1 /*
2  * Copyright (c) 2012 Rob Clark <robdclark@gmail.com>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #include "ir3.h"
25 
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <string.h>
29 #include <assert.h>
30 #include <stdbool.h>
31 #include <errno.h>
32 
33 #include "util/bitscan.h"
34 #include "util/ralloc.h"
35 #include "util/u_math.h"
36 
37 #include "instr-a3xx.h"
38 #include "ir3_shader.h"
39 
40 /* simple allocator to carve allocations out of an up-front allocated heap,
41  * so that we can free everything easily in one shot.
42  */
ir3_alloc(struct ir3 * shader,int sz)43 void * ir3_alloc(struct ir3 *shader, int sz)
44 {
45 	return rzalloc_size(shader, sz); /* TODO: don't use rzalloc */
46 }
47 
ir3_create(struct ir3_compiler * compiler,struct ir3_shader_variant * v)48 struct ir3 * ir3_create(struct ir3_compiler *compiler,
49 		struct ir3_shader_variant *v)
50 {
51 	struct ir3 *shader = rzalloc(v, struct ir3);
52 
53 	shader->compiler = compiler;
54 	shader->type = v->type;
55 
56 	list_inithead(&shader->block_list);
57 	list_inithead(&shader->array_list);
58 
59 	return shader;
60 }
61 
ir3_destroy(struct ir3 * shader)62 void ir3_destroy(struct ir3 *shader)
63 {
64 	ralloc_free(shader);
65 }
66 
67 #define iassert(cond) do { \
68 	if (!(cond)) { \
69 		debug_assert(cond); \
70 		return -1; \
71 	} } while (0)
72 
73 #define iassert_type(reg, full) do { \
74 	if ((full)) { \
75 		iassert(!((reg)->flags & IR3_REG_HALF)); \
76 	} else { \
77 		iassert((reg)->flags & IR3_REG_HALF); \
78 	} } while (0);
79 
reg(struct ir3_register * reg,struct ir3_info * info,uint32_t repeat,uint32_t valid_flags)80 static uint32_t reg(struct ir3_register *reg, struct ir3_info *info,
81 		uint32_t repeat, uint32_t valid_flags)
82 {
83 	struct ir3_shader_variant *v = info->data;
84 	reg_t val = { .dummy32 = 0 };
85 
86 	if (reg->flags & ~valid_flags) {
87 		debug_printf("INVALID FLAGS: %x vs %x\n",
88 				reg->flags, valid_flags);
89 	}
90 
91 	if (!(reg->flags & IR3_REG_R))
92 		repeat = 0;
93 
94 	if (reg->flags & IR3_REG_IMMED) {
95 		val.iim_val = reg->iim_val;
96 	} else {
97 		unsigned components;
98 		int16_t max;
99 
100 		if (reg->flags & IR3_REG_RELATIV) {
101 			components = reg->size;
102 			val.idummy10 = reg->array.offset;
103 			max = (reg->array.offset + repeat + components - 1);
104 		} else {
105 			components = util_last_bit(reg->wrmask);
106 			val.comp = reg->num & 0x3;
107 			val.num  = reg->num >> 2;
108 			max = (reg->num + repeat + components - 1);
109 		}
110 
111 		if (reg->flags & IR3_REG_CONST) {
112 			info->max_const = MAX2(info->max_const, max >> 2);
113 		} else if (val.num == 63) {
114 			/* ignore writes to dummy register r63.x */
115 		} else if (max < regid(48, 0)) {
116 			if (reg->flags & IR3_REG_HALF) {
117 				if (v->mergedregs) {
118 					/* starting w/ a6xx, half regs conflict with full regs: */
119 					info->max_reg = MAX2(info->max_reg, max >> 3);
120 				} else {
121 					info->max_half_reg = MAX2(info->max_half_reg, max >> 2);
122 				}
123 			} else {
124 				info->max_reg = MAX2(info->max_reg, max >> 2);
125 			}
126 		}
127 	}
128 
129 	return val.dummy32;
130 }
131 
emit_cat0(struct ir3_instruction * instr,void * ptr,struct ir3_info * info)132 static int emit_cat0(struct ir3_instruction *instr, void *ptr,
133 		struct ir3_info *info)
134 {
135 	struct ir3_shader_variant *v = info->data;
136 	instr_cat0_t *cat0 = ptr;
137 
138 	if (v->shader->compiler->gpu_id >= 500) {
139 		cat0->a5xx.immed = instr->cat0.immed;
140 	} else if (v->shader->compiler->gpu_id >= 400) {
141 		cat0->a4xx.immed = instr->cat0.immed;
142 	} else {
143 		cat0->a3xx.immed = instr->cat0.immed;
144 	}
145 	cat0->repeat   = instr->repeat;
146 	cat0->ss       = !!(instr->flags & IR3_INSTR_SS);
147 	cat0->inv0     = instr->cat0.inv;
148 	cat0->comp0    = instr->cat0.comp;
149 	cat0->opc      = instr->opc;
150 	cat0->opc_hi   = instr->opc >= 16;
151 	cat0->jmp_tgt  = !!(instr->flags & IR3_INSTR_JP);
152 	cat0->sync     = !!(instr->flags & IR3_INSTR_SY);
153 	cat0->opc_cat  = 0;
154 
155 	return 0;
156 }
157 
emit_cat1(struct ir3_instruction * instr,void * ptr,struct ir3_info * info)158 static int emit_cat1(struct ir3_instruction *instr, void *ptr,
159 		struct ir3_info *info)
160 {
161 	struct ir3_register *dst = instr->regs[0];
162 	struct ir3_register *src = instr->regs[1];
163 	instr_cat1_t *cat1 = ptr;
164 
165 	iassert(instr->regs_count == 2);
166 	iassert_type(dst, type_size(instr->cat1.dst_type) == 32);
167 	if (!(src->flags & IR3_REG_IMMED))
168 		iassert_type(src, type_size(instr->cat1.src_type) == 32);
169 
170 	if (src->flags & IR3_REG_IMMED) {
171 		cat1->iim_val = src->iim_val;
172 		cat1->src_im  = 1;
173 	} else if (src->flags & IR3_REG_RELATIV) {
174 		cat1->off       = reg(src, info, instr->repeat,
175 				IR3_REG_R | IR3_REG_CONST | IR3_REG_HALF | IR3_REG_RELATIV);
176 		cat1->src_rel   = 1;
177 		cat1->src_rel_c = !!(src->flags & IR3_REG_CONST);
178 	} else {
179 		cat1->src  = reg(src, info, instr->repeat,
180 				IR3_REG_R | IR3_REG_CONST | IR3_REG_HALF);
