1 //===- Type.cpp - Type representation and manipulation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements type-related functionality.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Type.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/DependenceFlags.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/NestedNameSpecifier.h"
26 #include "clang/AST/NonTrivialTypeVisitor.h"
27 #include "clang/AST/PrettyPrinter.h"
28 #include "clang/AST/TemplateBase.h"
29 #include "clang/AST/TemplateName.h"
30 #include "clang/AST/TypeVisitor.h"
31 #include "clang/Basic/AddressSpaces.h"
32 #include "clang/Basic/ExceptionSpecificationType.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/LangOptions.h"
36 #include "clang/Basic/Linkage.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/Basic/TargetCXXABI.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "clang/Basic/Visibility.h"
41 #include "llvm/ADT/APInt.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/ArrayRef.h"
44 #include "llvm/ADT/FoldingSet.h"
45 #include "llvm/ADT/None.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/MathExtras.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <cstring>
54 #include <type_traits>
55 
56 using namespace clang;
57 
isStrictSupersetOf(Qualifiers Other) const58 bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
59   return (*this != Other) &&
60     // CVR qualifiers superset
61     (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
62     // ObjC GC qualifiers superset
63     ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
64      (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
65     // Address space superset.
66     ((getAddressSpace() == Other.getAddressSpace()) ||
67      (hasAddressSpace()&& !Other.hasAddressSpace())) &&
68     // Lifetime qualifier superset.
69     ((getObjCLifetime() == Other.getObjCLifetime()) ||
70      (hasObjCLifetime() && !Other.hasObjCLifetime()));
71 }
72 
getBaseTypeIdentifier() const73 const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
74   const Type* ty = getTypePtr();
75   NamedDecl *ND = nullptr;
76   if (ty->isPointerType() || ty->isReferenceType())
77     return ty->getPointeeType().getBaseTypeIdentifier();
78   else if (ty->isRecordType())
79     ND = ty->castAs<RecordType>()->getDecl();
80   else if (ty->isEnumeralType())
81     ND = ty->castAs<EnumType>()->getDecl();
82   else if (ty->getTypeClass() == Type::Typedef)
83     ND = ty->castAs<TypedefType>()->getDecl();
84   else if (ty->isArrayType())
85     return ty->castAsArrayTypeUnsafe()->
86         getElementType().getBaseTypeIdentifier();
87 
88   if (ND)
89     return ND->getIdentifier();
90   return nullptr;
91 }
92 
mayBeDynamicClass() const93 bool QualType::mayBeDynamicClass() const {
94   const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl();
95   return ClassDecl && ClassDecl->mayBeDynamicClass();
96 }
97 
mayBeNotDynamicClass() const98 bool QualType::mayBeNotDynamicClass() const {
99   const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl();
100   return !ClassDecl || ClassDecl->mayBeNonDynamicClass();
101 }
102 
isConstant(QualType T,const ASTContext & Ctx)103 bool QualType::isConstant(QualType T, const ASTContext &Ctx) {
104   if (T.isConstQualified())
105     return true;
106 
107   if (const ArrayType *AT = Ctx.getAsArrayType(T))
108     return AT->getElementType().isConstant(Ctx);
109 
110   return T.getAddressSpace() == LangAS::opencl_constant;
111 }
112 
113 // C++ [temp.dep.type]p1:
114 //   A type is dependent if it is...
115 //     - an array type constructed from any dependent type or whose
116 //       size is specified by a constant expression that is
117 //       value-dependent,
ArrayType(TypeClass tc,QualType et,QualType can,ArraySizeModifier sm,unsigned tq,const Expr * sz)118 ArrayType::ArrayType(TypeClass tc, QualType et, QualType can,
119                      ArraySizeModifier sm, unsigned tq, const Expr *sz)
120     // Note, we need to check for DependentSizedArrayType explicitly here
121     // because we use a DependentSizedArrayType with no size expression as the
122     // type of a dependent array of unknown bound with a dependent braced
123     // initializer:
124     //
125     //   template<int ...N> int arr[] = {N...};
126     : Type(tc, can,
127            et->getDependence() |
128                (sz ? toTypeDependence(
129                          turnValueToTypeDependence(sz->getDependence()))
130                    : TypeDependence::None) |
131                (tc == VariableArray ? TypeDependence::VariablyModified
132                                     : TypeDependence::None) |
133                (tc == DependentSizedArray
134                     ? TypeDependence::DependentInstantiation
135                     : TypeDependence::None)),
136       ElementType(et) {
137   ArrayTypeBits.IndexTypeQuals = tq;
138   ArrayTypeBits.SizeModifier = sm;
139 }
140 
getNumAddressingBits(const ASTContext & Context,QualType ElementType,const llvm::APInt & NumElements)141 unsigned ConstantArrayType::getNumAddressingBits(const ASTContext &Context,
142                                                  QualType ElementType,
143                                                const llvm::APInt &NumElements) {
144   uint64_t ElementSize = Context.getTypeSizeInChars(ElementType).getQuantity();
145 
146   // Fast path the common cases so we can avoid the conservative computation
147   // below, which in common cases allocates "large" APSInt values, which are
148   // slow.
149 
150   // If the element size is a power of 2, we can directly compute the additional
151   // number of addressing bits beyond those required for the element count.
152   if (llvm::isPowerOf2_64(ElementSize)) {
153     return NumElements.getActiveBits() + llvm::Log2_64(ElementSize);
154   }
155 
156   // If both the element count and element size fit in 32-bits, we can do the
157   // computation directly in 64-bits.
158   if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 &&
159       (NumElements.getZExtValue() >> 32) == 0) {
160     uint64_t TotalSize = NumElements.getZExtValue() * ElementSize;
161     return 64 - llvm::countLeadingZeros(TotalSize);
162   }
163 
164   // Otherwise, use APSInt to handle arbitrary sized values.
165   llvm::APSInt SizeExtended(NumElements, true);
166   unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
167   SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
168                                               SizeExtended.getBitWidth()) * 2);
169 
170   llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
171   TotalSize *= SizeExtended;
172 
173   return TotalSize.getActiveBits();
174 }
175 
getMaxSizeBits(const ASTContext & Context)176 unsigned ConstantArrayType::getMaxSizeBits(const ASTContext &Context) {
177   unsigned Bits = Context.getTypeSize(Context.getSizeType());
178 
179   // Limit the number of bits in size_t so that maximal bit size fits 64 bit
180   // integer (see PR8256).  We can do this as currently there is no hardware
181   // that supports full 64-bit virtual space.
