n_ref = group1->n_ref + group2->n_ref;
924 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
925 group->n_ref);
926 if (!group->refs)
927 return gpu_array_ref_group_free(group);
928 for (i = 0; i < group1->n_ref; ++i)
929 group->refs[i] = group1->refs[i];
930 for (i = 0; i < group2->n_ref; ++i)
931 group->refs[group1->n_ref + i] = group2->refs[i];
932
933 return group;
934 }
935
936 /* Combine the given two groups into a single group and free
937 * the original two groups.
938 */
join_groups_and_free(struct gpu_array_ref_group * group1,struct gpu_array_ref_group * group2)939 static struct gpu_array_ref_group *join_groups_and_free(
940 struct gpu_array_ref_group *group1,
941 struct gpu_array_ref_group *group2)
942 {
943 struct gpu_array_ref_group *group;
944
945 group = join_groups(group1, group2);
946 gpu_array_ref_group_free(group1);
947 gpu_array_ref_group_free(group2);
948 return group;
949 }
950
951 /* Report that the array reference group with the given access relation
952 * is not mapped to shared memory in the given kernel because
953 * it does not exhibit any reuse and is considered to be coalesced.
954 */
report_no_reuse_and_coalesced(struct ppcg_kernel * kernel,__isl_keep isl_union_map * access)955 static void report_no_reuse_and_coalesced(struct ppcg_kernel *kernel,
956 __isl_keep isl_union_map *access)
957 {
958 isl_ctx *ctx;
959 isl_printer *p;
960
961 ctx = isl_union_map_get_ctx(access);
962 p = isl_printer_to_file(ctx, stdout);
963 p = isl_printer_print_str(p, "Array reference group ");
964 p = isl_printer_print_union_map(p, access);
965 p = isl_printer_print_str(p,
966 " not considered for mapping to shared memory in kernel");
967 p = isl_printer_print_int(p, kernel->id);
968 p = isl_printer_print_str(p,
969 " because it exhibits no reuse and is considered to be coalesced");
970 p = isl_printer_end_line(p);
971 isl_printer_free(p);
972 }
973
974 /* Given an access relation in terms of the data->thread_depth initial
975 * dimensions of the computed schedule and the thread identifiers
976 * (as parameters), check if the use of the corresponding private tile
977 * requires unrolling.
978 *
979 * If we are creating a private tile because we are forced to,
980 * then no unrolling is required.
981 * Otherwise we check if "access" is bijective and unrolling
982 * is required if it is not. Note that the access relation
983 * has already been determined to be bijective before the introduction
984 * of the thread identifiers and the removal of the schedule dimensions
985 * that are mapped to these threads. If the access relation is no longer
986 * bijective, then this means that more than one value of one of those
987 * schedule dimensions is mapped to the same thread and therefore
988 * unrolling is required.
989 */
check_requires_unroll(struct gpu_group_data * data,__isl_keep isl_map * access,int force_private)990 static int check_requires_unroll(struct gpu_group_data *data,
991 __isl_keep isl_map *access, int force_private)
992 {
993 int bijective;
994
995 if (force_private)
996 return 0;
997 bijective = access_is_bijective(data, access);
998 if (bijective < 0)
999 return -1;
1000 return !bijective;
1001 }
1002
1003 /* Map the domain of "access" to the outer data->shared_depth
1004 * schedule dimensions. When data->shared_depth is equal to
1005 * data->thread_depth, this result is already available in group->access.
1006 */
shared_access(struct gpu_array_ref_group * group,__isl_keep isl_union_map * access,struct gpu_group_data * data)1007 static __isl_give isl_map *shared_access(struct gpu_array_ref_group *group,
1008 __isl_keep isl_union_map *access, struct gpu_group_data *data)
1009 {
1010 isl_union_map *shared;
1011
1012 if (data->shared_depth == data->thread_depth)
1013 return isl_map_copy(group->access);
1014
1015 shared = isl_union_map_copy(access);
1016 shared = isl_union_map_apply_domain(shared,
1017 isl_union_map_copy(data->shared_sched));
1018 return isl_map_from_union_map(shared);
1019 }
1020
1021 /* Compute the private and/or shared memory tiles for the array
1022 * reference group "group" of array "array".
1023 * Return 0 on success and -1 on error.
1024 *
1025 * If the array is a read-only scalar or if the user requested
1026 * not to use shared or private memory, then we do not need to do anything.
1027 *
1028 * If any reference in the reference group accesses more than one element,
1029 * then we would have to make sure that the layout in shared memory
1030 * is the same as that in global memory. Since we do not handle this yet
1031 * (and it may not even be possible), we refuse to map to private or
1032 * shared memory in such cases.