181 		cat1->src_c     = !!(src->flags & IR3_REG_CONST);
182 	}
183 
184 	cat1->dst      = reg(dst, info, instr->repeat,
185 			IR3_REG_RELATIV | IR3_REG_EVEN |
186 			IR3_REG_R | IR3_REG_POS_INF | IR3_REG_HALF);
187 	cat1->repeat   = instr->repeat;
188 	cat1->src_r    = !!(src->flags & IR3_REG_R);
189 	cat1->ss       = !!(instr->flags & IR3_INSTR_SS);
190 	cat1->ul       = !!(instr->flags & IR3_INSTR_UL);
191 	cat1->dst_type = instr->cat1.dst_type;
192 	cat1->dst_rel  = !!(dst->flags & IR3_REG_RELATIV);
193 	cat1->src_type = instr->cat1.src_type;
194 	cat1->even     = !!(dst->flags & IR3_REG_EVEN);
195 	cat1->pos_inf  = !!(dst->flags & IR3_REG_POS_INF);
196 	cat1->jmp_tgt  = !!(instr->flags & IR3_INSTR_JP);
197 	cat1->sync     = !!(instr->flags & IR3_INSTR_SY);
198 	cat1->opc_cat  = 1;
199 
200 	return 0;
201 }
202 
emit_cat2(struct ir3_instruction * instr,void * ptr,struct ir3_info * info)203 static int emit_cat2(struct ir3_instruction *instr, void *ptr,
204 		struct ir3_info *info)
205 {
206 	struct ir3_register *dst = instr->regs[0];
207 	struct ir3_register *src1 = instr->regs[1];
208 	struct ir3_register *src2 = instr->regs[2];
209 	instr_cat2_t *cat2 = ptr;
210 	unsigned absneg = ir3_cat2_absneg(instr->opc);
211 
212 	iassert((instr->regs_count == 2) || (instr->regs_count == 3));
213 
214 	if (instr->nop) {
215 		iassert(!instr->repeat);
216 		iassert(instr->nop <= 3);
217 
218 		cat2->src1_r = instr->nop & 0x1;
219 		cat2->src2_r = (instr->nop >> 1) & 0x1;
220 	} else {
221 		cat2->src1_r = !!(src1->flags & IR3_REG_R);
222 		if (src2)
223 			cat2->src2_r = !!(src2->flags & IR3_REG_R);
224 	}
225 
226 	if (src1->flags & IR3_REG_RELATIV) {
227 		iassert(src1->array.offset < (1 << 10));
228 		cat2->rel1.src1      = reg(src1, info, instr->repeat,
229 				IR3_REG_RELATIV | IR3_REG_CONST | IR3_REG_R |
230 				IR3_REG_HALF | absneg);
231 		cat2->rel1.src1_c    = !!(src1->flags & IR3_REG_CONST);
232 		cat2->rel1.src1_rel  = 1;
233 	} else if (src1->flags & IR3_REG_CONST) {
234 		iassert(src1->num < (1 << 12));
235 		cat2->c1.src1   = reg(src1, info, instr->repeat,
236 				IR3_REG_CONST | IR3_REG_R | IR3_REG_HALF |
237 				absneg);
238 		cat2->c1.src1_c = 1;
239 	} else {
240 		iassert(src1->num < (1 << 11));
241 		cat2->src1 = reg(src1, info, instr->repeat,
242 				IR3_REG_IMMED | IR3_REG_R | IR3_REG_HALF |
243 				absneg);
244 	}
245 	cat2->src1_im  = !!(src1->flags & IR3_REG_IMMED);
246 	cat2->src1_neg = !!(src1->flags & (IR3_REG_FNEG | IR3_REG_SNEG | IR3_REG_BNOT));
247 	cat2->src1_abs = !!(src1->flags & (IR3_REG_FABS | IR3_REG_SABS));
248 
249 	if (src2) {
250 		iassert((src2->flags & IR3_REG_IMMED) ||
251 				!((src1->flags ^ src2->flags) & IR3_REG_HALF));
252 
253 		if (src2->flags & IR3_REG_RELATIV) {
254 			iassert(src2->array.offset < (1 << 10));
255 			cat2->rel2.src2      = reg(src2, info, instr->repeat,
256 					IR3_REG_RELATIV | IR3_REG_CONST | IR3_REG_R |
257 					IR3_REG_HALF | absneg);
258 			cat2->rel2.src2_c    = !!(src2->flags & IR3_REG_CONST);
259 			cat2->rel2.src2_rel  = 1;
260 		} else if (src2->flags & IR3_REG_CONST) {
261 			iassert(src2->num < (1 << 12));
262 			cat2->c2.src2   = reg(src2, info, instr->repeat,
263 					IR3_REG_CONST | IR3_REG_R | IR3_REG_HALF |
264 					absneg);
265 			cat2->c2.src2_c = 1;
266 		} else {
267 			iassert(src2->num < (1 << 11));
268 			cat2->src2 = reg(src2, info, instr->repeat,
269 					IR3_REG_IMMED | IR3_REG_R | IR3_REG_HALF |
270 					absneg);
271 		}
272 
273 		cat2->src2_im  = !!(src2->flags & IR3_REG_IMMED);
274 		cat2->src2_neg = !!(src2->flags & (IR3_REG_FNEG | IR3_REG_SNEG | IR3_REG_BNOT));
275 		cat2->src2_abs = !!(src2->flags & (IR3_REG_FABS | IR3_REG_SABS));
276 	}
277 
278 	cat2->dst      = reg(dst, info, instr->repeat,
279 			IR3_REG_R | IR3_REG_EI | IR3_REG_HALF);
280 	cat2->repeat   = instr->repeat;
281 	cat2->sat      = !!(instr->flags & IR3_INSTR_SAT);
282 	cat2->ss       = !!(instr->flags & IR3_INSTR_SS);
283 	cat2->ul       = !!(instr->flags & IR3_INSTR_UL);
284 	cat2->dst_half = !!((src1->flags ^ dst->flags) & IR3_REG_HALF);
285 	cat2->ei       = !!(dst->flags & IR3_REG_EI);
286 	cat2->cond     = instr->cat2.condition;
287 	cat2->full     = ! (src1->flags & IR3_REG_HALF);
288 	cat2->opc      = instr->opc;
289 	cat2->jmp_tgt  = !!(instr->flags & IR3_INSTR_JP);
290 	cat2->sync     = !!(instr->flags & IR3_INSTR_SY);
291 	cat2->opc_cat  = 2;
292 
293 	return 0;
294 }
295 
emit_cat3(struct ir3_instruction * instr,void * ptr,struct ir3_info * info)296 static int emit_cat3(struct ir3_instruction *instr, void *ptr,
297 		struct ir3_info *info)
298 {
299 	struct ir3_register *dst = instr->regs[0];
300 	struct ir3_register *src1 = instr->regs[1];
301 	struct ir3_register *src2 = instr->regs[2];
302 	struct ir3_register *src3 = instr->regs[3];
303 	unsigned absneg = ir3_cat3_absneg(instr->opc);
304 	instr_cat3_t *cat3 = ptr;
305 	uint32_t src_flags = 0;
306 
307 	switch (instr->opc) {
308 	case OPC_MAD_F16:
309 	case OPC_MAD_U16:
310 	case OPC_MAD_S16:
311 	case OPC_SEL_B16:
312 	case OPC_SEL_S16:
313 	case OPC_SEL_F16:
314 	case OPC_SAD_S16:
315 	case OPC_SAD_S32:  // really??