182   if (Bits > 61)
183     Bits = 61;
184 
185   return Bits;
186 }
187 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType ET,const llvm::APInt & ArraySize,const Expr * SizeExpr,ArraySizeModifier SizeMod,unsigned TypeQuals)188 void ConstantArrayType::Profile(llvm::FoldingSetNodeID &ID,
189                                 const ASTContext &Context, QualType ET,
190                                 const llvm::APInt &ArraySize,
191                                 const Expr *SizeExpr, ArraySizeModifier SizeMod,
192                                 unsigned TypeQuals) {
193   ID.AddPointer(ET.getAsOpaquePtr());
194   ID.AddInteger(ArraySize.getZExtValue());
195   ID.AddInteger(SizeMod);
196   ID.AddInteger(TypeQuals);
197   ID.AddBoolean(SizeExpr != 0);
198   if (SizeExpr)
199     SizeExpr->Profile(ID, Context, true);
200 }
201 
DependentSizedArrayType(const ASTContext & Context,QualType et,QualType can,Expr * e,ArraySizeModifier sm,unsigned tq,SourceRange brackets)202 DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
203                                                  QualType et, QualType can,
204                                                  Expr *e, ArraySizeModifier sm,
205                                                  unsigned tq,
206                                                  SourceRange brackets)
207     : ArrayType(DependentSizedArray, et, can, sm, tq, e),
208       Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
209 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType ET,ArraySizeModifier SizeMod,unsigned TypeQuals,Expr * E)210 void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
211                                       const ASTContext &Context,
212                                       QualType ET,
213                                       ArraySizeModifier SizeMod,
214                                       unsigned TypeQuals,
215                                       Expr *E) {
216   ID.AddPointer(ET.getAsOpaquePtr());
217   ID.AddInteger(SizeMod);
218   ID.AddInteger(TypeQuals);
219   E->Profile(ID, Context, true);
220 }
221 
DependentVectorType(const ASTContext & Context,QualType ElementType,QualType CanonType,Expr * SizeExpr,SourceLocation Loc,VectorType::VectorKind VecKind)222 DependentVectorType::DependentVectorType(const ASTContext &Context,
223                                          QualType ElementType,
224                                          QualType CanonType, Expr *SizeExpr,
225                                          SourceLocation Loc,
226                                          VectorType::VectorKind VecKind)
227     : Type(DependentVector, CanonType,
228            TypeDependence::DependentInstantiation |
229                ElementType->getDependence() |
230                (SizeExpr ? toTypeDependence(SizeExpr->getDependence())
231                          : TypeDependence::None)),
232       Context(Context), ElementType(ElementType), SizeExpr(SizeExpr), Loc(Loc) {
233   VectorTypeBits.VecKind = VecKind;
234 }
235 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType ElementType,const Expr * SizeExpr,VectorType::VectorKind VecKind)236 void DependentVectorType::Profile(llvm::FoldingSetNodeID &ID,
237                                   const ASTContext &Context,
238                                   QualType ElementType, const Expr *SizeExpr,
239                                   VectorType::VectorKind VecKind) {
240   ID.AddPointer(ElementType.getAsOpaquePtr());
241   ID.AddInteger(VecKind);
242   SizeExpr->Profile(ID, Context, true);
243 }
244 
DependentSizedExtVectorType(const ASTContext & Context,QualType ElementType,QualType can,Expr * SizeExpr,SourceLocation loc)245 DependentSizedExtVectorType::DependentSizedExtVectorType(
246     const ASTContext &Context, QualType ElementType, QualType can,
247     Expr *SizeExpr, SourceLocation loc)
248     : Type(DependentSizedExtVector, can,
249            TypeDependence::DependentInstantiation |
250                ElementType->getDependence() |
251                (SizeExpr ? toTypeDependence(SizeExpr->getDependence())
252                          : TypeDependence::None)),
253       Context(Context), SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {
254 }
255 
256 void
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType ElementType,Expr * SizeExpr)257 DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
258                                      const ASTContext &Context,
259                                      QualType ElementType, Expr *SizeExpr) {
260   ID.AddPointer(ElementType.getAsOpaquePtr());
261   SizeExpr->Profile(ID, Context, true);
262 }
263 
DependentAddressSpaceType(const ASTContext & Context,QualType PointeeType,QualType can,Expr * AddrSpaceExpr,SourceLocation loc)264 DependentAddressSpaceType::DependentAddressSpaceType(const ASTContext &Context,
265                                                      QualType PointeeType,
266                                                      QualType can,
267                                                      Expr *AddrSpaceExpr,
268                                                      SourceLocation loc)
269     : Type(DependentAddressSpace, can,
270            TypeDependence::DependentInstantiation |
271                PointeeType->getDependence() |
272                (AddrSpaceExpr ? toTypeDependence(AddrSpaceExpr->getDependence())
273                               : TypeDependence::None)),
274       Context(Context), AddrSpaceExpr(AddrSpaceExpr), PointeeType(PointeeType),
275       loc(loc) {}
276 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType PointeeType,Expr * AddrSpaceExpr)277 void DependentAddressSpaceType::Profile(llvm::FoldingSetNodeID &ID,
278                                         const ASTContext &Context,
279                                         QualType PointeeType,
280                                         Expr *AddrSpaceExpr) {
281   ID.AddPointer(PointeeType.getAsOpaquePtr());
282   AddrSpaceExpr->Profile(ID, Context, true);
283 }
284 
MatrixType(TypeClass tc,QualType matrixType,QualType canonType,const Expr * RowExpr,const Expr * ColumnExpr)285 MatrixType::MatrixType(TypeClass tc, QualType matrixType, QualType canonType,
286                        const Expr *RowExpr, const Expr *ColumnExpr)
287     : Type(tc, canonType,
288            (RowExpr ? (matrixType->getDependence() | TypeDependence::Dependent |
289                        TypeDependence::Instantiation |
290                        (matrixType->isVariablyModifiedType()
291                             ? TypeDependence::VariablyModified
292                             : TypeDependence::None) |
293                        (matrixType->containsUnexpandedParameterPack() ||
294                                 (RowExpr &&
295                                  RowExpr->containsUnexpandedParameterPack()) ||
296                                 (ColumnExpr &&
297                                  ColumnExpr->containsUnexpandedParameterPack())
298                             ? TypeDependence::UnexpandedPack
299                             : TypeDependence::None))
300                     : matrixType->getDependence())),
301       ElementType(matrixType) {}
302 
ConstantMatrixType(QualType matrixType,unsigned nRows,unsigned nColumns,QualType canonType)303 ConstantMatrixType::ConstantMatrixType(QualType matrixType, unsigned nRows,
304                                        unsigned nColumns, QualType canonType)
305     : ConstantMatrixType(ConstantMatrix, matrixType, nRows, nColumns,
306                          canonType) {}
307 
ConstantMatrixType(TypeClass tc,QualType matrixType,unsigned nRows,unsigned nColumns,QualType canonType)308 ConstantMatrixType::ConstantMatrixType(TypeClass tc, QualType matrixType,
309                                        unsigned nRows, unsigned nColumns,
310                                        QualType canonType)
311     : MatrixType(tc, matrixType, canonType), NumRows(nRows),
312       NumColumns(nColumns) {}
313 
DependentSizedMatrixType(const ASTContext & CTX,QualType ElementType,QualType CanonicalType,Expr * RowExpr,Expr * ColumnExpr,SourceLocation loc)314 DependentSizedMatrixType::DependentSizedMatrixType(
