1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
16 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
17 
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenTarget.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include <algorithm>
24 #include <map>
25 #include <set>
26 #include <vector>
27 
28 namespace llvm {
29   class Record;
30   class Init;
31   class ListInit;
32   class DagInit;
33   class SDNodeInfo;
34   class TreePattern;
35   class TreePatternNode;
36   class CodeGenDAGPatterns;
37   class ComplexPattern;
38 
39 /// EEVT::DAGISelGenValueType - These are some extended forms of
40 /// MVT::SimpleValueType that we use as lattice values during type inference.
41 /// The existing MVT iAny, fAny and vAny types suffice to represent
42 /// arbitrary integer, floating-point, and vector types, so only an unknown
43 /// value is needed.
44 namespace EEVT {
45   /// TypeSet - This is either empty if it's completely unknown, or holds a set
46   /// of types.  It is used during type inference because register classes can
47   /// have multiple possible types and we don't know which one they get until
48   /// type inference is complete.
49   ///
50   /// TypeSet can have three states:
51   ///    Vector is empty: The type is completely unknown, it can be any valid
52   ///       target type.
53   ///    Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one
54   ///       of those types only.
55   ///    Vector has one concrete type: The type is completely known.
56   ///
57   class TypeSet {
58     SmallVector<MVT::SimpleValueType, 4> TypeVec;
59   public:
TypeSet()60     TypeSet() {}
61     TypeSet(MVT::SimpleValueType VT, TreePattern &TP);
62     TypeSet(ArrayRef<MVT::SimpleValueType> VTList);
63 
isCompletelyUnknown()64     bool isCompletelyUnknown() const { return TypeVec.empty(); }
65 
isConcrete()66     bool isConcrete() const {
67       if (TypeVec.size() != 1) return false;
68       unsigned char T = TypeVec[0]; (void)T;
69       assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny);
70       return true;
71     }
72 
getConcrete()73     MVT::SimpleValueType getConcrete() const {
74       assert(isConcrete() && "Type isn't concrete yet");
75       return (MVT::SimpleValueType)TypeVec[0];
76     }
77 
isDynamicallyResolved()78     bool isDynamicallyResolved() const {
79       return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny;
80     }
81 
getTypeList()82     const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const {
83       assert(!TypeVec.empty() && "Not a type list!");
84       return TypeVec;
85     }
86 
isVoid()87     bool isVoid() const {
88       return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid;
89     }
90 
91     /// hasIntegerTypes - Return true if this TypeSet contains any integer value
92     /// types.
93     bool hasIntegerTypes() const;
94 
95     /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
96     /// a floating point value type.
97     bool hasFloatingPointTypes() const;
98 
99     /// hasScalarTypes - Return true if this TypeSet contains a scalar value
100     /// type.
101     bool hasScalarTypes() const;
102 
103     /// hasVectorTypes - Return true if this TypeSet contains a vector value
104     /// type.
105     bool hasVectorTypes() const;
106 
107     /// getName() - Return this TypeSet as a string.
108     std::string getName() const;
109 
110     /// MergeInTypeInfo - This merges in type information from the specified
111     /// argument.  If 'this' changes, it returns true.  If the two types are
112     /// contradictory (e.g. merge f32 into i32) then this flags an error.
113     bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP);
114 
MergeInTypeInfo(MVT::SimpleValueType InVT,TreePattern & TP)115     bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) {
116       return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP);
117     }
118 
119     /// Force this type list to only contain integer types.
120     bool EnforceInteger(TreePattern &TP);
121 
122     /// Force this type list to only contain floating point types.
123     bool EnforceFloatingPoint(TreePattern &TP);
124 
125     /// EnforceScalar - Remove all vector types from this type list.
126     bool EnforceScalar(TreePattern &TP);
127 
128     /// EnforceVector - Remove all non-vector types from this type list.
129     bool EnforceVector(TreePattern &TP);
130 
131     /// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
132     /// this an other based on this information.
133     bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP);
134 
135     /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
136     /// whose element is VT.
137     bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
138 
139     /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
140     /// whose element is VT.