316 		src_flags |= IR3_REG_HALF;
317 		break;
318 	default:
319 		break;
320 	}
321 
322 	iassert(instr->regs_count == 4);
323 	iassert(!((src1->flags ^ src_flags) & IR3_REG_HALF));
324 	iassert(!((src2->flags ^ src_flags) & IR3_REG_HALF));
325 	iassert(!((src3->flags ^ src_flags) & IR3_REG_HALF));
326 
327 	if (instr->nop) {
328 		iassert(!instr->repeat);
329 		iassert(instr->nop <= 3);
330 
331 		cat3->src1_r = instr->nop & 0x1;
332 		cat3->src2_r = (instr->nop >> 1) & 0x1;
333 	} else {
334 		cat3->src1_r = !!(src1->flags & IR3_REG_R);
335 		cat3->src2_r = !!(src2->flags & IR3_REG_R);
336 	}
337 
338 	if (src1->flags & IR3_REG_RELATIV) {
339 		iassert(src1->array.offset < (1 << 10));
340 		cat3->rel1.src1      = reg(src1, info, instr->repeat,
341 				IR3_REG_RELATIV | IR3_REG_CONST | IR3_REG_R |
342 				IR3_REG_HALF | absneg);
343 		cat3->rel1.src1_c    = !!(src1->flags & IR3_REG_CONST);
344 		cat3->rel1.src1_rel  = 1;
345 	} else if (src1->flags & IR3_REG_CONST) {
346 		iassert(src1->num < (1 << 12));
347 		cat3->c1.src1   = reg(src1, info, instr->repeat,
348 				IR3_REG_CONST | IR3_REG_R | IR3_REG_HALF | absneg);
349 		cat3->c1.src1_c = 1;
350 	} else {
351 		iassert(src1->num < (1 << 11));
352 		cat3->src1 = reg(src1, info, instr->repeat,
353 				IR3_REG_R | IR3_REG_HALF | absneg);
354 	}
355 
356 	cat3->src1_neg = !!(src1->flags & (IR3_REG_FNEG | IR3_REG_SNEG | IR3_REG_BNOT));
357 
358 	cat3->src2     = reg(src2, info, instr->repeat,
359 			IR3_REG_CONST | IR3_REG_R | IR3_REG_HALF | absneg);
360 	cat3->src2_c   = !!(src2->flags & IR3_REG_CONST);
361 	cat3->src2_neg = !!(src2->flags & (IR3_REG_FNEG | IR3_REG_SNEG | IR3_REG_BNOT));
362 
363 	if (src3->flags & IR3_REG_RELATIV) {
364 		iassert(src3->array.offset < (1 << 10));
365 		cat3->rel2.src3      = reg(src3, info, instr->repeat,
366 				IR3_REG_RELATIV | IR3_REG_CONST | IR3_REG_R |
367 				IR3_REG_HALF | absneg);
368 		cat3->rel2.src3_c    = !!(src3->flags & IR3_REG_CONST);
369 		cat3->rel2.src3_rel  = 1;
370 	} else if (src3->flags & IR3_REG_CONST) {
371 		iassert(src3->num < (1 << 12));
372 		cat3->c2.src3   = reg(src3, info, instr->repeat,
373 				IR3_REG_CONST | IR3_REG_R | IR3_REG_HALF | absneg);
374 		cat3->c2.src3_c = 1;
375 	} else {
376 		iassert(src3->num < (1 << 11));
377 		cat3->src3 = reg(src3, info, instr->repeat,
378 				IR3_REG_R | IR3_REG_HALF | absneg);
379 	}
380 
381 	cat3->src3_neg = !!(src3->flags & (IR3_REG_FNEG | IR3_REG_SNEG | IR3_REG_BNOT));
382 	cat3->src3_r   = !!(src3->flags & IR3_REG_R);
383 
384 	cat3->dst      = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF);
385 	cat3->repeat   = instr->repeat;
386 	cat3->sat      = !!(instr->flags & IR3_INSTR_SAT);
387 	cat3->ss       = !!(instr->flags & IR3_INSTR_SS);
388 	cat3->ul       = !!(instr->flags & IR3_INSTR_UL);
389 	cat3->dst_half = !!((src_flags ^ dst->flags) & IR3_REG_HALF);
390 	cat3->opc      = instr->opc;
391 	cat3->jmp_tgt  = !!(instr->flags & IR3_INSTR_JP);
392 	cat3->sync     = !!(instr->flags & IR3_INSTR_SY);
393 	cat3->opc_cat  = 3;
394 
395 	return 0;
396 }
397 
emit_cat4(struct ir3_instruction * instr,void * ptr,struct ir3_info * info)398 static int emit_cat4(struct ir3_instruction *instr, void *ptr,
399 		struct ir3_info *info)
400 {
401 	struct ir3_register *dst = instr->regs[0];
402 	struct ir3_register *src = instr->regs[1];
403 	instr_cat4_t *cat4 = ptr;
404 
405 	iassert(instr->regs_count == 2);
406 
407 	if (src->flags & IR3_REG_RELATIV) {
408 		iassert(src->array.offset < (1 << 10));
409 		cat4->rel.src      = reg(src, info, instr->repeat,
410 				IR3_REG_RELATIV | IR3_REG_CONST | IR3_REG_FNEG |
411 				IR3_REG_FABS | IR3_REG_R | IR3_REG_HALF);
412 		cat4->rel.src_c    = !!(src->flags & IR3_REG_CONST);
413 		cat4->rel.src_rel  = 1;
414 	} else if (src->flags & IR3_REG_CONST) {
415 		iassert(src->num < (1 << 12));
416 		cat4->c.src   = reg(src, info, instr->repeat,
417 				IR3_REG_CONST | IR3_REG_FNEG | IR3_REG_FABS |
418 				IR3_REG_R | IR3_REG_HALF);
419 		cat4->c.src_c = 1;
420 	} else {
421 		iassert(src->num < (1 << 11));
422 		cat4->src = reg(src, info, instr->repeat,
423 				IR3_REG_IMMED | IR3_REG_FNEG | IR3_REG_FABS |
424 				IR3_REG_R | IR3_REG_HALF);
425 	}
426 
427 	cat4->src_im   = !!(src->flags & IR3_REG_IMMED);
428 	cat4->src_neg  = !!(src->flags & IR3_REG_FNEG);
429 	cat4->src_abs  = !!(src->flags & IR3_REG_FABS);
430 	cat4->src_r    = !!(src->flags & IR3_REG_R);
431 
432 	cat4->dst      = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF);
433 	cat4->repeat   = instr->repeat;
434 	cat4->sat      = !!(instr->flags & IR3_INSTR_SAT);
435 	cat4->ss       = !!(instr->flags & IR3_INSTR_SS);
436 	cat4->ul       = !!(instr->flags & IR3_INSTR_UL);
437 	cat4->dst_half = !!((src->flags ^ dst->flags) & IR3_REG_HALF);
438 	cat4->full     = ! (src->flags & IR3_REG_HALF);
439 	cat4->opc      = instr->opc;
440 	cat4->jmp_tgt  = !!(instr->flags & IR3_INSTR_JP);
441 	cat4->sync     = !!(instr->flags & IR3_INSTR_SY);
442 	cat4->opc_cat  = 4;
443 
444 	return 0;
445 }
446 
emit_cat5(struct ir3_instruction * instr,void * ptr,struct ir3_info * info)447 static int emit_cat5(struct ir3_instruction *instr, void *ptr,
448 		struct ir3_info *info)
449 {
450 	struct ir3_register *dst = instr->regs[0];
451 	/* To simplify things when there could be zero, one, or two args other
452 	 * than tex/sampler idx, we use the first src reg in the ir to hold
453 	 * samp_tex hvec2:
454 	 */
455 	struct ir3_register *src1;
456 	struct ir3_register *src2;
457 	instr_cat5_t *cat5 = ptr;
458 
459 	iassert((instr->regs_count == 1) ||
460 			(instr->regs_count == 2) ||
461 			(instr->regs_count == 3) ||
462 			(instr->regs_count == 4));
463 
464 	if (instr->flags & IR3_INSTR_S2EN) {
465 		src1 = instr->regs[2];
466 		src2 = instr->regs_count > 3 ? instr->regs[3] : NULL;
467 	} else {
468 		src1 = instr->regs_count > 1 ? instr->regs[1] : NULL;
469 		src2 = instr->regs_count > 2 ? instr->regs[2] : NULL;
470 	}
471 
472 	assume(src1 || !src2);
473 
474 	if (src1) {
475 		cat5->full = ! (src1->flags & IR3_REG_HALF);
476 		cat5->src1 = reg(src1, info, instr->repeat, IR3_REG_HALF);
477 	}
478 
479 	if (src2) {
480 		iassert(!((src1->flags ^ src2->flags) & IR3_REG_HALF));
481 		cat5->src2 = reg(src2, info, instr->repeat, IR3_REG_HALF);
482 	}
483 
484 	if (instr->flags & IR3_INSTR_B) {
485 		cat5->s2en_bindless.base_hi = instr->cat5.tex_base >> 1;
486 		cat5->base_lo = instr->cat5.tex_base & 1;
487 	}
488 
489 	if (instr->flags & IR3_INSTR_S2EN) {
490 		struct ir3_register *samp_tex = instr->regs[1];
491 		cat5->s2en_bindless.src3 = reg(samp_tex, info, instr->repeat,
492 									   (instr->flags & IR3_INSTR_B) ? 0 : IR3_REG_HALF);
493 		if (instr->flags & IR3_INSTR_B) {
494 			if (instr->flags & IR3_INSTR_A1EN) {
495 				cat5->s2en_bindless.desc_mode = CAT5_BINDLESS_A1_UNIFORM;
496 			} else {
497 				cat5->s2en_bindless.desc_mode = CAT5_BINDLESS_UNIFORM;
498 			}
499 		} else {
500 			/* TODO: This should probably be CAT5_UNIFORM, at least on a6xx,
501 			 * as this is what the blob does and it is presumably faster, but
502 			 * first we should confirm it is actually nonuniform and figure
503 			 * out when the whole descriptor mode mechanism was introduced.