1033 *
1034 * If the array group involves any may writes (that are not must writes),
1035 * then we would have to make sure that we load the data into shared/private
1036 * memory first in case the data is not written by the kernel
1037 * (but still written back out to global memory).
1038 * Since we don't have any such mechanism at the moment, we don't
1039 * compute shared/private tiles for groups involving may writes.
1040 *
1041 * We only try to compute a shared memory tile if there is any reuse
1042 * or if the access is not coalesced.
1043 * Reuse and coalescing are checked within the given kernel.
1044 *
1045 * For computing a private memory tile, we also require that there is
1046 * some reuse. Moreover, we require that the access is private
1047 * to the thread. That is, we check that any given array element
1048 * is only accessed by a single thread.
1049 * We compute an access relation that maps the outer
1050 * data->thread_depth + data->n_thread schedule dimensions.
1051 * The latter data->n_thread will be mapped to thread identifiers.
1052 * We actually check that those iterators that will be wrapped
1053 * partition the array space. This check is stricter than necessary
1054 * since several iterations may be mapped onto the same thread
1055 * and then they could be allowed to access the same memory elements,
1056 * but our check does not allow this situation.
1057 *
1058 * For private memory tiles, the number of schedule dimensions that
1059 * affect the offset is computed and stored in tile->depth, with
1060 * a lower bound of data->kernel_depth. If this depth is smaller
1061 * than the minimal depth that still ensures that every element
1062 * is accessed by a single thread, then the depth is raised
1063 * to this minimal depth.
1064 * The fields of the tile are then adjusted to only refer to the tile->depth
1065 * outer schedule dimensions.
1066 *
1067 * We also check that the index expression only depends on parallel
1068 * loops. That way, we can move those loops innermost and unroll them.
1069 * Again, we use a test that is stricter than necessary.
1070 * We actually check whether the index expression only depends
1071 * on the iterators that are wrapped over the threads.
1072 * These are necessarily parallel, but there may be more parallel loops.
1073 *
1074 * Combining the injectivity of the first test with the single-valuedness
1075 * of the second test, we simply test for bijectivity.
1076 *
1077 * If the use of the private tile requires unrolling, but some
1078 * of the other arrays are forcibly mapped to private memory,
1079 * then we do not allow the use of this private tile since
1080 * we cannot move the schedule dimensions that need to be unrolled down
1081 * without performing some kind of expansion on those arrays
1082 * that are forcibly mapped to private memory.
1083 *
1084 * If the array is marked force_private, then we bypass all checks
1085 * and assume we can (and should) use registers only.
1086 *
1087 * If it turns out we can (or have to) use registers, we compute
1088 * the private memory tile size using can_tile, after introducing a dependence
1089 * on the thread indices.
1090 */
compute_group_bounds_core(struct ppcg_kernel * kernel,struct gpu_array_ref_group * group,struct gpu_group_data * data)1091 static int compute_group_bounds_core(struct ppcg_kernel *kernel,
1092 struct gpu_array_ref_group *group, struct gpu_group_data *data)
1093 {
1094 isl_ctx *ctx = isl_space_get_ctx(group->array->space);
1095 isl_union_map *access, *local;
1096 int n_index = group->array->n_index;
1097 int no_reuse, coalesced;
1098 isl_map *acc;
1099 int force_private = group->local_array->force_private;
1100 int use_shared = !force_private && kernel->options->use_shared_memory &&
1101 data->n_thread > 0;
1102 int use_private = force_private || kernel->options->use_private_memory;
1103 int r = 0;
1104 int requires_unroll;
1105 int unique_depth;
1106
1107 if (!use_shared && !use_private)
1108 return 0;
1109 if (gpu_array_is_read_only_scalar(group->array))
1110 return 0;
1111 if (!force_private && !group->exact_write)
1112 return 0;
1113 if (group->slice)
1114 return 0;
1115
1116 access = gpu_array_ref_group_access_relation(group, 1, 1);
1117 local = localize_access(data, isl_union_map_copy(access));
1118 no_reuse = isl_union_map_is_injective(local);
1119 if (no_reuse < 0)
1120 r = -1;
1121 if (use_shared && no_reuse)
1122 coalesced = access_is_coalesced(data, local);
1123 isl_union_map_free(local);