315     const ASTContext &CTX, QualType ElementType, QualType CanonicalType,
316     Expr *RowExpr, Expr *ColumnExpr, SourceLocation loc)
317     : MatrixType(DependentSizedMatrix, ElementType, CanonicalType, RowExpr,
318                  ColumnExpr),
319       Context(CTX), RowExpr(RowExpr), ColumnExpr(ColumnExpr), loc(loc) {}
320 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & CTX,QualType ElementType,Expr * RowExpr,Expr * ColumnExpr)321 void DependentSizedMatrixType::Profile(llvm::FoldingSetNodeID &ID,
322                                        const ASTContext &CTX,
323                                        QualType ElementType, Expr *RowExpr,
324                                        Expr *ColumnExpr) {
325   ID.AddPointer(ElementType.getAsOpaquePtr());
326   RowExpr->Profile(ID, CTX, true);
327   ColumnExpr->Profile(ID, CTX, true);
328 }
329 
VectorType(QualType vecType,unsigned nElements,QualType canonType,VectorKind vecKind)330 VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
331                        VectorKind vecKind)
332     : VectorType(Vector, vecType, nElements, canonType, vecKind) {}
333 
VectorType(TypeClass tc,QualType vecType,unsigned nElements,QualType canonType,VectorKind vecKind)334 VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
335                        QualType canonType, VectorKind vecKind)
336     : Type(tc, canonType, vecType->getDependence()), ElementType(vecType) {
337   VectorTypeBits.VecKind = vecKind;
338   VectorTypeBits.NumElements = nElements;
339 }
340 
ExtIntType(bool IsUnsigned,unsigned NumBits)341 ExtIntType::ExtIntType(bool IsUnsigned, unsigned NumBits)
342     : Type(ExtInt, QualType{}, TypeDependence::None), IsUnsigned(IsUnsigned),
343       NumBits(NumBits) {}
344 
DependentExtIntType(const ASTContext & Context,bool IsUnsigned,Expr * NumBitsExpr)345 DependentExtIntType::DependentExtIntType(const ASTContext &Context,
346                                          bool IsUnsigned, Expr *NumBitsExpr)
347     : Type(DependentExtInt, QualType{},
348            toTypeDependence(NumBitsExpr->getDependence())),
349       Context(Context), ExprAndUnsigned(NumBitsExpr, IsUnsigned) {}
350 
isUnsigned() const351 bool DependentExtIntType::isUnsigned() const {
352   return ExprAndUnsigned.getInt();
353 }
354 
getNumBitsExpr() const355 clang::Expr *DependentExtIntType::getNumBitsExpr() const {
356   return ExprAndUnsigned.getPointer();
357 }
358 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,bool IsUnsigned,Expr * NumBitsExpr)359 void DependentExtIntType::Profile(llvm::FoldingSetNodeID &ID,
360                                   const ASTContext &Context, bool IsUnsigned,
361                                   Expr *NumBitsExpr) {
362   ID.AddBoolean(IsUnsigned);
363   NumBitsExpr->Profile(ID, Context, true);
364 }
365 
366 /// getArrayElementTypeNoTypeQual - If this is an array type, return the
367 /// element type of the array, potentially with type qualifiers missing.
368 /// This method should never be used when type qualifiers are meaningful.
getArrayElementTypeNoTypeQual() const369 const Type *Type::getArrayElementTypeNoTypeQual() const {
370   // If this is directly an array type, return it.
371   if (const auto *ATy = dyn_cast<ArrayType>(this))
372     return ATy->getElementType().getTypePtr();
373 
374   // If the canonical form of this type isn't the right kind, reject it.
375   if (!isa<ArrayType>(CanonicalType))
376     return nullptr;
377 
378   // If this is a typedef for an array type, strip the typedef off without
379   // losing all typedef information.
380   return cast<ArrayType>(getUnqualifiedDesugaredType())
381     ->getElementType().getTypePtr();
382 }
383 
384 /// getDesugaredType - Return the specified type with any "sugar" removed from
385 /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
386 /// the type is already concrete, it returns it unmodified.  This is similar
387 /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
388 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
389 /// concrete.
getDesugaredType(QualType T,const ASTContext & Context)390 QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
391   SplitQualType split = getSplitDesugaredType(T);
392   return Context.getQualifiedType(split.Ty, split.Quals);
393 }
394 
getSingleStepDesugaredTypeImpl(QualType type,const ASTContext & Context)395 QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
396                                                   const ASTContext &Context) {
397   SplitQualType split = type.split();
398   QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
399   return Context.getQualifiedType(desugar, split.Quals);
400 }
401 
402 // Check that no type class is polymorphic. LLVM style RTTI should be used
403 // instead. If absolutely needed an exception can still be added here by
404 // defining the appropriate macro (but please don't do this).
405 #define TYPE(CLASS, BASE) \
406   static_assert(!std::is_polymorphic<CLASS##Type>::value, \
407                 #CLASS "Type should not be polymorphic!");
408 #include "clang/AST/TypeNodes.inc"
409 
410 // Check that no type class has a non-trival destructor. Types are
411 // allocated with the BumpPtrAllocator from ASTContext and therefore
412 // their destructor is not executed.
413 //
414 // FIXME: ConstantArrayType is not trivially destructible because of its
415 // APInt member. It should be replaced in favor of ASTContext allocation.
416 #define TYPE(CLASS, BASE)                                                      \
417   static_assert(std::is_trivially_destructible<CLASS##Type>::value ||          \
418                     std::is_same<CLASS##Type, ConstantArrayType>::value,       \
419                 #CLASS "Type should be trivially destructible!");
420 #include "clang/AST/TypeNodes.inc"
421 
getLocallyUnqualifiedSingleStepDesugaredType() const422 QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
423   switch (getTypeClass()) {
424 #define ABSTRACT_TYPE(Class, Parent)
425 #define TYPE(Class, Parent) \
426   case Type::Class: { \
427     const auto *ty = cast<Class##Type>(this); \
428     if (!ty->isSugared()) return QualType(ty, 0); \
429     return ty->desugar(); \
430   }
431 #include "clang/AST/TypeNodes.inc"
432   }
433   llvm_unreachable("bad type kind!");
434 }
435 
getSplitDesugaredType(QualType T)436 SplitQualType QualType::getSplitDesugaredType(QualType T) {
437   QualifierCollector Qs;
438 
439   QualType Cur = T;
440   while (true) {
441     const Type *CurTy = Qs.strip(Cur);
442     switch (CurTy->getTypeClass()) {
443 #define ABSTRACT_TYPE(Class, Parent)
444 #define TYPE(Class, Parent) \
445     case Type::Class: { \
446       const auto *Ty = cast<Class##Type>(CurTy); \
447       if (!Ty->isSugared()) \
448         return SplitQualType(Ty, Qs); \
449       Cur = Ty->desugar(); \
450       break; \
451     }
452 #include "clang/AST/TypeNodes.inc"
453     }
454   }
455 }
456 
getSplitUnqualifiedTypeImpl(QualType type)457 SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
458   SplitQualType split = type.split();
459 
460   // All the qualifiers we've seen so far.
461   Qualifiers quals = split.Quals;
462 
463   // The last type node we saw with any nodes inside it.
464   const Type *lastTypeWithQuals = split.Ty;
465 
466   while (true) {
467     QualType next;
468 
469     // Do a single-step desugar, aborting the loop if the type isn't
470     // sugared.
471     switch (split.Ty->getTypeClass()) {
472 #define ABSTRACT_TYPE(Class, Parent)
473 #define TYPE(Class, Parent) \
474     case Type::Class: { \
475       const auto *ty = cast<Class##Type>(split.Ty); \
476       if (!ty->isSugared()) goto done; \
477       next = ty->desugar(); \
478       break; \
479     }
480 #include "clang/AST/TypeNodes.inc"
481     }
482 
483     // Otherwise, split the underlying type.  If that yields qualifiers,
484     // update the information.
485     split = next.split();
486     if (!split.Quals.empty()) {
487       lastTypeWithQuals = split.Ty;
488       quals.addConsistentQualifiers(split.Quals);
489     }
490   }
491 
492  done:
493   return SplitQualType(lastTypeWithQuals, quals);
494 }
495 
IgnoreParens(QualType T)496 QualType QualType::IgnoreParens(QualType T) {
497   // FIXME: this seems inherently un-qualifiers-safe.