504 			 */
505 			cat5->s2en_bindless.desc_mode = CAT5_NONUNIFORM;
506 		}
507 		iassert(!(instr->cat5.samp | instr->cat5.tex));
508 	} else if (instr->flags & IR3_INSTR_B) {
509 		cat5->s2en_bindless.src3 = instr->cat5.samp;
510 		if (instr->flags & IR3_INSTR_A1EN) {
511 			cat5->s2en_bindless.desc_mode = CAT5_BINDLESS_A1_IMM;
512 		} else {
513 			cat5->s2en_bindless.desc_mode = CAT5_BINDLESS_IMM;
514 		}
515 	} else {
516 		cat5->norm.samp = instr->cat5.samp;
517 		cat5->norm.tex  = instr->cat5.tex;
518 	}
519 
520 	cat5->dst      = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF);
521 	cat5->wrmask   = dst->wrmask;
522 	cat5->type     = instr->cat5.type;
523 	cat5->is_3d    = !!(instr->flags & IR3_INSTR_3D);
524 	cat5->is_a     = !!(instr->flags & IR3_INSTR_A);
525 	cat5->is_s     = !!(instr->flags & IR3_INSTR_S);
526 	cat5->is_s2en_bindless = !!(instr->flags & (IR3_INSTR_S2EN | IR3_INSTR_B));
527 	cat5->is_o     = !!(instr->flags & IR3_INSTR_O);
528 	cat5->is_p     = !!(instr->flags & IR3_INSTR_P);
529 	cat5->opc      = instr->opc;
530 	cat5->jmp_tgt  = !!(instr->flags & IR3_INSTR_JP);
531 	cat5->sync     = !!(instr->flags & IR3_INSTR_SY);
532 	cat5->opc_cat  = 5;
533 
534 	return 0;
535 }
536 
emit_cat6_a6xx(struct ir3_instruction * instr,void * ptr,struct ir3_info * info)537 static int emit_cat6_a6xx(struct ir3_instruction *instr, void *ptr,
538 		struct ir3_info *info)
539 {
540 	struct ir3_register *ssbo;
541 	instr_cat6_a6xx_t *cat6 = ptr;
542 
543 	ssbo = instr->regs[1];
544 
545 	cat6->type      = instr->cat6.type;
546 	cat6->d         = instr->cat6.d - (instr->opc == OPC_LDC ? 0 : 1);
547 	cat6->typed     = instr->cat6.typed;
548 	cat6->type_size = instr->cat6.iim_val - 1;
549 	cat6->opc       = instr->opc;
550 	cat6->jmp_tgt   = !!(instr->flags & IR3_INSTR_JP);
551 	cat6->sync      = !!(instr->flags & IR3_INSTR_SY);
552 	cat6->opc_cat   = 6;
553 
554 	cat6->ssbo = reg(ssbo, info, instr->repeat, IR3_REG_IMMED);
555 
556 	/* For unused sources in an opcode, initialize contents with the ir3 dest
557 	 * reg
558 	 */
559 	switch (instr->opc) {
560 	case OPC_RESINFO:
561 		cat6->src1 = reg(instr->regs[0], info, instr->repeat, 0);
562 		cat6->src2 = reg(instr->regs[0], info, instr->repeat, 0);
563 		break;
564 	case OPC_LDC:
565 	case OPC_LDIB:
566 		cat6->src1 = reg(instr->regs[2], info, instr->repeat, 0);
567 		cat6->src2 = reg(instr->regs[0], info, instr->repeat, 0);
568 		break;
569 	default:
570 		cat6->src1 = reg(instr->regs[2], info, instr->repeat, 0);
571 		cat6->src2 = reg(instr->regs[3], info, instr->repeat, 0);
572 		break;
573 	}
574 
575 	if (instr->flags & IR3_INSTR_B) {
576 		if (ssbo->flags & IR3_REG_IMMED) {
577 			cat6->desc_mode = CAT6_BINDLESS_IMM;
578 		} else {
579 			cat6->desc_mode = CAT6_BINDLESS_UNIFORM;
580 		}
581 		cat6->base = instr->cat6.base;
582 	} else {
583 		if (ssbo->flags & IR3_REG_IMMED)
584 			cat6->desc_mode = CAT6_IMM;
585 		else
586 			cat6->desc_mode = CAT6_UNIFORM;
587 	}
588 
589 	switch (instr->opc) {
590 	case OPC_ATOMIC_ADD:
591 	case OPC_ATOMIC_SUB:
592 	case OPC_ATOMIC_XCHG:
593 	case OPC_ATOMIC_INC:
594 	case OPC_ATOMIC_DEC:
595 	case OPC_ATOMIC_CMPXCHG:
596 	case OPC_ATOMIC_MIN:
597 	case OPC_ATOMIC_MAX:
598 	case OPC_ATOMIC_AND:
599 	case OPC_ATOMIC_OR:
600 	case OPC_ATOMIC_XOR:
601 		cat6->pad1 = 0x1;
602 		cat6->pad3 = 0xc;
603 		cat6->pad5 = 0x3;
604 		break;
605 	case OPC_STIB:
606 		cat6->pad1 = 0x0;
607 		cat6->pad3 = 0xc;
608 		cat6->pad5 = 0x2;
609 		break;
610 	case OPC_LDIB:
611 	case OPC_RESINFO:
612 		cat6->pad1 = 0x1;
613 		cat6->pad3 = 0xc;
614 		cat6->pad5 = 0x2;
615 		break;
616 	case OPC_LDC:
617 		cat6->pad1 = 0x0;
618 		cat6->pad3 = 0x8;
619 		cat6->pad5 = 0x2;
620 		break;
621 	default:
622 		iassert(0);
623 	}
624 	cat6->pad2 = 0x0;
625 	cat6->pad4 = 0x0;
626 
627 	return 0;
628 }
629 
emit_cat6(struct ir3_instruction * instr,void * ptr,struct ir3_info * info)630 static int emit_cat6(struct ir3_instruction *instr, void *ptr,
631 		struct ir3_info *info)
632 {
633 	struct ir3_shader_variant *v = info->data;
634 	struct ir3_register *dst, *src1, *src2;
635 	instr_cat6_t *cat6 = ptr;
636 
637 	/* In a6xx we start using a new instruction encoding for some of
638 	 * these instructions:
639 	 */
640 	if (v->shader->compiler->gpu_id >= 600) {
641 		switch (instr->opc) {
642 		case OPC_ATOMIC_ADD:
643 		case OPC_ATOMIC_SUB:
644 		case OPC_ATOMIC_XCHG:
645 		case OPC_ATOMIC_INC:
646 		case OPC_ATOMIC_DEC:
647 		case OPC_ATOMIC_CMPXCHG:
648 		case OPC_ATOMIC_MIN:
649 		case OPC_ATOMIC_MAX:
650 		case OPC_ATOMIC_AND:
651 		case OPC_ATOMIC_OR:
652 		case OPC_ATOMIC_XOR:
653 			/* The shared variants of these still use the old encoding: */
654 			if (!(instr->flags & IR3_INSTR_G))
655 				break;
656 			/* fallthrough */
657 		case OPC_STIB:
658 		case OPC_LDIB:
659 		case OPC_LDC:
660 		case OPC_RESINFO:
661 			return emit_cat6_a6xx(instr, ptr, info);
662 		default:
663 			break;
664 		}
665 	}
666 
667 	bool type_full = type_size(instr->cat6.type) == 32;
668 
669 	cat6->type     = instr->cat6.type;
670 	cat6->opc      = instr->opc;
671 	cat6->jmp_tgt  = !!(instr->flags & IR3_INSTR_JP);
672 	cat6->sync     = !!(instr->flags & IR3_INSTR_SY);
673 	cat6->g        = !!(instr->flags & IR3_INSTR_G);
674 	cat6->opc_cat  = 6;
675 
676 	switch (instr->opc) {
677 	case OPC_RESINFO:
678 	case OPC_RESFMT:
679 		iassert_type(instr->regs[0], type_full); /* dst */
680 		iassert_type(instr->regs[1], type_full); /* src1 */
681 		break;
682 	case OPC_L2G:
683 	case OPC_G2L:
684 		iassert_type(instr->regs[0], true);      /* dst */
685 		iassert_type(instr->regs[1], true);      /* src1 */
686 		break;
687 	case OPC_STG:
688 	case OPC_STL:
689 	case OPC_STP:
690 	case OPC_STLW:
691 	case OPC_STIB:
692 		/* no dst, so regs[0] is dummy */
693 		iassert_type(instr->regs[1], true);      /* dst */
694 		iassert_type(instr->regs[2], type_full); /* src1 */
695 		iassert_type(instr->regs[3], true);      /* src2 */
696 		break;
697 	default:
698 		iassert_type(instr->regs[0], type_full); /* dst */
699 		iassert_type(instr->regs[1], true);      /* src1 */
700 		if (instr->regs_count > 2)
701 			iassert_type(instr->regs[2], true);  /* src1 */
702 		break;
703 	}
704 
705 	/* the "dst" for a store instruction is (from the perspective
706 	 * of data flow in the shader, ie. register use/def, etc) in
707 	 * fact a register that is read by the instruction, rather
708 	 * than written:
709 	 */
710 	if (is_store(instr)) {
711 		iassert(instr->regs_count >= 3);
712 
713 		dst  = instr->regs[1];
714 		src1 = instr->regs[2];
715 		src2 = (instr->regs_count >= 4) ? instr->regs[3] : NULL;
716 	} else {
717 		iassert(instr->regs_count >= 2);
718 
719 		dst  = instr->regs[0];
720 		src1 = instr->regs[1];
721 		src2 = (instr->regs_count >= 3) ? instr->regs[2] : NULL;
722 	}
723 
724 	/* TODO we need a more comprehensive list about which instructions
725 	 * can be encoded which way.  Or possibly use IR3_INSTR_0 flag to
726 	 * indicate to use the src_off encoding even if offset is zero
727 	 * (but then what to do about dst_off?)