141     bool EnforceVectorEltTypeIs(MVT::SimpleValueType VT, TreePattern &TP);
142 
143     /// EnforceVectorSubVectorTypeIs - 'this' is now constrained to
144     /// be a vector type VT.
145     bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
146 
147     /// EnforceVectorSameNumElts - 'this' is now constrained to
148     /// be a vector with same num elements as VT.
149     bool EnforceVectorSameNumElts(EEVT::TypeSet &VT, TreePattern &TP);
150 
151     /// EnforceSameSize - 'this' is now constrained to be the same size as VT.
152     bool EnforceSameSize(EEVT::TypeSet &VT, TreePattern &TP);
153 
154     bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; }
155     bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; }
156 
157   private:
158     /// FillWithPossibleTypes - Set to all legal types and return true, only
159     /// valid on completely unknown type sets.  If Pred is non-null, only MVTs
160     /// that pass the predicate are added.
161     bool FillWithPossibleTypes(TreePattern &TP,
162                                bool (*Pred)(MVT::SimpleValueType) = nullptr,
163                                const char *PredicateName = nullptr);
164   };
165 }
166 
167 /// Set type used to track multiply used variables in patterns
168 typedef std::set<std::string> MultipleUseVarSet;
169 
170 /// SDTypeConstraint - This is a discriminated union of constraints,
171 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
172 struct SDTypeConstraint {
173   SDTypeConstraint(Record *R);
174 
175   unsigned OperandNo;   // The operand # this constraint applies to.
176   enum {
177     SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
178     SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
179     SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
180   } ConstraintType;
181 
182   union {   // The discriminated union.
183     struct {
184       MVT::SimpleValueType VT;
185     } SDTCisVT_Info;
186     struct {
187       unsigned OtherOperandNum;
188     } SDTCisSameAs_Info;
189     struct {
190       unsigned OtherOperandNum;
191     } SDTCisVTSmallerThanOp_Info;
192     struct {
193       unsigned BigOperandNum;
194     } SDTCisOpSmallerThanOp_Info;
195     struct {
196       unsigned OtherOperandNum;
197     } SDTCisEltOfVec_Info;
198     struct {
199       unsigned OtherOperandNum;
200     } SDTCisSubVecOfVec_Info;
201     struct {
202       MVT::SimpleValueType VT;
203     } SDTCVecEltisVT_Info;
204     struct {
205       unsigned OtherOperandNum;
206     } SDTCisSameNumEltsAs_Info;
207     struct {
208       unsigned OtherOperandNum;
209     } SDTCisSameSizeAs_Info;
210   } x;
211 
212   /// ApplyTypeConstraint - Given a node in a pattern, apply this type
213   /// constraint to the nodes operands.  This returns true if it makes a
214   /// change, false otherwise.  If a type contradiction is found, an error
215   /// is flagged.
216   bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
217                            TreePattern &TP) const;
218 };
219 
220 /// SDNodeInfo - One of these records is created for each SDNode instance in
221 /// the target .td file.  This represents the various dag nodes we will be
222 /// processing.
223 class SDNodeInfo {
224   Record *Def;
225   std::string EnumName;
226   std::string SDClassName;
227   unsigned Properties;
228   unsigned NumResults;
229   int NumOperands;
230   std::vector<SDTypeConstraint> TypeConstraints;
231 public:
232   SDNodeInfo(Record *R);  // Parse the specified record.
233 
getNumResults()234   unsigned getNumResults() const { return NumResults; }
235 
236   /// getNumOperands - This is the number of operands required or -1 if
237   /// variadic.
getNumOperands()238   int getNumOperands() const { return NumOperands; }
getRecord()239   Record *getRecord() const { return Def; }
getEnumName()240   const std::string &getEnumName() const { return EnumName; }
getSDClassName()241   const std::string &getSDClassName() const { return SDClassName; }
242 
getTypeConstraints()243   const std::vector<SDTypeConstraint> &getTypeConstraints() const {
244     return TypeConstraints;
245   }
246 
247   /// getKnownType - If the type constraints on this node imply a fixed type
248   /// (e.g. all stores return void, etc), then return it as an
249   /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
250   MVT::SimpleValueType getKnownType(unsigned ResNo) const;
251 
252   /// hasProperty - Return true if this node has the specified property.