1124
1125 if (r >= 0 && kernel->options->debug->verbose &&
1126 use_shared && no_reuse && coalesced)
1127 report_no_reuse_and_coalesced(kernel, access);
1128
1129 if (use_shared && (!no_reuse || !coalesced)) {
1130 group->shared_tile = gpu_array_tile_create(ctx,
1131 group->array->n_index);
1132 acc = shared_access(group, access, data);
1133 if (!group->shared_tile)
1134 r = -1;
1135 else if (!can_tile(acc, group->shared_tile))
1136 group->shared_tile =
1137 gpu_array_tile_free(group->shared_tile);
1138 isl_map_free(acc);
1139 }
1140
1141 if (r < 0 || (!force_private && (!use_private || no_reuse))) {
1142 isl_union_map_free(access);
1143 return r;
1144 }
1145
1146 access = isl_union_map_apply_domain(access,
1147 isl_union_map_copy(data->thread_sched));
1148
1149 acc = isl_map_from_union_map(access);
1150
1151 if (!force_private && !access_is_bijective(data, acc)) {
1152 isl_map_free(acc);
1153 return 0;
1154 }
1155
1156 unique_depth = compute_accessed_by_single_thread_depth(data, acc);
1157
1158 acc = isl_map_intersect_domain(acc, isl_set_copy(data->privatization));
1159 acc = isl_map_project_out(acc, isl_dim_in, data->thread_depth,
1160 data->n_thread);
1161 requires_unroll = check_requires_unroll(data, acc, force_private);
1162 if (unique_depth < 0 || requires_unroll < 0 ||
1163 (requires_unroll && kernel->any_force_private)) {
1164 isl_map_free(acc);
1165 return requires_unroll < 0 ? -1 : 0;
1166 }
1167
1168 group->private_tile = gpu_array_tile_create(ctx, n_index);
1169 if (!group->private_tile) {
1170 isl_map_free(acc);
1171 return -1;
1172 }
1173 group->private_tile->requires_unroll = requires_unroll;
1174 if (!can_tile(acc, group->private_tile))
1175 group->private_tile = gpu_array_tile_free(group->private_tile);
1176
1177 isl_map_free(acc);
1178
1179 if (group->private_tile) {
1180 struct gpu_array_tile *tile = group->private_tile;
1181 int tile_depth = compute_tile_depth(data, tile);
1182 if (tile_depth < unique_depth)
1183 tile_depth = unique_depth;
1184 if (tile_adjust_depth(tile, tile_depth) < 0)
1185 return -1;
1186 }
1187
1188 if (force_private && !group->private_tile)
1189 isl_die(ctx, isl_error_internal,
1190 "unable to map array reference group to registers",
1191 return -1);
1192
1193 return 0;
1194 }
1195
1196 /* Compute the private and/or shared memory tiles for the array
1197 * reference group "group" of array "array" and set the tile depth.
1198 * Return 0 on success and -1 on error.
1199 */
compute_group_bounds(struct ppcg_kernel * kernel,struct gpu_array_ref_group * group,struct gpu_group_data * data)1200 static int compute_group_bounds(struct ppcg_kernel *kernel,
1201 struct gpu_array_ref_group *group, struct gpu_group_data *data)
1202 {
1203 if (!group)
1204 return -1;
1205 if (compute_group_bounds_core(kernel, group, data) < 0)
1206 return -1;
1207 if (set_depth(data, group) < 0)
1208 return -1;
1209
1210 return 0;
1211 }
1212
1213 /* If two groups have overlapping access relations (as determined by
1214 * the "overlap" function) and if one of them involves a write,
1215 * then merge the two groups into one.
1216 * If "compute_bounds" is set, then call compute_group_bounds
1217 * on the merged groups.
1218 *
1219 * Return the updated number of groups.
1220 * Return -1 on error.
1221 */
group_writes(struct ppcg_kernel * kernel,int n,struct gpu_array_ref_group ** groups,int (* overlap)(struct gpu_array_ref_group * group1,struct gpu_array_ref_group * group2),int compute_bounds,struct gpu_group_data * data)1222 static int group_writes(struct ppcg_kernel *kernel,
1223 int n, struct gpu_array_ref_group **groups,
1224 int (*overlap)(struct gpu_array_ref_group *group1,
1225 struct gpu_array_ref_group *group2), int compute_bounds,
1226 struct gpu_group_data *data)
1227 {
1228 int i, j;
1229
1230 for (i = 0; i < n; ++i) {
1231 for (j = n - 1; j > i; --j) {
1232 if (!groups[i]->write && !groups[j]->write)
1233 continue;
1234
1235 if (!overlap(groups[i], groups[j]))
1236 continue;
1237
1238 groups[i] = join_groups_and_free(groups[i], groups[j]);
1239 if (j != n - 1)
1240 groups[j] = groups[n - 1];
1241 groups[n - 1] = NULL;
1242 n--;
1243
1244 if (!groups[i])
1245 return -1;
1246 if (compute_bounds &&
1247 compute_group_bounds(kernel, groups[i], data) < 0)
1248 return -1;
1249 }
1250 }
1251
1252 return n;
1253 }
1254
1255 /* If two groups have overlapping access relations (within the innermost
1256 * loop) and if one of them involves a write, then merge the two groups
1257 * into one.