728 	 */
729 	if (is_atomic(instr->opc)) {
730 		instr_cat6ldgb_t *ldgb = ptr;
731 
732 		/* maybe these two bits both determine the instruction encoding? */
733 		cat6->src_off = false;
734 
735 		ldgb->d = instr->cat6.d - 1;
736 		ldgb->typed = instr->cat6.typed;
737 		ldgb->type_size = instr->cat6.iim_val - 1;
738 
739 		ldgb->dst = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF);
740 
741 		if (ldgb->g) {
742 			struct ir3_register *src3 = instr->regs[3];
743 			struct ir3_register *src4 = instr->regs[4];
744 
745 			/* first src is src_ssbo: */
746 			iassert(src1->flags & IR3_REG_IMMED);
747 			ldgb->src_ssbo = src1->uim_val;
748 			ldgb->src_ssbo_im = 0x1;
749 
750 			ldgb->src1 = reg(src2, info, instr->repeat, IR3_REG_IMMED);
751 			ldgb->src1_im = !!(src2->flags & IR3_REG_IMMED);
752 			ldgb->src2 = reg(src3, info, instr->repeat, IR3_REG_IMMED);
753 			ldgb->src2_im = !!(src3->flags & IR3_REG_IMMED);
754 
755 			ldgb->src3 = reg(src4, info, instr->repeat, 0);
756 			ldgb->pad0 = 0x1;
757 		} else {
758 			ldgb->src1 = reg(src1, info, instr->repeat, IR3_REG_IMMED);
759 			ldgb->src1_im = !!(src1->flags & IR3_REG_IMMED);
760 			ldgb->src2 = reg(src2, info, instr->repeat, IR3_REG_IMMED);
761 			ldgb->src2_im = !!(src2->flags & IR3_REG_IMMED);
762 			ldgb->pad0 = 0x1;
763 			ldgb->src_ssbo_im = 0x0;
764 		}
765 
766 		return 0;
767 	} else if (instr->opc == OPC_LDGB) {
768 		struct ir3_register *src3 = instr->regs[3];
769 		instr_cat6ldgb_t *ldgb = ptr;
770 
771 		/* maybe these two bits both determine the instruction encoding? */
772 		cat6->src_off = false;
773 
774 		ldgb->d = instr->cat6.d - 1;
775 		ldgb->typed = instr->cat6.typed;
776 		ldgb->type_size = instr->cat6.iim_val - 1;
777 
778 		ldgb->dst = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF);
779 
780 		/* first src is src_ssbo: */
781 		iassert(src1->flags & IR3_REG_IMMED);
782 		ldgb->src_ssbo = src1->uim_val;
783 
784 		/* then next two are src1/src2: */
785 		ldgb->src1 = reg(src2, info, instr->repeat, IR3_REG_IMMED);
786 		ldgb->src1_im = !!(src2->flags & IR3_REG_IMMED);
787 		ldgb->src2 = reg(src3, info, instr->repeat, IR3_REG_IMMED);
788 		ldgb->src2_im = !!(src3->flags & IR3_REG_IMMED);
789 
790 		ldgb->pad0 = 0x0;
791 		ldgb->src_ssbo_im = true;
792 
793 		return 0;
794 	} else if (instr->opc == OPC_RESINFO) {
795 		instr_cat6ldgb_t *ldgb = ptr;
796 
797 		ldgb->d = instr->cat6.d - 1;
798 
799 		ldgb->dst = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF);
800 
801 		/* first src is src_ssbo: */
802 		ldgb->src_ssbo = reg(src1, info, instr->repeat, IR3_REG_IMMED);
803 		ldgb->src_ssbo_im = !!(src1->flags & IR3_REG_IMMED);
804 
805 		return 0;
806 	} else if ((instr->opc == OPC_STGB) || (instr->opc == OPC_STIB)) {
807 		struct ir3_register *src3 = instr->regs[4];
808 		instr_cat6stgb_t *stgb = ptr;
809 
810 		/* maybe these two bits both determine the instruction encoding? */
811 		cat6->src_off = true;
812 		stgb->pad3 = 0x2;
813 
814 		stgb->d = instr->cat6.d - 1;
815 		stgb->typed = instr->cat6.typed;
816 		stgb->type_size = instr->cat6.iim_val - 1;
817 
818 		/* first src is dst_ssbo: */
819 		iassert(dst->flags & IR3_REG_IMMED);
820 		stgb->dst_ssbo = dst->uim_val;
821 
822 		/* then src1/src2/src3: */
823 		stgb->src1 = reg(src1, info, instr->repeat, 0);
824 		stgb->src2 = reg(src2, info, instr->repeat, IR3_REG_IMMED);
825 		stgb->src2_im = !!(src2->flags & IR3_REG_IMMED);
826 		stgb->src3 = reg(src3, info, instr->repeat, IR3_REG_IMMED);
827 		stgb->src3_im = !!(src3->flags & IR3_REG_IMMED);
828 
829 		return 0;
830 	} else if (instr->cat6.src_offset || (instr->opc == OPC_LDG) ||
831 			(instr->opc == OPC_LDL) || (instr->opc == OPC_LDLW)) {
832 		struct ir3_register *src3 = instr->regs[3];
833 		instr_cat6a_t *cat6a = ptr;
834 
835 		cat6->src_off = true;
836 
837 		if (instr->opc == OPC_LDG) {
838 			/* For LDG src1 can not be immediate, so src1_imm is redundant and
839 			 * instead used to signal whether (when true) 'off' is a 32 bit
840 			 * register or an immediate offset.