253   ///
hasProperty(enum SDNP Prop)254   bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
255 
256   /// ApplyTypeConstraints - Given a node in a pattern, apply the type
257   /// constraints for this node to the operands of the node.  This returns
258   /// true if it makes a change, false otherwise.  If a type contradiction is
259   /// found, an error is flagged.
ApplyTypeConstraints(TreePatternNode * N,TreePattern & TP)260   bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
261     bool MadeChange = false;
262     for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
263       MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
264     return MadeChange;
265   }
266 };
267 
268 /// TreePredicateFn - This is an abstraction that represents the predicates on
269 /// a PatFrag node.  This is a simple one-word wrapper around a pointer to
270 /// provide nice accessors.
271 class TreePredicateFn {
272   /// PatFragRec - This is the TreePattern for the PatFrag that we
273   /// originally came from.
274   TreePattern *PatFragRec;
275 public:
276   /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
277   TreePredicateFn(TreePattern *N);
278 
279 
getOrigPatFragRecord()280   TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
281 
282   /// isAlwaysTrue - Return true if this is a noop predicate.
283   bool isAlwaysTrue() const;
284 
isImmediatePattern()285   bool isImmediatePattern() const { return !getImmCode().empty(); }
286 
287   /// getImmediatePredicateCode - Return the code that evaluates this pattern if
288   /// this is an immediate predicate.  It is an error to call this on a
289   /// non-immediate pattern.
getImmediatePredicateCode()290   std::string getImmediatePredicateCode() const {
291     std::string Result = getImmCode();
292     assert(!Result.empty() && "Isn't an immediate pattern!");
293     return Result;
294   }
295 
296 
297   bool operator==(const TreePredicateFn &RHS) const {
298     return PatFragRec == RHS.PatFragRec;
299   }
300 
301   bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
302 
303   /// Return the name to use in the generated code to reference this, this is
304   /// "Predicate_foo" if from a pattern fragment "foo".
305   std::string getFnName() const;
306 
307   /// getCodeToRunOnSDNode - Return the code for the function body that
308   /// evaluates this predicate.  The argument is expected to be in "Node",
309   /// not N.  This handles casting and conversion to a concrete node type as
310   /// appropriate.
311   std::string getCodeToRunOnSDNode() const;
312 
313 private:
314   std::string getPredCode() const;
315   std::string getImmCode() const;
316 };
317 
318 
319 /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
320 /// patterns), and as such should be ref counted.  We currently just leak all
321 /// TreePatternNode objects!
322 class TreePatternNode {
323   /// The type of each node result.  Before and during type inference, each
324   /// result may be a set of possible types.  After (successful) type inference,
325   /// each is a single concrete type.
326   SmallVector<EEVT::TypeSet, 1> Types;
327 
328   /// Operator - The Record for the operator if this is an interior node (not
329   /// a leaf).
330   Record *Operator;
331 
332   /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
333   ///
334   Init *Val;
335 
336   /// Name - The name given to this node with the :$foo notation.
337   ///
338   std::string Name;
339 
340   /// PredicateFns - The predicate functions to execute on this node to check
341   /// for a match.  If this list is empty, no predicate is involved.
342   std::vector<TreePredicateFn> PredicateFns;
343 
344   /// TransformFn - The transformation function to execute on this node before
345   /// it can be substituted into the resulting instruction on a pattern match.