498   while (const auto *PT = T->getAs<ParenType>())
499     T = PT->getInnerType();
500   return T;
501 }
502 
503 /// This will check for a T (which should be a Type which can act as
504 /// sugar, such as a TypedefType) by removing any existing sugar until it
505 /// reaches a T or a non-sugared type.
getAsSugar(const Type * Cur)506 template<typename T> static const T *getAsSugar(const Type *Cur) {
507   while (true) {
508     if (const auto *Sugar = dyn_cast<T>(Cur))
509       return Sugar;
510     switch (Cur->getTypeClass()) {
511 #define ABSTRACT_TYPE(Class, Parent)
512 #define TYPE(Class, Parent) \
513     case Type::Class: { \
514       const auto *Ty = cast<Class##Type>(Cur); \
515       if (!Ty->isSugared()) return 0; \
516       Cur = Ty->desugar().getTypePtr(); \
517       break; \
518     }
519 #include "clang/AST/TypeNodes.inc"
520     }
521   }
522 }
523 
getAs() const524 template <> const TypedefType *Type::getAs() const {
525   return getAsSugar<TypedefType>(this);
526 }
527 
getAs() const528 template <> const TemplateSpecializationType *Type::getAs() const {
529   return getAsSugar<TemplateSpecializationType>(this);
530 }
531 
getAs() const532 template <> const AttributedType *Type::getAs() const {
533   return getAsSugar<AttributedType>(this);
534 }
535 
536 /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
537 /// sugar off the given type.  This should produce an object of the
538 /// same dynamic type as the canonical type.
getUnqualifiedDesugaredType() const539 const Type *Type::getUnqualifiedDesugaredType() const {
540   const Type *Cur = this;
541 
542   while (true) {
543     switch (Cur->getTypeClass()) {
544 #define ABSTRACT_TYPE(Class, Parent)
545 #define TYPE(Class, Parent) \
546     case Class: { \
547       const auto *Ty = cast<Class##Type>(Cur); \
548       if (!Ty->isSugared()) return Cur; \
549       Cur = Ty->desugar().getTypePtr(); \
550       break; \
551     }
552 #include "clang/AST/TypeNodes.inc"
553     }
554   }
555 }
556 
isClassType() const557 bool Type::isClassType() const {
558   if (const auto *RT = getAs<RecordType>())
559     return RT->getDecl()->isClass();
560   return false;
561 }
562 
isStructureType() const563 bool Type::isStructureType() const {
564   if (const auto *RT = getAs<RecordType>())
565     return RT->getDecl()->isStruct();
566   return false;
567 }
568 
isObjCBoxableRecordType() const569 bool Type::isObjCBoxableRecordType() const {
570   if (const auto *RT = getAs<RecordType>())
571     return RT->getDecl()->hasAttr<ObjCBoxableAttr>();
572   return false;
573 }
574 
isInterfaceType() const575 bool Type::isInterfaceType() const {
576   if (const auto *RT = getAs<RecordType>())
577     return RT->getDecl()->isInterface();
578   return false;
579 }
580 
isStructureOrClassType() const581 bool Type::isStructureOrClassType() const {
582   if (const auto *RT = getAs<RecordType>()) {
583     RecordDecl *RD = RT->getDecl();
584     return RD->isStruct() || RD->isClass() || RD->isInterface();
585   }
586   return false;
587 }
588 
isVoidPointerType() const589 bool Type::isVoidPointerType() const {
590   if (const auto *PT = getAs<PointerType>())
591     return PT->getPointeeType()->isVoidType();
592   return false;
593 }
594 
isUnionType() const595 bool Type::isUnionType() const {
596   if (const auto *RT = getAs<RecordType>())
597     return RT->getDecl()->isUnion();
598   return false;
599 }
600 
isComplexType() const601 bool Type::isComplexType() const {
602   if (const auto *CT = dyn_cast<ComplexType>(CanonicalType))
603     return CT->getElementType()->isFloatingType();
604   return false;
605 }
606 
isComplexIntegerType() const607 bool Type::isComplexIntegerType() const {
608   // Check for GCC complex integer extension.
609   return getAsComplexIntegerType();
610 }
611 
isScopedEnumeralType() const612 bool Type::isScopedEnumeralType() const {
613   if (const auto *ET = getAs<EnumType>())
614     return ET->getDecl()->isScoped();
615   return false;
616 }
617 
getAsComplexIntegerType() const618 const ComplexType *Type::getAsComplexIntegerType() const {
619   if (const auto *Complex = getAs<ComplexType>())
620     if (Complex->getElementType()->isIntegerType())
621       return Complex;
622   return nullptr;
623 }
624 
getPointeeType() const625 QualType Type::getPointeeType() const {
626   if (const auto *PT = getAs<PointerType>())
627     return PT->getPointeeType();
628   if (const auto *OPT = getAs<ObjCObjectPointerType>())
629     return OPT->getPointeeType();
630   if (const auto *BPT = getAs<BlockPointerType>())
631     return BPT->getPointeeType();
632   if (const auto *RT = getAs<ReferenceType>())
633     return RT->getPointeeType();
634   if (const auto *MPT = getAs<MemberPointerType>())
635     return MPT->getPointeeType();
636   if (const auto *DT = getAs<DecayedType>())
637     return DT->getPointeeType();
638   return {};
639 }
640 
getAsStructureType() const641 const RecordType *Type::getAsStructureType() const {
642   // If this is directly a structure type, return it.
643   if (const auto *RT = dyn_cast<RecordType>(this)) {
644     if (RT->getDecl()->isStruct())
645       return RT;
646   }
647 
648   // If the canonical form of this type isn't the right kind, reject it.
649   if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) {
650     if (!RT->getDecl()->isStruct())
651       return nullptr;
652 
653     // If this is a typedef for a structure type, strip the typedef off without
654     // losing all typedef information.
655     return cast<RecordType>(getUnqualifiedDesugaredType());
656   }
657   return nullptr;
658 }
659 
getAsUnionType() const660 const RecordType *Type::getAsUnionType() const {
661   // If this is directly a union type, return it.
662   if (const auto *RT = dyn_cast<RecordType>(this)) {
663     if (RT->getDecl()->isUnion())
664       return RT;
665   }
666 
667   // If the canonical form of this type isn't the right kind, reject it.
668   if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) {
669     if (!RT->getDecl()->isUnion())
670       return nullptr;
671 
672     // If this is a typedef for a union type, strip the typedef off without
673     // losing all typedef information.
674     return cast<RecordType>(getUnqualifiedDesugaredType());
675   }
676 
677   return nullptr;
678 }
679 
isObjCIdOrObjectKindOfType(const ASTContext & ctx,const ObjCObjectType * & bound) const680 bool Type::isObjCIdOrObjectKindOfType(const ASTContext &ctx,
681                                       const ObjCObjectType *&bound) const {
682   bound = nullptr;
683 
684   const auto *OPT = getAs<ObjCObjectPointerType>();
685   if (!OPT)
686     return false;
687 
688   // Easy case: id.
689   if (OPT->isObjCIdType())
690     return true;
691 
692   // If it's not a __kindof type, reject it now.
693   if (!OPT->isKindOfType())
694     return false;
695 
696   // If it's Class or qualified Class, it's not an object type.