841 			 */
842 			cat6a->src1 = reg(src1, info, instr->repeat, 0);
843 			cat6a->src1_im = !(src3->flags & IR3_REG_IMMED);
844 			cat6a->off = reg(src3, info, instr->repeat, IR3_REG_IMMED);
845 		} else {
846 			cat6a->src1 = reg(src1, info, instr->repeat, IR3_REG_IMMED);
847 			cat6a->src1_im = !!(src1->flags & IR3_REG_IMMED);
848 			cat6a->off = reg(src3, info, instr->repeat, IR3_REG_IMMED);
849 			iassert(src3->flags & IR3_REG_IMMED);
850 		}
851 
852 		/* Num components */
853 		cat6a->src2 = reg(src2, info, instr->repeat, IR3_REG_IMMED);
854 		cat6a->src2_im = true;
855 	} else {
856 		instr_cat6b_t *cat6b = ptr;
857 
858 		cat6->src_off = false;
859 
860 		cat6b->src1 = reg(src1, info, instr->repeat, IR3_REG_IMMED | IR3_REG_HALF);
861 		cat6b->src1_im = !!(src1->flags & IR3_REG_IMMED);
862 		if (src2) {
863 			cat6b->src2 = reg(src2, info, instr->repeat, IR3_REG_IMMED);
864 			cat6b->src2_im = !!(src2->flags & IR3_REG_IMMED);
865 		}
866 	}
867 
868 	if (instr->cat6.dst_offset || (instr->opc == OPC_STG) ||
869 			(instr->opc == OPC_STL) || (instr->opc == OPC_STLW)) {
870 		instr_cat6c_t *cat6c = ptr;
871 		cat6->dst_off = true;
872 		cat6c->dst = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF);
873 
874 		if (instr->flags & IR3_INSTR_G) {
875 			struct ir3_register *src3 = instr->regs[4];
876 			cat6c->off = reg(src3, info, instr->repeat, IR3_REG_R | IR3_REG_HALF);
877 			if (src3->flags & IR3_REG_IMMED) {
878 				/* Immediate offsets are in bytes... */
879 				cat6->g = false;
880 				cat6c->off *= 4;
881 			}
882 		} else {
883 			cat6c->off = instr->cat6.dst_offset;
884 			cat6c->off_high = instr->cat6.dst_offset >> 8;
885 		}
886 	} else {
887 		instr_cat6d_t *cat6d = ptr;
888 		cat6->dst_off = false;
889 		cat6d->dst = reg(dst, info, instr->repeat, IR3_REG_R | IR3_REG_HALF);
890 	}
891 
892 	return 0;
893 }
894 
emit_cat7(struct ir3_instruction * instr,void * ptr,struct ir3_info * info)895 static int emit_cat7(struct ir3_instruction *instr, void *ptr,
896 		struct ir3_info *info)
897 {
898 	instr_cat7_t *cat7 = ptr;
899 
900 	cat7->ss      = !!(instr->flags & IR3_INSTR_SS);
901 	cat7->w       = instr->cat7.w;
902 	cat7->r       = instr->cat7.r;
903 	cat7->l       = instr->cat7.l;
904 	cat7->g       = instr->cat7.g;
905 	cat7->opc     = instr->opc;
906 	cat7->jmp_tgt = !!(instr->flags & IR3_INSTR_JP);
907 	cat7->sync    = !!(instr->flags & IR3_INSTR_SY);
908 	cat7->opc_cat = 7;
909 
910 	return 0;
911 }
912 
913 static int (*emit[])(struct ir3_instruction *instr, void *ptr,
914 		struct ir3_info *info) = {
915 	emit_cat0, emit_cat1, emit_cat2, emit_cat3, emit_cat4, emit_cat5, emit_cat6,
916 	emit_cat7,
917 };
918 
ir3_assemble(struct ir3_shader_variant * v)919 void * ir3_assemble(struct ir3_shader_variant *v)
920 {
921 	uint32_t *ptr, *dwords;
922 	struct ir3_info *info = &v->info;
923 	struct ir3 *shader = v->ir;
924 	const struct ir3_compiler *compiler = v->shader->compiler;
925 
926 	memset(info, 0, sizeof(*info));
927 	info->data          = v;
928 	info->max_reg       = -1;
929 	info->max_half_reg  = -1;
930 	info->max_const     = -1;
931 
932 	uint32_t instr_count = 0;
933 	foreach_block (block, &shader->block_list) {
934 		foreach_instr (instr, &block->instr_list) {
935 			instr_count++;
936 		}
937 	}
938 
939 	v->instrlen = DIV_ROUND_UP(instr_count, compiler->instr_align);
940 
941 	/* Pad out with NOPs to instrlen. */
942 	info->sizedwords = v->instrlen * compiler->instr_align * sizeof(instr_t) / 4;
943 
944 	ptr = dwords = rzalloc_size(v, 4 * info->sizedwords);
945 
946 	foreach_block (block, &shader->block_list) {
947 		unsigned sfu_delay = 0;
948 
949 		foreach_instr (instr, &block->instr_list) {
950 			int ret = emit[opc_cat(instr->opc)](instr, dwords, info);
951 			if (ret)
952 				goto fail;
953 
954 			if ((instr->opc == OPC_BARY_F) && (instr->regs[0]->flags & IR3_REG_EI))
955 				info->last_baryf = info->instrs_count;
956 
957 			unsigned instrs_count = 1 + instr->repeat + instr->nop;
958 			unsigned nops_count = instr->nop;
959 
960 			if (instr->opc == OPC_NOP) {
961 				nops_count = 1 + instr->repeat;
962 				info->instrs_per_cat[0] += nops_count;
963 			} else {
964 				info->instrs_per_cat[opc_cat(instr->opc)] += instrs_count;
965 				info->instrs_per_cat[0] += nops_count;
966 			}
967 
968 			if (instr->opc == OPC_MOV) {
969 				if (instr->cat1.src_type == instr->cat1.dst_type) {
970 					info->mov_count += 1 + instr->repeat;
971 				} else {
972 					info->cov_count += 1 + instr->repeat;
973 				}
974 			}
975 
976 			info->instrs_count += instrs_count;
977 			info->nops_count += nops_count;
978 
979 			dwords += 2;
980 
981 			if (instr->flags & IR3_INSTR_SS) {
982 				info->ss++;
983 				info->sstall += sfu_delay;
984 			}
985 
986 			if (instr->flags & IR3_INSTR_SY)
987 				info->sy++;
988 
989 			if (is_sfu(instr)) {
990 				sfu_delay = 10;
991 			} else if (sfu_delay > 0) {
992 				sfu_delay--;
993 			}
994 		}
995 	}
996 
997 	return ptr;
998 
999 fail:
1000 	ralloc_free(ptr);
1001 	return NULL;
1002 }
1003 
reg_create(struct ir3 * shader,int num,int flags)1004 static struct ir3_register * reg_create(struct ir3 *shader,
1005 		int num, int flags)
1006 {
1007 	struct ir3_register *reg =
1008 			ir3_alloc(shader, sizeof(struct ir3_register));
1009 	reg->wrmask = 1;
1010 	reg->flags = flags;
1011 	reg->num = num;
1012 	return reg;
1013 }
1014 
insert_instr(struct ir3_block * block,struct ir3_instruction * instr)1015 static void insert_instr(struct ir3_block *block,
1016 		struct ir3_instruction *instr)
1017 {
1018 	struct ir3 *shader = block->shader;
1019 #ifdef DEBUG
1020 	instr->serialno = ++shader->instr_count;
1021 #endif
1022 	list_addtail(&instr->node, &block->instr_list);
1023 
1024 	if (is_input(instr))
1025 		array_insert(shader, shader->baryfs, instr);
1026 }
1027 
ir3_block_create(struct ir3 * shader)1028 struct ir3_block * ir3_block_create(struct ir3 *shader)
1029 {
1030 	struct ir3_block *block = ir3_alloc(shader, sizeof(*block));
1031 #ifdef DEBUG
1032 	block->serialno = ++shader->block_count;
1033 #endif
1034 	block->shader = shader;
1035 	list_inithead(&block->node);
1036 	list_inithead(&block->instr_list);
1037 	block->predecessors = _mesa_pointer_set_create(block);
1038 	return block;
1039 }
1040 
instr_create(struct ir3_block * block,int nreg)1041 static struct ir3_instruction *instr_create(struct ir3_block *block, int nreg)
1042 {
1043 	struct ir3_instruction *instr;
1044 	unsigned sz = sizeof(*instr) + (nreg * sizeof(instr->regs[0]));
1045 	char *ptr = ir3_alloc(block->shader, sz);
1046 
1047 	instr = (struct ir3_instruction *)ptr;
1048 	ptr  += sizeof(*instr);
1049 	instr->regs = (struct ir3_register **)ptr;
1050 
1051 #ifdef DEBUG
1052 	instr->regs_max = nreg;
1053 #endif
1054 
1055 	return instr;
1056 }
1057 
ir3_instr_create2(struct ir3_block * block,opc_t opc,int nreg)1058 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
1059 		opc_t opc, int nreg)
1060 {
1061 	struct ir3_instruction *instr = instr_create(block, nreg);
1062 	instr->block = block;
1063 	instr->opc = opc;
1064 	insert_instr(block, instr);
1065 	return instr;
1066 }
1067 
ir3_instr_create(struct ir3_block * block,opc_t opc)1068 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc)
1069 {
1070 	/* NOTE: we could be slightly more clever, at least for non-meta,
1071 	 * and choose # of regs based on category.