346   Record *TransformFn;
347 
348   std::vector<TreePatternNode*> Children;
349 public:
TreePatternNode(Record * Op,const std::vector<TreePatternNode * > & Ch,unsigned NumResults)350   TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch,
351                   unsigned NumResults)
352     : Operator(Op), Val(nullptr), TransformFn(nullptr), Children(Ch) {
353     Types.resize(NumResults);
354   }
TreePatternNode(Init * val,unsigned NumResults)355   TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
356     : Operator(nullptr), Val(val), TransformFn(nullptr) {
357     Types.resize(NumResults);
358   }
359   ~TreePatternNode();
360 
hasName()361   bool hasName() const { return !Name.empty(); }
getName()362   const std::string &getName() const { return Name; }
setName(StringRef N)363   void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
364 
isLeaf()365   bool isLeaf() const { return Val != nullptr; }
366 
367   // Type accessors.
getNumTypes()368   unsigned getNumTypes() const { return Types.size(); }
getType(unsigned ResNo)369   MVT::SimpleValueType getType(unsigned ResNo) const {
370     return Types[ResNo].getConcrete();
371   }
getExtTypes()372   const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; }
getExtType(unsigned ResNo)373   const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; }
getExtType(unsigned ResNo)374   EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; }
setType(unsigned ResNo,const EEVT::TypeSet & T)375   void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; }
376 
hasTypeSet(unsigned ResNo)377   bool hasTypeSet(unsigned ResNo) const {
378     return Types[ResNo].isConcrete();
379   }
isTypeCompletelyUnknown(unsigned ResNo)380   bool isTypeCompletelyUnknown(unsigned ResNo) const {
381     return Types[ResNo].isCompletelyUnknown();
382   }
isTypeDynamicallyResolved(unsigned ResNo)383   bool isTypeDynamicallyResolved(unsigned ResNo) const {
384     return Types[ResNo].isDynamicallyResolved();
385   }
386 
getLeafValue()387   Init *getLeafValue() const { assert(isLeaf()); return Val; }
getOperator()388   Record *getOperator() const { assert(!isLeaf()); return Operator; }
389 
getNumChildren()390   unsigned getNumChildren() const { return Children.size(); }
getChild(unsigned N)391   TreePatternNode *getChild(unsigned N) const { return Children[N]; }
setChild(unsigned i,TreePatternNode * N)392   void setChild(unsigned i, TreePatternNode *N) {
393     Children[i] = N;
394   }
395 
396   /// hasChild - Return true if N is any of our children.
hasChild(const TreePatternNode * N)397   bool hasChild(const TreePatternNode *N) const {
398     for (unsigned i = 0, e = Children.size(); i != e; ++i)
399       if (Children[i] == N) return true;
400     return false;
401   }
402 
hasAnyPredicate()403   bool hasAnyPredicate() const { return !PredicateFns.empty(); }
404 
getPredicateFns()405   const std::vector<TreePredicateFn> &getPredicateFns() const {
406     return PredicateFns;
407   }
clearPredicateFns()408   void clearPredicateFns() { PredicateFns.clear(); }
setPredicateFns(const std::vector<TreePredicateFn> & Fns)409   void setPredicateFns(const std::vector<TreePredicateFn> &Fns) {
410     assert(PredicateFns.empty() && "Overwriting non-empty predicate list!");
411     PredicateFns = Fns;
412   }
addPredicateFn(const TreePredicateFn & Fn)413   void addPredicateFn(const TreePredicateFn &Fn) {
414     assert(!Fn.isAlwaysTrue() && "Empty predicate string!");
415     if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) ==
416           PredicateFns.end())
417       PredicateFns.push_back(Fn);
418   }
419 
getTransformFn()420   Record *getTransformFn() const { return TransformFn; }
setTransformFn(Record * Fn)421   void setTransformFn(Record *Fn) { TransformFn = Fn; }
422 
423   /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
424   /// CodeGenIntrinsic information for it, otherwise return a null pointer.
425   const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
426 
427   /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
428   /// return the ComplexPattern information, otherwise return null.
429   const ComplexPattern *
430   getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
431 
432   /// Returns the number of MachineInstr operands that would be produced by this
433   /// node if it mapped directly to an output Instruction's
434   /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
435   /// for Operands; otherwise 1.
436   unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
437 
438   /// NodeHasProperty - Return true if this node has the specified property.
439   bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
440 
441   /// TreeHasProperty - Return true if any node in this tree has the specified
442   /// property.
443   bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
444 
445   /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
446   /// marked isCommutative.
447   bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
448 
449   void print(raw_ostream &OS) const;
450   void dump() const;
451 
452 public:   // Higher level manipulation routines.