1258 *
1259 * Return the updated number of groups.
1260 */
group_overlapping_writes(struct ppcg_kernel * kernel,int n,struct gpu_array_ref_group ** groups,struct gpu_group_data * data)1261 static int group_overlapping_writes(struct ppcg_kernel *kernel,
1262 int n, struct gpu_array_ref_group **groups,
1263 struct gpu_group_data *data)
1264 {
1265 return group_writes(kernel, n, groups, &accesses_overlap, 0, data);
1266 }
1267
1268 /* Check if the access relations of group1 and group2 overlap within
1269 * the outermost min(group1->min_depth, group2->min_depth) loops.
1270 */
depth_accesses_overlap(struct gpu_array_ref_group * group1,struct gpu_array_ref_group * group2)1271 static int depth_accesses_overlap(struct gpu_array_ref_group *group1,
1272 struct gpu_array_ref_group *group2)
1273 {
1274 int depth;
1275 int dim;
1276 int empty;
1277 isl_map *map_i, *map_j, *map;
1278
1279 depth = group1->min_depth;
1280 if (group2->min_depth < depth)
1281 depth = group2->min_depth;
1282 map_i = isl_map_copy(group1->access);
1283 dim = isl_map_dim(map_i, isl_dim_in);
1284 map_i = isl_map_eliminate(map_i, isl_dim_in, depth, dim - depth);
1285 map_j = isl_map_copy(group2->access);
1286 map_j = isl_map_eliminate(map_j, isl_dim_in, depth, dim - depth);
1287 map = isl_map_intersect(map_i, map_j);
1288 empty = isl_map_is_empty(map);
1289 isl_map_free(map);
1290
1291 return !empty;
1292 }
1293
1294 /* If two groups have overlapping access relations (within the outer
1295 * depth loops) and if one of them involves a write,
1296 * then merge the two groups into one.
1297 *
1298 * Return the updated number of groups.
1299 */
group_depth_overlapping_writes(struct ppcg_kernel * kernel,int n,struct gpu_array_ref_group ** groups,struct gpu_group_data * data)1300 static int group_depth_overlapping_writes(struct ppcg_kernel *kernel,
1301 int n, struct gpu_array_ref_group **groups, struct gpu_group_data *data)
1302 {
1303 return group_writes(kernel, n, groups, &depth_accesses_overlap, 1,
1304 data);
1305 }
1306
1307 /* Is the size of the tile specified by "tile" smaller than the sum of
1308 * the sizes of the tiles specified by "tile1" and "tile2"?
1309 */
smaller_tile(struct gpu_array_tile * tile,struct gpu_array_tile * tile1,struct gpu_array_tile * tile2)1310 static int smaller_tile(struct gpu_array_tile *tile,
1311 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
1312 {
1313 int smaller;
1314 isl_val *size, *size1, *size2;
1315
1316 size = gpu_array_tile_size(tile);
1317 size1 = gpu_array_tile_size(tile1);
1318 size2 = gpu_array_tile_size(tile2);
1319
1320 size = isl_val_sub(size, size1);
1321 size = isl_val_sub(size, size2);
1322 smaller = isl_val_is_neg(size);
1323
1324 isl_val_free(size);
1325
1326 return smaller;
1327 }
1328
1329 /* Given an initial grouping of array references and shared memory tiles
1330 * for each group that allows for a shared memory tile, merge two groups
1331 * if both have a shared memory tile, the merged group also has
1332 * a shared memory tile and the size of the tile for the merge group
1333 * is smaller than the sum of the tile sizes of the individual groups.
1334 *
1335 * If merging two groups decreases the depth of the tile of
1336 * one or both of the two groups, then we need to check for overlapping
1337 * writes again.
1338 *
1339 * Return the number of groups after merging.
1340 * Return -1 on error.