697   if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType())
698     return false;
699 
700   // Figure out the type bound for the __kindof type.
701   bound = OPT->getObjectType()->stripObjCKindOfTypeAndQuals(ctx)
702             ->getAs<ObjCObjectType>();
703   return true;
704 }
705 
isObjCClassOrClassKindOfType() const706 bool Type::isObjCClassOrClassKindOfType() const {
707   const auto *OPT = getAs<ObjCObjectPointerType>();
708   if (!OPT)
709     return false;
710 
711   // Easy case: Class.
712   if (OPT->isObjCClassType())
713     return true;
714 
715   // If it's not a __kindof type, reject it now.
716   if (!OPT->isKindOfType())
717     return false;
718 
719   // If it's Class or qualified Class, it's a class __kindof type.
720   return OPT->isObjCClassType() || OPT->isObjCQualifiedClassType();
721 }
722 
ObjCTypeParamType(const ObjCTypeParamDecl * D,QualType can,ArrayRef<ObjCProtocolDecl * > protocols)723 ObjCTypeParamType::ObjCTypeParamType(const ObjCTypeParamDecl *D, QualType can,
724                                      ArrayRef<ObjCProtocolDecl *> protocols)
725     : Type(ObjCTypeParam, can,
726            can->getDependence() & ~TypeDependence::UnexpandedPack),
727       OTPDecl(const_cast<ObjCTypeParamDecl *>(D)) {
728   initialize(protocols);
729 }
730 
ObjCObjectType(QualType Canonical,QualType Base,ArrayRef<QualType> typeArgs,ArrayRef<ObjCProtocolDecl * > protocols,bool isKindOf)731 ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
732                                ArrayRef<QualType> typeArgs,
733                                ArrayRef<ObjCProtocolDecl *> protocols,
734                                bool isKindOf)
735     : Type(ObjCObject, Canonical, Base->getDependence()), BaseType(Base) {
736   ObjCObjectTypeBits.IsKindOf = isKindOf;
737 
738   ObjCObjectTypeBits.NumTypeArgs = typeArgs.size();
739   assert(getTypeArgsAsWritten().size() == typeArgs.size() &&
740          "bitfield overflow in type argument count");
741   if (!typeArgs.empty())
742     memcpy(getTypeArgStorage(), typeArgs.data(),
743            typeArgs.size() * sizeof(QualType));
744 
745   for (auto typeArg : typeArgs) {
746     addDependence(typeArg->getDependence() & ~TypeDependence::VariablyModified);
747   }
748   // Initialize the protocol qualifiers. The protocol storage is known
749   // after we set number of type arguments.
750   initialize(protocols);
751 }
752 
isSpecialized() const753 bool ObjCObjectType::isSpecialized() const {
754   // If we have type arguments written here, the type is specialized.
755   if (ObjCObjectTypeBits.NumTypeArgs > 0)
756     return true;
757 
758   // Otherwise, check whether the base type is specialized.
759   if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
760     // Terminate when we reach an interface type.
761     if (isa<ObjCInterfaceType>(objcObject))
762       return false;
763 
764     return objcObject->isSpecialized();
765   }
766 
767   // Not specialized.
768   return false;
769 }
770 
getTypeArgs() const771 ArrayRef<QualType> ObjCObjectType::getTypeArgs() const {
772   // We have type arguments written on this type.
773   if (isSpecializedAsWritten())
774     return getTypeArgsAsWritten();
775 
776   // Look at the base type, which might have type arguments.
777   if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
778     // Terminate when we reach an interface type.
779     if (isa<ObjCInterfaceType>(objcObject))
780       return {};
781 
782     return objcObject->getTypeArgs();
783   }
784 
785   // No type arguments.
786   return {};
787 }
788 
isKindOfType() const789 bool ObjCObjectType::isKindOfType() const {
790   if (isKindOfTypeAsWritten())
791     return true;
792 
793   // Look at the base type, which might have type arguments.
794   if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
795     // Terminate when we reach an interface type.
796     if (isa<ObjCInterfaceType>(objcObject))
797       return false;
798 
799     return objcObject->isKindOfType();
800   }
801 
802   // Not a "__kindof" type.
803   return false;
804 }
805 
stripObjCKindOfTypeAndQuals(const ASTContext & ctx) const806 QualType ObjCObjectType::stripObjCKindOfTypeAndQuals(
807            const ASTContext &ctx) const {
808   if (!isKindOfType() && qual_empty())
809     return QualType(this, 0);
810 
811   // Recursively strip __kindof.
812   SplitQualType splitBaseType = getBaseType().split();
813   QualType baseType(splitBaseType.Ty, 0);
814   if (const auto *baseObj = splitBaseType.Ty->getAs<ObjCObjectType>())
815     baseType = baseObj->stripObjCKindOfTypeAndQuals(ctx);
816 
817   return ctx.getObjCObjectType(ctx.getQualifiedType(baseType,
818                                                     splitBaseType.Quals),
819                                getTypeArgsAsWritten(),
820                                /*protocols=*/{},
821                                /*isKindOf=*/false);
822 }
823 
stripObjCKindOfTypeAndQuals(const ASTContext & ctx) const824 const ObjCObjectPointerType *ObjCObjectPointerType::stripObjCKindOfTypeAndQuals(
825                                const ASTContext &ctx) const {
826   if (!isKindOfType() && qual_empty())
827     return this;
828 
829   QualType obj = getObjectType()->stripObjCKindOfTypeAndQuals(ctx);
830   return ctx.getObjCObjectPointerType(obj)->castAs<ObjCObjectPointerType>();
831 }
832 
833 namespace {
834 
835 /// Visitor used to perform a simple type transformation that does not change
836 /// the semantics of the type.
837 template <typename Derived>
838 struct SimpleTransformVisitor : public TypeVisitor<Derived, QualType> {
839   ASTContext &Ctx;
840 
recurse__anona7c70f230111::SimpleTransformVisitor841   QualType recurse(QualType type) {
842     // Split out the qualifiers from the type.
843     SplitQualType splitType = type.split();
844 
845     // Visit the type itself.
846     QualType result = static_cast<Derived *>(this)->Visit(splitType.Ty);
847     if (result.isNull())
848       return result;
849 
850     // Reconstruct the transformed type by applying the local qualifiers
851     // from the split type.
852     return Ctx.getQualifiedType(result, splitType.Quals);
853   }
854 
855 public:
SimpleTransformVisitor__anona7c70f230111::SimpleTransformVisitor856   explicit SimpleTransformVisitor(ASTContext &ctx) : Ctx(ctx) {}
857 
858   // None of the clients of this transformation can occur where
859   // there are dependent types, so skip dependent types.