453 
454   /// clone - Return a new copy of this tree.
455   ///
456   TreePatternNode *clone() const;
457 
458   /// RemoveAllTypes - Recursively strip all the types of this tree.
459   void RemoveAllTypes();
460 
461   /// isIsomorphicTo - Return true if this node is recursively isomorphic to
462   /// the specified node.  For this comparison, all of the state of the node
463   /// is considered, except for the assigned name.  Nodes with differing names
464   /// that are otherwise identical are considered isomorphic.
465   bool isIsomorphicTo(const TreePatternNode *N,
466                       const MultipleUseVarSet &DepVars) const;
467 
468   /// SubstituteFormalArguments - Replace the formal arguments in this tree
469   /// with actual values specified by ArgMap.
470   void SubstituteFormalArguments(std::map<std::string,
471                                           TreePatternNode*> &ArgMap);
472 
473   /// InlinePatternFragments - If this pattern refers to any pattern
474   /// fragments, inline them into place, giving us a pattern without any
475   /// PatFrag references.
476   TreePatternNode *InlinePatternFragments(TreePattern &TP);
477 
478   /// ApplyTypeConstraints - Apply all of the type constraints relevant to
479   /// this node and its children in the tree.  This returns true if it makes a
480   /// change, false otherwise.  If a type contradiction is found, flag an error.
481   bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
482 
483   /// UpdateNodeType - Set the node type of N to VT if VT contains
484   /// information.  If N already contains a conflicting type, then flag an
485   /// error.  This returns true if any information was updated.
486   ///
UpdateNodeType(unsigned ResNo,const EEVT::TypeSet & InTy,TreePattern & TP)487   bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy,
488                       TreePattern &TP) {
489     return Types[ResNo].MergeInTypeInfo(InTy, TP);
490   }
491 
UpdateNodeType(unsigned ResNo,MVT::SimpleValueType InTy,TreePattern & TP)492   bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
493                       TreePattern &TP) {
494     return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP);
495   }
496 
497   // Update node type with types inferred from an instruction operand or result
498   // def from the ins/outs lists.
499   // Return true if the type changed.
500   bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
501 
502   /// ContainsUnresolvedType - Return true if this tree contains any
503   /// unresolved types.
ContainsUnresolvedType()504   bool ContainsUnresolvedType() const {
505     for (unsigned i = 0, e = Types.size(); i != e; ++i)
506       if (!Types[i].isConcrete()) return true;
507 
508     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
509       if (getChild(i)->ContainsUnresolvedType()) return true;
510     return false;
511   }
512 
513   /// canPatternMatch - If it is impossible for this pattern to match on this
514   /// target, fill in Reason and return false.  Otherwise, return true.
515   bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
516 };
517 
518 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
519   TPN.print(OS);
520   return OS;
521 }
522 
523 
524 /// TreePattern - Represent a pattern, used for instructions, pattern
525 /// fragments, etc.
526 ///
527 class TreePattern {
528   /// Trees - The list of pattern trees which corresponds to this pattern.
529   /// Note that PatFrag's only have a single tree.
530   ///
531   std::vector<TreePatternNode*> Trees;
532 
533   /// NamedNodes - This is all of the nodes that have names in the trees in this
534   /// pattern.
535   StringMap<SmallVector<TreePatternNode*,1> > NamedNodes;
536 
537   /// TheRecord - The actual TableGen record corresponding to this pattern.
538   ///
539   Record *TheRecord;
540 
541   /// Args - This is a list of all of the arguments to this pattern (for
542   /// PatFrag patterns), which are the 'node' markers in this pattern.
543   std::vector<std::string> Args;
544 
545   /// CDP - the top-level object coordinating this madness.
546   ///
547   CodeGenDAGPatterns &CDP;
548 
549   /// isInputPattern - True if this is an input pattern, something to match.
550   /// False if this is an output pattern, something to emit.