1341 */
group_common_shared_memory_tile(struct ppcg_kernel * kernel,struct gpu_array_info * array,int n,struct gpu_array_ref_group ** groups,struct gpu_group_data * data)1342 static int group_common_shared_memory_tile(struct ppcg_kernel *kernel,
1343 struct gpu_array_info *array, int n,
1344 struct gpu_array_ref_group **groups, struct gpu_group_data *data)
1345 {
1346 int i, j;
1347 int recompute_overlap = 0;
1348
1349 for (i = 0; i < n; ++i) {
1350 if (!groups[i]->shared_tile)
1351 continue;
1352 for (j = n - 1; j > i; --j) {
1353 struct gpu_array_ref_group *group;
1354
1355 if (!groups[j]->shared_tile)
1356 continue;
1357
1358 if (!depth_accesses_overlap(groups[i], groups[j]))
1359 continue;
1360
1361 group = join_groups(groups[i], groups[j]);
1362 if (compute_group_bounds(kernel, group, data) < 0) {
1363 gpu_array_ref_group_free(group);
1364 return -1;
1365 }
1366 if (!group->shared_tile ||
1367 !smaller_tile(group->shared_tile,
1368 groups[i]->shared_tile,
1369 groups[j]->shared_tile)) {
1370 gpu_array_ref_group_free(group);
1371 continue;
1372 }
1373
1374 if (group->min_depth < groups[i]->min_depth ||
1375 group->min_depth < groups[j]->min_depth)
1376 recompute_overlap = 1;
1377 gpu_array_ref_group_free(groups[i]);
1378 gpu_array_ref_group_free(groups[j]);
1379 groups[i] = group;
1380 if (j != n - 1)
1381 groups[j] = groups[n - 1];
1382 n--;
1383 }
1384 }
1385
1386 if (recompute_overlap)
1387 n = group_depth_overlapping_writes(kernel, n, groups, data);
1388 return n;
1389 }
1390
1391 /* Set array->n_group and array->groups to n and groups.
1392 *
1393 * Additionally, set the "nr" field of each group.
1394 */
set_array_groups(struct gpu_local_array_info * array,int n,struct gpu_array_ref_group ** groups)1395 static void set_array_groups(struct gpu_local_array_info *array,
1396 int n, struct gpu_array_ref_group **groups)
1397 {
1398 int i;
1399
1400 array->n_group = n;
1401 array->groups = groups;
1402
1403 for (i = 0; i < n; ++i)
1404 groups[i]->nr = i;
1405 }
1406
1407 /* Combine all groups in "groups" into a single group and return
1408 * the new number of groups (1 or 0 if there were no groups to start with).
1409 */
join_all_groups(int n,struct gpu_array_ref_group ** groups)1410 static int join_all_groups(int n, struct gpu_array_ref_group **groups)
1411 {
1412 int i;
1413
1414 for (i = n - 1; i > 0; --i) {
1415 groups[0] = join_groups_and_free(groups[0], groups[i]);
1416 groups[i] = NULL;
1417 n--;
1418 }
1419
1420 return n;
1421 }
1422
1423 /* Group array references that should be considered together when
1424 * deciding whether to access them from private, shared or global memory.
1425 * Return -1 on error.
1426 *
1427 * In particular, if two array references overlap and if one of them
1428 * is a write, then the two references are grouped together.
1429 * We first perform an initial grouping based only on the access relation.
1430 * After computing shared and private memory tiles, we check for
1431 * overlapping writes again, but this time taking into account
1432 * the depth of the effective tile.
1433 *
1434 * Furthermore, if two groups admit a shared memory tile and if the
1435 * combination of the two also admits a shared memory tile, we merge
1436 * the two groups.
1437 *
1438 * If the array contains structures, then we compute a single
1439 * reference group without trying to find any tiles
1440 * since we do not map such arrays to private or shared
1441 * memory. The only exception is when those arrays of structures
1442 * are required to be mapped to private memory.
1443 */
group_array_references(struct ppcg_kernel * kernel,struct gpu_local_array_info * local,struct gpu_group_data * data)1444 static int group_array_references(struct ppcg_kernel *kernel,
1445 struct gpu_local_array_info *local, struct gpu_group_data *data)
1446 {
1447 int i;
1448 int n;
1449 isl_ctx *ctx = isl_union_map_get_ctx(data->shared_sched);
1450 struct gpu_array_ref_group **groups;
1451
1452 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
1453 local->array->n_ref);
1454 if (!groups)
1455 return -1;
1456
1457 n = populate_array_references(local, groups, data);
1458
1459 if (local->array->has_compound_element && !local->force_private) {
1460 n = join_all_groups(n, groups);
1461 set_array_groups(local, n, groups);
1462 return 0;
1463 }
1464
1465 n = group_overlapping_writes(kernel, n, groups, data);
1466
1467 for (i = 0; i < n; ++i)
1468 if (compute_group_bounds(kernel, groups[i], data) < 0)
1469 n = -1;
1470
1471 n = group_depth_overlapping_writes(kernel, n, groups, data);
1472
1473 n = group_common_shared_memory_tile(kernel, local->array,
1474 n, groups, data);
1475
1476 set_array_groups(local, n, groups);
1477
1478 if (n >= 0)
1479 return 0;
1480
1481 for (i = 0; i < local->array->n_ref; ++i)
1482 gpu_array_ref_group_free(groups[i]);
1483 return -1;
1484 }
1485
1486 /* For each array in the input program that can be mapped to private memory,
1487 * check if there are any order dependences active inside the current kernel,
1488 * within the same iteration of the host schedule, i.e., the prefix
1489 * schedule at "node".