860 #define TYPE(Class, Base)
861 #define DEPENDENT_TYPE(Class, Base) \
862   QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
863 #include "clang/AST/TypeNodes.inc"
864 
865 #define TRIVIAL_TYPE_CLASS(Class) \
866   QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
867 #define SUGARED_TYPE_CLASS(Class) \
868   QualType Visit##Class##Type(const Class##Type *T) { \
869     if (!T->isSugared()) \
870       return QualType(T, 0); \
871     QualType desugaredType = recurse(T->desugar()); \
872     if (desugaredType.isNull()) \
873       return {}; \
874     if (desugaredType.getAsOpaquePtr() == T->desugar().getAsOpaquePtr()) \
875       return QualType(T, 0); \
876     return desugaredType; \
877   }
878 
TRIVIAL_TYPE_CLASS__anona7c70f230111::SimpleTransformVisitor879   TRIVIAL_TYPE_CLASS(Builtin)
880 
881   QualType VisitComplexType(const ComplexType *T) {
882     QualType elementType = recurse(T->getElementType());
883     if (elementType.isNull())
884       return {};
885 
886     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
887       return QualType(T, 0);
888 
889     return Ctx.getComplexType(elementType);
890   }
891 
VisitPointerType__anona7c70f230111::SimpleTransformVisitor892   QualType VisitPointerType(const PointerType *T) {
893     QualType pointeeType = recurse(T->getPointeeType());
894     if (pointeeType.isNull())
895       return {};
896 
897     if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
898       return QualType(T, 0);
899 
900     return Ctx.getPointerType(pointeeType);
901   }
902 
VisitBlockPointerType__anona7c70f230111::SimpleTransformVisitor903   QualType VisitBlockPointerType(const BlockPointerType *T) {
904     QualType pointeeType = recurse(T->getPointeeType());
905     if (pointeeType.isNull())
906       return {};
907 
908     if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
909       return QualType(T, 0);
910 
911     return Ctx.getBlockPointerType(pointeeType);
912   }
913 
VisitLValueReferenceType__anona7c70f230111::SimpleTransformVisitor914   QualType VisitLValueReferenceType(const LValueReferenceType *T) {
915     QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
916     if (pointeeType.isNull())
917       return {};
918 
919     if (pointeeType.getAsOpaquePtr()
920           == T->getPointeeTypeAsWritten().getAsOpaquePtr())
921       return QualType(T, 0);
922 
923     return Ctx.getLValueReferenceType(pointeeType, T->isSpelledAsLValue());
924   }
925 
VisitRValueReferenceType__anona7c70f230111::SimpleTransformVisitor926   QualType VisitRValueReferenceType(const RValueReferenceType *T) {
927     QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
928     if (pointeeType.isNull())
929       return {};
930 
931     if (pointeeType.getAsOpaquePtr()
932           == T->getPointeeTypeAsWritten().getAsOpaquePtr())
933       return QualType(T, 0);
934 
935     return Ctx.getRValueReferenceType(pointeeType);
936   }
937 
VisitMemberPointerType__anona7c70f230111::SimpleTransformVisitor938   QualType VisitMemberPointerType(const MemberPointerType *T) {
939     QualType pointeeType = recurse(T->getPointeeType());
940     if (pointeeType.isNull())
941       return {};
942 
943     if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
944       return QualType(T, 0);
945 
946     return Ctx.getMemberPointerType(pointeeType, T->getClass());
947   }
948 
VisitConstantArrayType__anona7c70f230111::SimpleTransformVisitor949   QualType VisitConstantArrayType(const ConstantArrayType *T) {
950     QualType elementType = recurse(T->getElementType());
951     if (elementType.isNull())
952       return {};
953 
954     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
955       return QualType(T, 0);
956 
957     return Ctx.getConstantArrayType(elementType, T->getSize(), T->getSizeExpr(),
958                                     T->getSizeModifier(),
959                                     T->getIndexTypeCVRQualifiers());
960   }
961 
VisitVariableArrayType__anona7c70f230111::SimpleTransformVisitor962   QualType VisitVariableArrayType(const VariableArrayType *T) {
963     QualType elementType = recurse(T->getElementType());
964     if (elementType.isNull())
965       return {};
966 
967     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
968       return QualType(T, 0);
969 
970     return Ctx.getVariableArrayType(elementType, T->getSizeExpr(),
971                                     T->getSizeModifier(),
972                                     T->getIndexTypeCVRQualifiers(),
973                                     T->getBracketsRange());
974   }
975 
VisitIncompleteArrayType__anona7c70f230111::SimpleTransformVisitor976   QualType VisitIncompleteArrayType(const IncompleteArrayType *T) {
977     QualType elementType = recurse(T->getElementType());
978     if (elementType.isNull())
979       return {};
980 
981     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
982       return QualType(T, 0);
983 
984     return Ctx.getIncompleteArrayType(elementType, T->getSizeModifier(),
985                                       T->getIndexTypeCVRQualifiers());
986   }
987 
VisitVectorType__anona7c70f230111::SimpleTransformVisitor988   QualType VisitVectorType(const VectorType *T) {
989     QualType elementType = recurse(T->getElementType());
990     if (elementType.isNull())
991       return {};
992 
993     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
994       return QualType(T, 0);
995 
996     return Ctx.getVectorType(elementType, T->getNumElements(),
997                              T->getVectorKind());
998   }
999 
VisitExtVectorType__anona7c70f230111::SimpleTransformVisitor1000   QualType VisitExtVectorType(const ExtVectorType *T) {
1001     QualType elementType = recurse(T->getElementType());
1002     if (elementType.isNull())
1003       return {};
1004 
1005     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
1006       return QualType(T, 0);
1007 
1008     return Ctx.getExtVectorType(elementType, T->getNumElements());
1009   }
1010 
VisitConstantMatrixType__anona7c70f230111::SimpleTransformVisitor1011   QualType VisitConstantMatrixType(const ConstantMatrixType *T) {
1012     QualType elementType = recurse(T->getElementType());
1013     if (elementType.isNull())
1014       return {};
1015     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
1016       return QualType(T, 0);
1017 
1018     return Ctx.getConstantMatrixType(elementType, T->getNumRows(),
1019                                      T->getNumColumns());
1020   }
1021 
VisitFunctionNoProtoType__anona7c70f230111::SimpleTransformVisitor1022   QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
1023     QualType returnType = recurse(T->getReturnType());
1024     if (returnType.isNull())
1025       return {};
1026 
1027     if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr())
1028       return QualType(T, 0);
1029 
1030     return Ctx.getFunctionNoProtoType(returnType, T->getExtInfo());
1031   }
1032 
VisitFunctionProtoType__anona7c70f230111::SimpleTransformVisitor1033   QualType VisitFunctionProtoType(const FunctionProtoType *T) {
1034     QualType returnType = recurse(T->getReturnType());
1035     if (returnType.isNull())
1036       return {};
1037 
1038     // Transform parameter types.
1039     SmallVector<QualType, 4> paramTypes;
1040     bool paramChanged = false;
1041     for (auto paramType : T->getParamTypes()) {
1042       QualType newParamType = recurse(paramType);
1043       if (newParamType.isNull())
1044         return {};
1045 
1046       if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
1047         paramChanged = true;
1048 
1049       paramTypes.push_back(newParamType);
1050     }
1051 
1052     // Transform extended info.