551   bool isInputPattern;
552 
553   /// hasError - True if the currently processed nodes have unresolvable types
554   /// or other non-fatal errors
555   bool HasError;
556 
557   /// It's important that the usage of operands in ComplexPatterns is
558   /// consistent: each named operand can be defined by at most one
559   /// ComplexPattern. This records the ComplexPattern instance and the operand
560   /// number for each operand encountered in a ComplexPattern to aid in that
561   /// check.
562   StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
563 public:
564 
565   /// TreePattern constructor - Parse the specified DagInits into the
566   /// current record.
567   TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
568               CodeGenDAGPatterns &ise);
569   TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
570               CodeGenDAGPatterns &ise);
571   TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
572               CodeGenDAGPatterns &ise);
573 
574   /// getTrees - Return the tree patterns which corresponds to this pattern.
575   ///
getTrees()576   const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
getNumTrees()577   unsigned getNumTrees() const { return Trees.size(); }
getTree(unsigned i)578   TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
getOnlyTree()579   TreePatternNode *getOnlyTree() const {
580     assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
581     return Trees[0];
582   }
583 
getNamedNodesMap()584   const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() {
585     if (NamedNodes.empty())
586       ComputeNamedNodes();
587     return NamedNodes;
588   }
589 
590   /// getRecord - Return the actual TableGen record corresponding to this
591   /// pattern.
592   ///
getRecord()593   Record *getRecord() const { return TheRecord; }
594 
getNumArgs()595   unsigned getNumArgs() const { return Args.size(); }
getArgName(unsigned i)596   const std::string &getArgName(unsigned i) const {
597     assert(i < Args.size() && "Argument reference out of range!");
598     return Args[i];
599   }
getArgList()600   std::vector<std::string> &getArgList() { return Args; }
601 
getDAGPatterns()602   CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
603 
604   /// InlinePatternFragments - If this pattern refers to any pattern
605   /// fragments, inline them into place, giving us a pattern without any
606   /// PatFrag references.
InlinePatternFragments()607   void InlinePatternFragments() {
608     for (unsigned i = 0, e = Trees.size(); i != e; ++i)
609       Trees[i] = Trees[i]->InlinePatternFragments(*this);
610   }
611 
612   /// InferAllTypes - Infer/propagate as many types throughout the expression
613   /// patterns as possible.  Return true if all types are inferred, false
614   /// otherwise.  Bail out if a type contradiction is found.
615   bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> >
616                           *NamedTypes=nullptr);
617 
618   /// error - If this is the first error in the current resolution step,
619   /// print it and set the error flag.  Otherwise, continue silently.
620   void error(const Twine &Msg);
hasError()621   bool hasError() const {
622     return HasError;
623   }
resetError()624   void resetError() {
625     HasError = false;
626   }
627 
628   void print(raw_ostream &OS) const;
629   void dump() const;
630 
631 private:
632   TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName);
633   void ComputeNamedNodes();
634   void ComputeNamedNodes(TreePatternNode *N);
635 };
636 
637 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
638 /// that has a set ExecuteAlways / DefaultOps field.
639 struct DAGDefaultOperand {
640   std::vector<TreePatternNode*> DefaultOps;
641 };
642 
643 class DAGInstruction {
644   TreePattern *Pattern;
645   std::vector<Record*> Results;
646   std::vector<Record*> Operands;
647   std::vector<Record*> ImpResults;
648   TreePatternNode *ResultPattern;
649 public:
DAGInstruction(TreePattern * TP,const std::vector<Record * > & results,const std::vector<Record * > & operands,const std::vector<Record * > & impresults)650   DAGInstruction(TreePattern *TP,
651                  const std::vector<Record*> &results,
652                  const std::vector<Record*> &operands,
653                  const std::vector<Record*> &impresults)
654     : Pattern(TP), Results(results), Operands(operands),
655       ImpResults(impresults), ResultPattern(nullptr) {}
656 
getPattern()657   TreePattern *getPattern() const { return Pattern; }
getNumResults()658   unsigned getNumResults() const { return Results.size(); }
getNumOperands()659   unsigned getNumOperands() const { return Operands.size(); }
getNumImpResults()660   unsigned getNumImpResults() const { return ImpResults.size(); }
getImpResults()661   const std::vector<Record*>& getImpResults() const { return ImpResults; }
662 
setResultPattern(TreePatternNode * R)663   void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
664 
getResult(unsigned RN)665   Record *getResult(unsigned RN) const {
666     assert(RN < Results.size());
667     return Results[RN];
668   }
669 
getOperand(unsigned ON)670   Record *getOperand(unsigned ON) const {
671     assert(ON < Operands.size());
672     return Operands[ON];
673   }
674 
getImpResult(unsigned RN)675   Record *getImpResult(unsigned RN) const {
676     assert(RN < ImpResults.size());
677     return ImpResults[RN];
678   }
679 
getResultPattern()680   TreePatternNode *getResultPattern() const { return ResultPattern; }
681 };
682 
683 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
684 /// processed to produce isel.