1490 * If so, mark the array as force_private so that its reference groups will be
1491 * mapped to a registers.
1492 *
1493 * Note that the arrays that cannot be mapped to private memory have
1494 * had their order dependences added to prog->array_order and
1495 * subsequently to the coincidence constraints.
1496 */
check_can_be_private_live_ranges(struct ppcg_kernel * kernel,__isl_keep isl_schedule_node * node)1497 static void check_can_be_private_live_ranges(struct ppcg_kernel *kernel,
1498 __isl_keep isl_schedule_node *node)
1499 {
1500 int i;
1501 isl_union_set *domain;
1502 isl_multi_union_pw_aff *prefix;
1503 isl_union_pw_multi_aff *contraction;
1504
1505 if (!kernel->options->live_range_reordering)
1506 return;
1507
1508 kernel->any_force_private = 0;
1509
1510 prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
1511 contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
1512 prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
1513 contraction);
1514 domain = isl_union_set_copy(kernel->expanded_domain);
1515 domain = isl_union_set_universe(domain);
1516
1517 for (i = 0; i < kernel->n_array; ++i) {
1518 struct gpu_local_array_info *local = &kernel->array[i];
1519 isl_union_map *order;
1520
1521 local->force_private = 0;
1522 if (!gpu_array_can_be_private(local->array))
1523 continue;
1524 order = isl_union_map_copy(local->array->dep_order);
1525 order = isl_union_map_intersect_domain(order,
1526 isl_union_set_copy(domain));
1527 order = isl_union_map_intersect_range(order,
1528 isl_union_set_copy(domain));
1529 order = isl_union_map_eq_at_multi_union_pw_aff(order,
1530 isl_multi_union_pw_aff_copy(prefix));
1531 if (!isl_union_map_is_empty(order)) {
1532 local->force_private = 1;
1533 kernel->any_force_private = 1;
1534 }
1535 isl_union_map_free(order);
1536 }
1537
1538 isl_multi_union_pw_aff_free(prefix);
1539 isl_union_set_free(domain);
1540 }
1541
1542 /* Expand the domain of the schedule "s" by plugging in
1543 * the contraction "contraction" and return the result.
1544 */
expand(__isl_take isl_union_map * s,__isl_keep isl_union_pw_multi_aff * contraction)1545 static __isl_give isl_union_map *expand(__isl_take isl_union_map *s,
1546 __isl_keep isl_union_pw_multi_aff *contraction)
1547 {
1548 contraction = isl_union_pw_multi_aff_copy(contraction);
1549 s = isl_union_map_preimage_domain_union_pw_multi_aff(s, contraction);
1550 return s;
1551 }
1552
1553 /* Create a set of dimension data->thread_depth + data->n_thread
1554 * that equates the residue of the final data->n_thread dimensions
1555 * modulo the kernel->block_dim sizes to the thread identifiers.
1556 * Store the computed set in data->privatization.
1557 *
1558 * The construction starts with the space of kernel->thread_filter,
1559 * which is known to reference all thread identifiers.
1560 */
compute_privatization(struct gpu_group_data * data,struct ppcg_kernel * kernel)1561 static void compute_privatization(struct gpu_group_data *data,
1562 struct ppcg_kernel *kernel)
1563 {
1564 int i;
1565 isl_ctx *ctx;
1566 isl_space *space;
1567 isl_local_space *ls;
1568 isl_set *set;
1569
1570 ctx = isl_union_map_get_ctx(data->shared_sched);
1571 space = isl_union_set_get_space(kernel->thread_filter);
1572 space = isl_space_set_from_params(space);
1573 space = isl_space_add_dims(space, isl_dim_set,
1574 data->thread_depth + data->n_thread);
1575 set = isl_set_universe(space);
1576 space = isl_set_get_space(set);
1577 ls = isl_local_space_from_space(space);
1578
1579 for (i = 0; i < data->n_thread; ++i) {
1580 isl_aff *aff, *aff2;
1581 isl_constraint *c;
1582 isl_val *v;
1583 isl_id *id;
1584 int pos;
1585
1586 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1587 isl_dim_set, data->thread_depth + i);
1588 v = isl_val_int_from_si(ctx, kernel->block_dim[i]);
1589 aff = isl_aff_mod_val(aff, v);
1590 id = isl_id_list_get_id(kernel->thread_ids, i);
1591 pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
1592 isl_id_free(id);
1593 aff2 = isl_aff_var_on_domain(isl_local_space_copy(ls),
1594 isl_dim_param, pos);
1595 aff = isl_aff_sub(aff, aff2);
1596 c = isl_equality_from_aff(aff);
1597 set = isl_set_add_constraint(set, c);
1598 }
1599
1600 isl_local_space_free(ls);
1601 data->privatization = set;
1602 }
1603
1604 /* Return the prefix schedule at "node" as a relation
1605 * between domain elements and schedule dimensions after detecting
1606 * equalities in this relation.