1072 	 */
1073 	return ir3_instr_create2(block, opc, 4);
1074 }
1075 
ir3_instr_clone(struct ir3_instruction * instr)1076 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr)
1077 {
1078 	struct ir3_instruction *new_instr = instr_create(instr->block,
1079 			instr->regs_count);
1080 	struct ir3_register **regs;
1081 	unsigned i;
1082 
1083 	regs = new_instr->regs;
1084 	*new_instr = *instr;
1085 	new_instr->regs = regs;
1086 
1087 	insert_instr(instr->block, new_instr);
1088 
1089 	/* clone registers: */
1090 	new_instr->regs_count = 0;
1091 	for (i = 0; i < instr->regs_count; i++) {
1092 		struct ir3_register *reg = instr->regs[i];
1093 		struct ir3_register *new_reg =
1094 				ir3_reg_create(new_instr, reg->num, reg->flags);
1095 		*new_reg = *reg;
1096 	}
1097 
1098 	return new_instr;
1099 }
1100 
1101 /* Add a false dependency to instruction, to ensure it is scheduled first: */
ir3_instr_add_dep(struct ir3_instruction * instr,struct ir3_instruction * dep)1102 void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep)
1103 {
1104 	array_insert(instr, instr->deps, dep);
1105 }
1106 
ir3_reg_create(struct ir3_instruction * instr,int num,int flags)1107 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
1108 		int num, int flags)
1109 {
1110 	struct ir3 *shader = instr->block->shader;
1111 	struct ir3_register *reg = reg_create(shader, num, flags);
1112 #ifdef DEBUG
1113 	debug_assert(instr->regs_count < instr->regs_max);
1114 #endif
1115 	instr->regs[instr->regs_count++] = reg;
1116 	return reg;
1117 }
1118 
ir3_reg_clone(struct ir3 * shader,struct ir3_register * reg)1119 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
1120 		struct ir3_register *reg)
1121 {
1122 	struct ir3_register *new_reg = reg_create(shader, 0, 0);
1123 	*new_reg = *reg;
1124 	return new_reg;
1125 }
1126 
1127 void
ir3_instr_set_address(struct ir3_instruction * instr,struct ir3_instruction * addr)1128 ir3_instr_set_address(struct ir3_instruction *instr,
1129 		struct ir3_instruction *addr)
1130 {
1131 	if (instr->address != addr) {
1132 		struct ir3 *ir = instr->block->shader;
1133 
1134 		debug_assert(!instr->address);
1135 		debug_assert(instr->block == addr->block);
1136 
1137 		instr->address = addr;
1138 		debug_assert(reg_num(addr->regs[0]) == REG_A0);
1139 		unsigned comp = reg_comp(addr->regs[0]);
1140 		if (comp == 0) {
1141 			array_insert(ir, ir->a0_users, instr);
1142 		} else {
1143 			debug_assert(comp == 1);
1144 			array_insert(ir, ir->a1_users, instr);
1145 		}
1146 	}
1147 }
1148 
1149 void
ir3_block_clear_mark(struct ir3_block * block)1150 ir3_block_clear_mark(struct ir3_block *block)
1151 {
1152 	foreach_instr (instr, &block->instr_list)
1153 		instr->flags &= ~IR3_INSTR_MARK;
1154 }
1155 
1156 void
ir3_clear_mark(struct ir3 * ir)1157 ir3_clear_mark(struct ir3 *ir)
1158 {
1159 	foreach_block (block, &ir->block_list) {
1160 		ir3_block_clear_mark(block);
1161 	}
1162 }
1163 
1164 unsigned
ir3_count_instructions(struct ir3 * ir)1165 ir3_count_instructions(struct ir3 *ir)
1166 {
1167 	unsigned cnt = 1;
1168 	foreach_block (block, &ir->block_list) {
1169 		block->start_ip = cnt;
1170 		foreach_instr (instr, &block->instr_list) {
1171 			instr->ip = cnt++;
1172 		}
1173 		block->end_ip = cnt;
1174 	}
1175 	return cnt;
1176 }
1177 
1178 /* When counting instructions for RA, we insert extra fake instructions at the
1179  * beginning of each block, where values become live, and at the end where
1180  * values die. This prevents problems where values live-in at the beginning or
1181  * live-out at the end of a block from being treated as if they were
1182  * live-in/live-out at the first/last instruction, which would be incorrect.
1183  * In ir3_legalize these ip's are assumed to be actual ip's of the final
1184  * program, so it would be incorrect to use this everywhere.
1185  */
1186 
1187 unsigned
ir3_count_instructions_ra(struct ir3 * ir)1188 ir3_count_instructions_ra(struct ir3 *ir)
1189 {
1190 	unsigned cnt = 1;
1191 	foreach_block (block, &ir->block_list) {
1192 		block->start_ip = cnt++;
1193 		foreach_instr (instr, &block->instr_list) {
1194 			instr->ip = cnt++;
1195 		}
1196 		block->end_ip = cnt++;
1197 	}
1198 	return cnt;
1199 }
1200 
1201 struct ir3_array *
ir3_lookup_array(struct ir3 * ir,unsigned id)1202 ir3_lookup_array(struct ir3 *ir, unsigned id)
1203 {
1204 	foreach_array (arr, &ir->array_list)
1205 		if (arr->id == id)
1206 			return arr;
1207 	return NULL;
1208 }
1209 
1210 void
ir3_find_ssa_uses(struct ir3 * ir,void * mem_ctx,bool falsedeps)1211 ir3_find_ssa_uses(struct ir3 *ir, void *mem_ctx, bool falsedeps)
1212 {
1213 	/* We could do this in a single pass if we can assume instructions
1214 	 * are always sorted.  Which currently might not always be true.
1215 	 * (In particular after ir3_group pass, but maybe other places.)
1216 	 */
1217 	foreach_block (block, &ir->block_list)
1218 		foreach_instr (instr, &block->instr_list)
1219 			instr->uses = NULL;
1220 
1221 	foreach_block (block, &ir->block_list) {
1222 		foreach_instr (instr, &block->instr_list) {
1223 			foreach_ssa_src_n (src, n, instr) {
1224 				if (__is_false_dep(instr, n) && !falsedeps)
1225 					continue;
1226 				if (!src->uses)
1227 					src->uses = _mesa_pointer_set_create(mem_ctx);
1228 				_mesa_set_add(src->uses, instr);
1229 			}
1230 		}
1231 	}
1232 }
1233 
1234 /**
1235  * Set the destination type of an instruction, for example if a
1236  * conversion is folded in, handling the special cases where the
1237  * instruction's dest type or opcode needs to be fixed up.