1053     FunctionProtoType::ExtProtoInfo info = T->getExtProtoInfo();
1054     bool exceptionChanged = false;
1055     if (info.ExceptionSpec.Type == EST_Dynamic) {
1056       SmallVector<QualType, 4> exceptionTypes;
1057       for (auto exceptionType : info.ExceptionSpec.Exceptions) {
1058         QualType newExceptionType = recurse(exceptionType);
1059         if (newExceptionType.isNull())
1060           return {};
1061 
1062         if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr())
1063           exceptionChanged = true;
1064 
1065         exceptionTypes.push_back(newExceptionType);
1066       }
1067 
1068       if (exceptionChanged) {
1069         info.ExceptionSpec.Exceptions =
1070             llvm::makeArrayRef(exceptionTypes).copy(Ctx);
1071       }
1072     }
1073 
1074     if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr() &&
1075         !paramChanged && !exceptionChanged)
1076       return QualType(T, 0);
1077 
1078     return Ctx.getFunctionType(returnType, paramTypes, info);
1079   }
1080 
VisitParenType__anona7c70f230111::SimpleTransformVisitor1081   QualType VisitParenType(const ParenType *T) {
1082     QualType innerType = recurse(T->getInnerType());
1083     if (innerType.isNull())
1084       return {};
1085 
1086     if (innerType.getAsOpaquePtr() == T->getInnerType().getAsOpaquePtr())
1087       return QualType(T, 0);
1088 
1089     return Ctx.getParenType(innerType);
1090   }
1091 
1092   SUGARED_TYPE_CLASS(Typedef)
SUGARED_TYPE_CLASS__anona7c70f230111::SimpleTransformVisitor1093   SUGARED_TYPE_CLASS(ObjCTypeParam)
1094   SUGARED_TYPE_CLASS(MacroQualified)
1095 
1096   QualType VisitAdjustedType(const AdjustedType *T) {
1097     QualType originalType = recurse(T->getOriginalType());
1098     if (originalType.isNull())
1099       return {};
1100 
1101     QualType adjustedType = recurse(T->getAdjustedType());
1102     if (adjustedType.isNull())
1103       return {};
1104 
1105     if (originalType.getAsOpaquePtr()
1106           == T->getOriginalType().getAsOpaquePtr() &&
1107         adjustedType.getAsOpaquePtr() == T->getAdjustedType().getAsOpaquePtr())
1108       return QualType(T, 0);
1109 
1110     return Ctx.getAdjustedType(originalType, adjustedType);
1111   }
1112 
VisitDecayedType__anona7c70f230111::SimpleTransformVisitor1113   QualType VisitDecayedType(const DecayedType *T) {
1114     QualType originalType = recurse(T->getOriginalType());
1115     if (originalType.isNull())
1116       return {};
1117 
1118     if (originalType.getAsOpaquePtr()
1119           == T->getOriginalType().getAsOpaquePtr())
1120       return QualType(T, 0);
1121 
1122     return Ctx.getDecayedType(originalType);
1123   }
1124 
1125   SUGARED_TYPE_CLASS(TypeOfExpr)
SUGARED_TYPE_CLASS__anona7c70f230111::SimpleTransformVisitor1126   SUGARED_TYPE_CLASS(TypeOf)
1127   SUGARED_TYPE_CLASS(Decltype)
1128   SUGARED_TYPE_CLASS(UnaryTransform)
1129   TRIVIAL_TYPE_CLASS(Record)
1130   TRIVIAL_TYPE_CLASS(Enum)
1131 
1132   // FIXME: Non-trivial to implement, but important for C++
1133   SUGARED_TYPE_CLASS(Elaborated)
1134 
1135   QualType VisitAttributedType(const AttributedType *T) {
1136     QualType modifiedType = recurse(T->getModifiedType());
1137     if (modifiedType.isNull())
1138       return {};
1139 
1140     QualType equivalentType = recurse(T->getEquivalentType());
1141     if (equivalentType.isNull())
1142       return {};
1143 
1144     if (modifiedType.getAsOpaquePtr()
1145           == T->getModifiedType().getAsOpaquePtr() &&
1146         equivalentType.getAsOpaquePtr()
1147           == T->getEquivalentType().getAsOpaquePtr())
1148       return QualType(T, 0);
1149 
1150     return Ctx.getAttributedType(T->getAttrKind(), modifiedType,
1151                                  equivalentType);
1152   }
1153 
VisitSubstTemplateTypeParmType__anona7c70f230111::SimpleTransformVisitor1154   QualType VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1155     QualType replacementType = recurse(T->getReplacementType());
1156     if (replacementType.isNull())
1157       return {};
1158 
1159     if (replacementType.getAsOpaquePtr()
1160           == T->getReplacementType().getAsOpaquePtr())
1161       return QualType(T, 0);
1162 
1163     return Ctx.getSubstTemplateTypeParmType(T->getReplacedParameter(),
1164                                             replacementType);
1165   }
1166 
1167   // FIXME: Non-trivial to implement, but important for C++
SUGARED_TYPE_CLASS__anona7c70f230111::SimpleTransformVisitor1168   SUGARED_TYPE_CLASS(TemplateSpecialization)
1169 
1170   QualType VisitAutoType(const AutoType *T) {
1171     if (!T->isDeduced())
1172       return QualType(T, 0);
1173 
1174     QualType deducedType = recurse(T->getDeducedType());
1175     if (deducedType.isNull())
1176       return {};
1177 
1178     if (deducedType.getAsOpaquePtr()
1179           == T->getDeducedType().getAsOpaquePtr())
1180       return QualType(T, 0);
1181 
1182     return Ctx.getAutoType(deducedType, T->getKeyword(),
1183                            T->isDependentType(), /*IsPack=*/false,
1184                            T->getTypeConstraintConcept(),
1185                            T->getTypeConstraintArguments());
1186   }
1187 
VisitObjCObjectType__anona7c70f230111::SimpleTransformVisitor1188   QualType VisitObjCObjectType(const ObjCObjectType *T) {
1189     QualType baseType = recurse(T->getBaseType());
1190     if (baseType.isNull())
1191       return {};
1192 
1193     // Transform type arguments.
1194     bool typeArgChanged = false;
1195     SmallVector<QualType, 4> typeArgs;
1196     for (auto typeArg : T->getTypeArgsAsWritten()) {
1197       QualType newTypeArg = recurse(typeArg);
1198       if (newTypeArg.isNull())
1199         return {};
1200 
1201       if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr())
1202         typeArgChanged = true;
1203 
1204       typeArgs.push_back(newTypeArg);
1205     }
1206 
1207     if (baseType.getAsOpaquePtr() == T->getBaseType().getAsOpaquePtr() &&
1208         !typeArgChanged)
1209       return QualType(T, 0);
1210 
1211     return Ctx.getObjCObjectType(baseType, typeArgs,
1212                                  llvm::makeArrayRef(T->qual_begin(),
1213                                                     T->getNumProtocols()),
1214                                  T->isKindOfTypeAsWritten());
1215   }
1216 
TRIVIAL_TYPE_CLASS__anona7c70f230111::SimpleTransformVisitor1217   TRIVIAL_TYPE_CLASS(ObjCInterface)
1218 
1219   QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
1220     QualType pointeeType = recurse(T->getPointeeType());
1221     if (pointeeType.isNull())
1222       return {};
1223 
1224     if (pointeeType.getAsOpaquePtr()
1225           == T->getPointeeType().getAsOpaquePtr())
1226       return QualType(T, 0);
1227 
1228     return Ctx.getObjCObjectPointerType(pointeeType);
1229   }
1230 
VisitAtomicType__anona7c70f230111::SimpleTransformVisitor1231   QualType VisitAtomicType(const AtomicType *T) {
1232     QualType valueType = recurse(T->getValueType());
1233     if (valueType.isNull())
1234       return {};
1235 
1236     if (valueType.getAsOpaquePtr()
1237           == T->getValueType().getAsOpaquePtr())
1238       return QualType(T, 0);
1239 
1240     return Ctx.getAtomicType(valueType);
1241   }
1242 
1243 #undef TRIVIAL_TYPE_CLASS
1244 #undef SUGARED_TYPE_CLASS
1245 };
1246 
1247 struct SubstObjCTypeArgsVisitor
1248     : public SimpleTransformVisitor<SubstObjCTypeArgsVisitor> {
1249   using BaseType = SimpleTransformVisitor<SubstObjCTypeArgsVisitor>;
1250 
1251   ArrayRef<QualType> TypeArgs;
1252   ObjCSubstitutionContext SubstContext;
1253 
SubstObjCTypeArgsVisitor__anona7c70f230111::SubstObjCTypeArgsVisitor1254   SubstObjCTypeArgsVisitor(ASTContext &ctx, ArrayRef<QualType> typeArgs,
1255                            ObjCSubstitutionContext context)
1256       : BaseType(ctx), TypeArgs(typeArgs), SubstContext(context) {}
1257 
VisitObjCTypeParamType__anona7c70f230111::SubstObjCTypeArgsVisitor1258   QualType VisitObjCTypeParamType(const ObjCTypeParamType *OTPTy) {
1259     // Replace an Objective-C type parameter reference with the corresponding
1260     // type argument.