1607 */
prefix_with_equalities(__isl_keep isl_schedule_node * node)1608 static __isl_give isl_union_map *prefix_with_equalities(
1609 __isl_keep isl_schedule_node *node)
1610 {
1611 isl_union_map *schedule;
1612
1613 schedule = isl_schedule_node_get_prefix_schedule_relation(node);
1614 schedule = isl_union_map_detect_equalities(schedule);
1615
1616 return schedule;
1617 }
1618
1619 /* Group references of all arrays in "kernel".
1620 * "node" points to the kernel mark.
1621 * The mapping to shared memory in computed at the "shared" mark.
1622 *
1623 * We first extract all required schedule information into
1624 * a gpu_group_data structure and then consider each array
1625 * in turn.
1626 */
gpu_group_references(struct ppcg_kernel * kernel,__isl_keep isl_schedule_node * node)1627 int gpu_group_references(struct ppcg_kernel *kernel,
1628 __isl_keep isl_schedule_node *node)
1629 {
1630 int i;
1631 int r = 0;
1632 isl_union_pw_multi_aff *contraction;
1633 struct gpu_group_data data;
1634
1635 check_can_be_private_live_ranges(kernel, node);
1636
1637 data.scop = kernel->prog->scop;
1638
1639 data.kernel_depth = isl_schedule_node_get_schedule_depth(node);
1640 data.host_sched = isl_schedule_node_get_prefix_schedule_relation(node);
1641
1642 node = isl_schedule_node_copy(node);
1643 node = gpu_tree_move_down_to_shared(node, kernel->core);
1644 data.shared_depth = isl_schedule_node_get_schedule_depth(node);
1645 data.shared_sched = prefix_with_equalities(node);
1646
1647 node = gpu_tree_move_down_to_thread(node, kernel->core);
1648 node = isl_schedule_node_child(node, 0);
1649 data.thread_depth = isl_schedule_node_get_schedule_depth(node);
1650 data.n_thread = isl_schedule_node_band_n_member(node);
1651 if (data.thread_depth == data.shared_depth)
1652 data.copy_sched = isl_union_map_copy(data.shared_sched);
1653 else
1654 data.copy_sched = prefix_with_equalities(node);
1655 data.thread_sched = isl_union_map_copy(data.copy_sched);
1656 data.thread_sched = isl_union_map_flat_range_product(data.thread_sched,
1657 isl_schedule_node_band_get_partial_schedule_union_map(node));
1658 data.thread_sched = isl_union_map_detect_equalities(data.thread_sched);
1659
1660 contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
1661 data.host_sched = expand(data.host_sched, contraction);
1662 data.shared_sched = expand(data.shared_sched, contraction);
1663 if (data.thread_depth == data.shared_depth) {
1664 isl_union_map_free(data.copy_sched);
1665 data.copy_sched = isl_union_map_copy(data.shared_sched);
1666 } else {
1667 data.copy_sched = expand(data.copy_sched, contraction);
1668 }
1669 data.thread_sched = expand(data.thread_sched, contraction);
1670 isl_union_pw_multi_aff_free(contraction);
1671
1672 node = isl_schedule_node_child(node, 0);
1673 data.full_sched = isl_union_map_copy(data.thread_sched);
1674 data.full_sched = isl_union_map_flat_range_product(data.full_sched,
1675 isl_schedule_node_get_subtree_schedule_union_map(node));
1676 isl_schedule_node_free(node);
1677
1678 compute_privatization(&data, kernel);
1679
1680 for (i = 0; i < kernel->n_array; ++i) {
1681 r = group_array_references(kernel, &kernel->array[i], &data);
1682 if (r < 0)
1683 break;
1684 }
1685
1686 isl_union_map_free(data.host_sched);
1687 isl_union_map_free(data.shared_sched);
1688 isl_union_map_free(data.copy_sched);
1689 isl_union_map_free(data.thread_sched);
1690 isl_union_map_free(data.full_sched);
1691 isl_set_free(data.privatization);
1692
1693 return r;
1694 }
1695
1696 /* Given a description of an array tile "tile" and the "space"
1697 *
1698 * { D -> A }
1699 *
1700 * where D represents the first tile->depth schedule dimensions
1701 * and A represents the array, construct an isl_multi_aff
1702 *
1703 * { [D[i] -> A[a]] -> A'[a'] }
1704 *
1705 * with A' a scaled down copy of A according to the shifts and strides
1706 * in "tile". In particular,
1707 *
1708 * a' = (a + shift(i))/stride
1709 *
1710 * "insert_array" represents
1711 *
1712 * { [D -> A] -> D }
1713 *
1714 * and is used to insert A into the domain of functions that only
1715 * reference D.