1238  */
1239 void
ir3_set_dst_type(struct ir3_instruction * instr,bool half)1240 ir3_set_dst_type(struct ir3_instruction *instr, bool half)
1241 {
1242 	if (half) {
1243 		instr->regs[0]->flags |= IR3_REG_HALF;
1244 	} else {
1245 		instr->regs[0]->flags &= ~IR3_REG_HALF;
1246 	}
1247 
1248 	switch (opc_cat(instr->opc)) {
1249 	case 1: /* move instructions */
1250 		if (half) {
1251 			instr->cat1.dst_type = half_type(instr->cat1.dst_type);
1252 		} else {
1253 			instr->cat1.dst_type = full_type(instr->cat1.dst_type);
1254 		}
1255 		break;
1256 	case 4:
1257 		if (half) {
1258 			instr->opc = cat4_half_opc(instr->opc);
1259 		} else {
1260 			instr->opc = cat4_full_opc(instr->opc);
1261 		}
1262 		break;
1263 	case 5:
1264 		if (half) {
1265 			instr->cat5.type = half_type(instr->cat5.type);
1266 		} else {
1267 			instr->cat5.type = full_type(instr->cat5.type);
1268 		}
1269 		break;
1270 	}
1271 }
1272 
1273 /**
1274  * One-time fixup for instruction src-types.  Other than cov's that
1275  * are folded, an instruction's src type does not change.
1276  */
1277 void
ir3_fixup_src_type(struct ir3_instruction * instr)1278 ir3_fixup_src_type(struct ir3_instruction *instr)
1279 {
1280 	bool half = !!(instr->regs[1]->flags & IR3_REG_HALF);
1281 
1282 	switch (opc_cat(instr->opc)) {
1283 	case 1: /* move instructions */
1284 		if (half) {
1285 			instr->cat1.src_type = half_type(instr->cat1.src_type);
1286 		} else {
1287 			instr->cat1.src_type = full_type(instr->cat1.src_type);
1288 		}
1289 		break;
1290 	case 3:
1291 		if (half) {
1292 			instr->opc = cat3_half_opc(instr->opc);
1293 		} else {
1294 			instr->opc = cat3_full_opc(instr->opc);
1295 		}
1296 		break;
1297 	}
1298 }
1299 
1300 static unsigned
cp_flags(unsigned flags)1301 cp_flags(unsigned flags)
1302 {
1303 	/* only considering these flags (at least for now): */
1304 	flags &= (IR3_REG_CONST | IR3_REG_IMMED |
1305 			IR3_REG_FNEG | IR3_REG_FABS |
1306 			IR3_REG_SNEG | IR3_REG_SABS |
1307 			IR3_REG_BNOT | IR3_REG_RELATIV);
1308 	return flags;
1309 }
1310 
1311 bool
ir3_valid_flags(struct ir3_instruction * instr,unsigned n,unsigned flags)1312 ir3_valid_flags(struct ir3_instruction *instr, unsigned n,
1313 		unsigned flags)
1314 {
1315 	struct ir3_compiler *compiler = instr->block->shader->compiler;
1316 	unsigned valid_flags;
1317 
1318 	if ((flags & IR3_REG_HIGH) &&
1319 			(opc_cat(instr->opc) > 1) &&
1320 			(compiler->gpu_id >= 600))
1321 		return false;
1322 
1323 	flags = cp_flags(flags);
1324 
1325 	/* If destination is indirect, then source cannot be.. at least
1326 	 * I don't think so..
1327 	 */
1328 	if ((instr->regs[0]->flags & IR3_REG_RELATIV) &&
1329 			(flags & IR3_REG_RELATIV))
1330 		return false;
1331 
1332 	if (flags & IR3_REG_RELATIV) {
1333 		/* TODO need to test on earlier gens.. pretty sure the earlier
1334 		 * problem was just that we didn't check that the src was from
1335 		 * same block (since we can't propagate address register values
1336 		 * across blocks currently)
1337 		 */
1338 		if (compiler->gpu_id < 600)
1339 			return false;
1340 
1341 		/* NOTE in the special try_swap_mad_two_srcs() case we can be
1342 		 * called on a src that has already had an indirect load folded
1343 		 * in, in which case ssa() returns NULL
1344 		 */
1345 		if (instr->regs[n+1]->flags & IR3_REG_SSA) {
1346 			struct ir3_instruction *src = ssa(instr->regs[n+1]);
1347 			if (src->address->block != instr->block)
1348 				return false;
1349 		}
1350 	}
1351 
1352 	switch (opc_cat(instr->opc)) {
1353 	case 1:
1354 		valid_flags = IR3_REG_IMMED | IR3_REG_CONST | IR3_REG_RELATIV;
1355 		if (flags & ~valid_flags)
1356 			return false;
1357 		break;
1358 	case 2:
1359 		valid_flags = ir3_cat2_absneg(instr->opc) |
1360 				IR3_REG_CONST | IR3_REG_RELATIV;
1361 
1362 		if (ir3_cat2_int(instr->opc))
1363 			valid_flags |= IR3_REG_IMMED;
1364 
1365 		if (flags & ~valid_flags)
1366 			return false;
1367 
1368 		if (flags & (IR3_REG_CONST | IR3_REG_IMMED)) {
1369 			unsigned m = (n ^ 1) + 1;
1370 			/* cannot deal w/ const in both srcs:
1371 			 * (note that some cat2 actually only have a single src)
1372 			 */
1373 			if (m < instr->regs_count) {
1374 				struct ir3_register *reg = instr->regs[m];
1375 				if ((flags & IR3_REG_CONST) && (reg->flags & IR3_REG_CONST))
1376 					return false;
1377 				if ((flags & IR3_REG_IMMED) && (reg->flags & IR3_REG_IMMED))
1378 					return false;
1379 			}
1380 		}
1381 		break;
1382 	case 3:
1383 		valid_flags = ir3_cat3_absneg(instr->opc) |
1384 				IR3_REG_CONST | IR3_REG_RELATIV;
1385 
1386 		if (flags & ~valid_flags)
1387 			return false;
1388 
1389 		if (flags & (IR3_REG_CONST | IR3_REG_RELATIV)) {
1390 			/* cannot deal w/ const/relativ in 2nd src: */
1391 			if (n == 1)
1392 				return false;
1393 		}
1394 
1395 		break;
1396 	case 4:
1397 		/* seems like blob compiler avoids const as src.. */
1398 		/* TODO double check if this is still the case on a4xx */
1399 		if (flags & (IR3_REG_CONST | IR3_REG_IMMED))
1400 			return false;
1401 		if (flags & (IR3_REG_SABS | IR3_REG_SNEG))
1402 			return false;
1403 		break;
1404 	case 5:
1405 		/* no flags allowed */
1406 		if (flags)
1407 			return false;
1408 		break;
1409 	case 6:
1410 		valid_flags = IR3_REG_IMMED;
1411 		if (flags & ~valid_flags)
1412 			return false;
1413 
1414 		if (flags & IR3_REG_IMMED) {
1415 			/* doesn't seem like we can have immediate src for store
1416 			 * instructions:
1417 			 *
1418 			 * TODO this restriction could also apply to load instructions,
1419 			 * but for load instructions this arg is the address (and not
1420 			 * really sure any good way to test a hard-coded immed addr src)
1421 			 */
1422 			if (is_store(instr) && (n == 1))
1423 				return false;
1424 
1425 			if ((instr->opc == OPC_LDL) && (n == 0))
1426 				return false;
1427 
1428 			if ((instr->opc == OPC_STL) && (n != 2))
1429 				return false;
1430 
1431 			if (instr->opc == OPC_STLW && n == 0)
1432 				return false;
1433 
1434 			if (instr->opc == OPC_LDLW && n == 0)
1435 				return false;
1436 
1437 			/* disallow immediates in anything but the SSBO slot argument for
1438 			 * cat6 instructions:
1439 			 */
1440 			if (is_atomic(instr->opc) && (n != 0))
1441 				return false;
1442 
1443 			if (is_atomic(instr->opc) && !(instr->flags & IR3_INSTR_G))
1444 				return false;
1445 
1446 			if (instr->opc == OPC_STG && (instr->flags & IR3_INSTR_G) && (n != 2))
1447 				return false;
1448 
1449 			/* as with atomics, these cat6 instrs can only have an immediate
1450 			 * for SSBO/IBO slot argument
1451 			 */
1452 			switch (instr->opc) {
1453 			case OPC_LDIB:
1454 			case OPC_LDC:
1455 			case OPC_RESINFO:
1456 				if (n != 0)
1457 					return false;
1458 				break;
1459 			default:
1460 				break;
1461 			}
1462 		}
1463 
1464 		break;
1465 	}
1466 
1467 	return true;
1468 }
1469