685 class PatternToMatch {
686 public:
PatternToMatch(Record * srcrecord,ListInit * preds,TreePatternNode * src,TreePatternNode * dst,const std::vector<Record * > & dstregs,int complexity,unsigned uid)687   PatternToMatch(Record *srcrecord, ListInit *preds,
688                  TreePatternNode *src, TreePatternNode *dst,
689                  const std::vector<Record*> &dstregs,
690                  int complexity, unsigned uid)
691     : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst),
692       Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {}
693 
694   Record          *SrcRecord;   // Originating Record for the pattern.
695   ListInit        *Predicates;  // Top level predicate conditions to match.
696   TreePatternNode *SrcPattern;  // Source pattern to match.
697   TreePatternNode *DstPattern;  // Resulting pattern.
698   std::vector<Record*> Dstregs; // Physical register defs being matched.
699   int              AddedComplexity; // Add to matching pattern complexity.
700   unsigned         ID;          // Unique ID for the record.
701 
getSrcRecord()702   Record          *getSrcRecord()  const { return SrcRecord; }
getPredicates()703   ListInit        *getPredicates() const { return Predicates; }
getSrcPattern()704   TreePatternNode *getSrcPattern() const { return SrcPattern; }
getDstPattern()705   TreePatternNode *getDstPattern() const { return DstPattern; }
getDstRegs()706   const std::vector<Record*> &getDstRegs() const { return Dstregs; }
getAddedComplexity()707   int         getAddedComplexity() const { return AddedComplexity; }
708 
709   std::string getPredicateCheck() const;
710 
711   /// Compute the complexity metric for the input pattern.  This roughly
712   /// corresponds to the number of nodes that are covered.
713   int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
714 };
715 
716 class CodeGenDAGPatterns {
717   RecordKeeper &Records;
718   CodeGenTarget Target;
719   std::vector<CodeGenIntrinsic> Intrinsics;
720   std::vector<CodeGenIntrinsic> TgtIntrinsics;
721 
722   std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
723   std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> SDNodeXForms;
724   std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
725   std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
726       PatternFragments;
727   std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
728   std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
729 
730   // Specific SDNode definitions:
731   Record *intrinsic_void_sdnode;
732   Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
733 
734   /// PatternsToMatch - All of the things we are matching on the DAG.  The first
735   /// value is the pattern to match, the second pattern is the result to
736   /// emit.
737   std::vector<PatternToMatch> PatternsToMatch;
738 public:
739   CodeGenDAGPatterns(RecordKeeper &R);
740 
getTargetInfo()741   CodeGenTarget &getTargetInfo() { return Target; }
getTargetInfo()742   const CodeGenTarget &getTargetInfo() const { return Target; }
743 
744   Record *getSDNodeNamed(const std::string &Name) const;
745 
getSDNodeInfo(Record * R)746   const SDNodeInfo &getSDNodeInfo(Record *R) const {
747     assert(SDNodes.count(R) && "Unknown node!");
748     return SDNodes.find(R)->second;
749   }
750 
751   // Node transformation lookups.