1716 */
strided_tile(struct gpu_array_tile * tile,__isl_keep isl_space * space,__isl_keep isl_multi_aff * insert_array)1717 static __isl_give isl_multi_aff *strided_tile(
1718 struct gpu_array_tile *tile, __isl_keep isl_space *space,
1719 __isl_keep isl_multi_aff *insert_array)
1720 {
1721 int i;
1722 isl_ctx *ctx;
1723 isl_multi_aff *shift;
1724 isl_multi_val *stride;
1725 isl_space *space2;
1726 isl_local_space *ls;
1727 isl_multi_aff *tiling;
1728
1729 ctx = isl_space_get_ctx(space);
1730 space2 = isl_space_domain(isl_space_copy(space));
1731 ls = isl_local_space_from_space(space2);
1732 space2 = isl_space_range(isl_space_copy(space));
1733 stride = isl_multi_val_zero(space2);
1734 shift = isl_multi_aff_zero(isl_space_copy(space));
1735
1736 for (i = 0; i < tile->n; ++i) {
1737 struct gpu_array_bound *bound = &tile->bound[i];
1738 isl_val *stride_i;
1739 isl_aff *shift_i;
1740
1741 if (tile->bound[i].shift) {
1742 stride_i = isl_val_copy(bound->stride);
1743 shift_i = isl_aff_copy(bound->shift);
1744 } else {
1745 stride_i = isl_val_one(ctx);
1746 shift_i = isl_aff_zero_on_domain(
1747 isl_local_space_copy(ls));
1748 }
1749
1750 stride = isl_multi_val_set_val(stride, i, stride_i);
1751 shift = isl_multi_aff_set_aff(shift, i, shift_i);
1752 }
1753 isl_local_space_free(ls);
1754
1755 shift = isl_multi_aff_pullback_multi_aff(shift,
1756 isl_multi_aff_copy(insert_array));
1757
1758 tiling = isl_multi_aff_range_map(isl_space_copy(space));
1759 tiling = isl_multi_aff_add(tiling, shift);
1760 tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
1761
1762 return tiling;
1763 }
1764
1765 /* Compute a tiling for the array reference group "group".
1766 *
1767 * The tiling is of the form
1768 *
1769 * { [D[i] -> A[a]] -> T[t] }
1770 *
1771 * where D represents the first tile->depth schedule dimensions,
1772 * A represents the global array and T represents the shared or
1773 * private memory tile. The name of T is the name of the local
1774 * array.
1775 *
1776 * If there is any stride in the accesses, then the mapping is
1777 *
1778 * t = (a + shift(i))/stride - lb(i)
1779 *
1780 * otherwise, it is simply
1781 *
1782 * t = a - lb(i)
1783 */
gpu_array_ref_group_compute_tiling(struct gpu_array_ref_group * group)1784 void gpu_array_ref_group_compute_tiling(struct gpu_array_ref_group *group)
1785 {
1786 int i;
1787 struct gpu_array_tile *tile;
1788 isl_space *space;
1789 isl_multi_aff *tiling, *lb, *insert_array;
1790 isl_printer *p;
1791 char *local_name;
1792
1793 tile = gpu_array_ref_group_tile(group);
1794 if (!tile)
1795 return;
1796
1797 space = isl_map_get_space(group->access);
1798 space = isl_space_from_range(isl_space_range(space));
1799 space = isl_space_add_dims(space, isl_dim_in, tile->depth);
1800 insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
1801
1802 for (i = 0; i < tile->n; ++i)
1803 if (tile->bound[i].shift)
1804 break;
1805
1806 if (i < tile->n)
1807 tiling = strided_tile(tile, space, insert_array);
1808 else
1809 tiling = isl_multi_aff_range_map(isl_space_copy(space));
1810
1811 lb = isl_multi_aff_zero(space);
1812 for (i = 0; i < tile->n; ++i) {
1813 isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
1814 lb = isl_multi_aff_set_aff(lb, i, lb_i);
1815 }
1816 lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
1817
1818 tiling = isl_multi_aff_sub(tiling, lb);
1819
1820 p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
1821 p = gpu_array_ref_group_print_name(group, p);
1822 local_name = isl_printer_get_str(p);
1823 isl_printer_free(p);
1824 tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
1825 free(local_name);
1826
1827 tile->tiling = tiling;
1828 }
1829