752   typedef std::pair<Record*, std::string> NodeXForm;
getSDNodeTransform(Record * R)753   const NodeXForm &getSDNodeTransform(Record *R) const {
754     assert(SDNodeXForms.count(R) && "Invalid transform!");
755     return SDNodeXForms.find(R)->second;
756   }
757 
758   typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator
759           nx_iterator;
nx_begin()760   nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
nx_end()761   nx_iterator nx_end() const { return SDNodeXForms.end(); }
762 
763 
getComplexPattern(Record * R)764   const ComplexPattern &getComplexPattern(Record *R) const {
765     assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
766     return ComplexPatterns.find(R)->second;
767   }
768 
getIntrinsic(Record * R)769   const CodeGenIntrinsic &getIntrinsic(Record *R) const {
770     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
771       if (Intrinsics[i].TheDef == R) return Intrinsics[i];
772     for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
773       if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
774     llvm_unreachable("Unknown intrinsic!");
775   }
776 
getIntrinsicInfo(unsigned IID)777   const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
778     if (IID-1 < Intrinsics.size())
779       return Intrinsics[IID-1];
780     if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
781       return TgtIntrinsics[IID-Intrinsics.size()-1];
782     llvm_unreachable("Bad intrinsic ID!");
783   }
784 
getIntrinsicID(Record * R)785   unsigned getIntrinsicID(Record *R) const {
786     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
787       if (Intrinsics[i].TheDef == R) return i;
788     for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
789       if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
790     llvm_unreachable("Unknown intrinsic!");
791   }
792 
getDefaultOperand(Record * R)793   const DAGDefaultOperand &getDefaultOperand(Record *R) const {
794     assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
795     return DefaultOperands.find(R)->second;
796   }
797 
798   // Pattern Fragment information.
getPatternFragment(Record * R)799   TreePattern *getPatternFragment(Record *R) const {
800     assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
801     return PatternFragments.find(R)->second.get();
802   }
getPatternFragmentIfRead(Record * R)803   TreePattern *getPatternFragmentIfRead(Record *R) const {
804     if (!PatternFragments.count(R))
805       return nullptr;
806     return PatternFragments.find(R)->second.get();
807   }
808 
809   typedef std::map<Record *, std::unique_ptr<TreePattern>,
810                    LessRecordByID>::const_iterator pf_iterator;
pf_begin()811   pf_iterator pf_begin() const { return PatternFragments.begin(); }
pf_end()812   pf_iterator pf_end() const { return PatternFragments.end(); }
813 
814   // Patterns to match information.
815   typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
ptm_begin()816   ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
ptm_end()817   ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
818 
819   /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
820   typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
821   const DAGInstruction &parseInstructionPattern(
822       CodeGenInstruction &CGI, ListInit *Pattern,
823       DAGInstMap &DAGInsts);
824 
getInstruction(Record * R)825   const DAGInstruction &getInstruction(Record *R) const {
826     assert(Instructions.count(R) && "Unknown instruction!");
827     return Instructions.find(R)->second;
828   }
829 
get_intrinsic_void_sdnode()830   Record *get_intrinsic_void_sdnode() const {
831     return intrinsic_void_sdnode;
832   }
get_intrinsic_w_chain_sdnode()833   Record *get_intrinsic_w_chain_sdnode() const {
834     return intrinsic_w_chain_sdnode;
835   }
get_intrinsic_wo_chain_sdnode()836   Record *get_intrinsic_wo_chain_sdnode() const {
837     return intrinsic_wo_chain_sdnode;
838   }
839 
hasTargetIntrinsics()840   bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
841 
842 private:
843   void ParseNodeInfo();
844   void ParseNodeTransforms();
845   void ParseComplexPatterns();
846   void ParsePatternFragments(bool OutFrags = false);
847   void ParseDefaultOperands();
848   void ParseInstructions();
849   void ParsePatterns();
850   void InferInstructionFlags();
851   void GenerateVariants();
852   void VerifyInstructionFlags();
853 
854   void AddPatternToMatch(TreePattern *Pattern, const PatternToMatch &PTM);
855   void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
856                                    std::map<std::string,
857                                    TreePatternNode*> &InstInputs,
858                                    std::map<std::string,
859                                    TreePatternNode*> &InstResults,
860                                    std::vector<Record*> &InstImpResults);
861 };
862 } // end namespace llvm
863 
864 #endif
865