1261     ObjCTypeParamDecl *typeParam = OTPTy->getDecl();
1262     // If we have type arguments, use them.
1263     if (!TypeArgs.empty()) {
1264       QualType argType = TypeArgs[typeParam->getIndex()];
1265       if (OTPTy->qual_empty())
1266         return argType;
1267 
1268       // Apply protocol lists if exists.
1269       bool hasError;
1270       SmallVector<ObjCProtocolDecl *, 8> protocolsVec;
1271       protocolsVec.append(OTPTy->qual_begin(), OTPTy->qual_end());
1272       ArrayRef<ObjCProtocolDecl *> protocolsToApply = protocolsVec;
1273       return Ctx.applyObjCProtocolQualifiers(
1274           argType, protocolsToApply, hasError, true/*allowOnPointerType*/);
1275     }
1276 
1277     switch (SubstContext) {
1278     case ObjCSubstitutionContext::Ordinary:
1279     case ObjCSubstitutionContext::Parameter:
1280     case ObjCSubstitutionContext::Superclass:
1281       // Substitute the bound.
1282       return typeParam->getUnderlyingType();
1283 
1284     case ObjCSubstitutionContext::Result:
1285     case ObjCSubstitutionContext::Property: {
1286       // Substitute the __kindof form of the underlying type.
1287       const auto *objPtr =
1288           typeParam->getUnderlyingType()->castAs<ObjCObjectPointerType>();
1289 
1290       // __kindof types, id, and Class don't need an additional
1291       // __kindof.
1292       if (objPtr->isKindOfType() || objPtr->isObjCIdOrClassType())
1293         return typeParam->getUnderlyingType();
1294 
1295       // Add __kindof.
1296       const auto *obj = objPtr->getObjectType();
1297       QualType resultTy = Ctx.getObjCObjectType(
1298           obj->getBaseType(), obj->getTypeArgsAsWritten(), obj->getProtocols(),
1299           /*isKindOf=*/true);
1300 
1301       // Rebuild object pointer type.
1302       return Ctx.getObjCObjectPointerType(resultTy);
1303     }
1304     }
1305     llvm_unreachable("Unexpected ObjCSubstitutionContext!");
1306   }
1307 
VisitFunctionType__anona7c70f230111::SubstObjCTypeArgsVisitor1308   QualType VisitFunctionType(const FunctionType *funcType) {
1309     // If we have a function type, update the substitution context
1310     // appropriately.
1311 
1312     //Substitute result type.
1313     QualType returnType = funcType->getReturnType().substObjCTypeArgs(
1314         Ctx, TypeArgs, ObjCSubstitutionContext::Result);
1315     if (returnType.isNull())
1316       return {};
1317 
1318     // Handle non-prototyped functions, which only substitute into the result
1319     // type.
1320     if (isa<FunctionNoProtoType>(funcType)) {
1321       // If the return type was unchanged, do nothing.
1322       if (returnType.getAsOpaquePtr() ==
1323           funcType->getReturnType().getAsOpaquePtr())
1324         return BaseType::VisitFunctionType(funcType);
1325 
1326       // Otherwise, build a new type.
1327       return Ctx.getFunctionNoProtoType(returnType, funcType->getExtInfo());
1328     }
1329 
1330     const auto *funcProtoType = cast<FunctionProtoType>(funcType);
1331 
1332     // Transform parameter types.
1333     SmallVector<QualType, 4> paramTypes;
1334     bool paramChanged = false;
1335     for (auto paramType : funcProtoType->getParamTypes()) {
1336       QualType newParamType = paramType.substObjCTypeArgs(
1337           Ctx, TypeArgs, ObjCSubstitutionContext::Parameter);
1338       if (newParamType.isNull())
1339         return {};
1340 
1341       if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
1342         paramChanged = true;
1343 
1344       paramTypes.push_back(newParamType);
1345     }
1346 
1347     // Transform extended info.
1348     FunctionProtoType::ExtProtoInfo info = funcProtoType->getExtProtoInfo();
1349     bool exceptionChanged = false;
1350     if (info.ExceptionSpec.Type == EST_Dynamic) {
1351       SmallVector<QualType, 4> exceptionTypes;
1352       for (auto exceptionType : info.ExceptionSpec.Exceptions) {
1353         QualType newExceptionType = exceptionType.substObjCTypeArgs(
1354             Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary);
1355         if (newExceptionType.isNull())
1356           return {};
1357 
1358         if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr())
1359           exceptionChanged = true;
1360 
1361         exceptionTypes.push_back(newExceptionType);
1362       }
1363 
1364       if (exceptionChanged) {
1365         info.ExceptionSpec.Exceptions =
1366             llvm::makeArrayRef(exceptionTypes).copy(Ctx);
1367       }
1368     }
1369 
1370     if (returnType.getAsOpaquePtr() ==
1371             funcProtoType->getReturnType().getAsOpaquePtr() &&
1372         !paramChanged && !exceptionChanged)
1373       return BaseType::VisitFunctionType(funcType);
1374 
1375     return Ctx.getFunctionType(returnType, paramTypes, info);
1376   }
1377 
VisitObjCObjectType__anona7c70f230111::SubstObjCTypeArgsVisitor1378   QualType VisitObjCObjectType(const ObjCObjectType *objcObjectType) {
1379     // Substitute into the type arguments of a specialized Objective-C object
1380     // type.
1381     if (objcObjectType->isSpecializedAsWritten()) {
1382       SmallVector<QualType, 4> newTypeArgs;
1383       bool anyChanged = false;
1384       for (auto typeArg : objcObjectType->getTypeArgsAsWritten()) {
1385         QualType newTypeArg = typeArg.substObjCTypeArgs(
1386             Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary);
1387         if (newTypeArg.isNull())
1388           return {};
1389 
1390         if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) {
1391           // If we're substituting based on an unspecialized context type,
1392           // produce an unspecialized type.
1393           ArrayRef<ObjCProtocolDecl *> protocols(
1394               objcObjectType->qual_begin(), objcObjectType->getNumProtocols());
1395           if (TypeArgs.empty() &&
1396               SubstContext != ObjCSubstitutionContext::Superclass) {
1397             return Ctx.getObjCObjectType(
1398                 objcObjectType->getBaseType(), {}, protocols,
1399                 objcObjectType->isKindOfTypeAsWritten());
1400           }
1401 
1402           anyChanged = true;
1403         }
1404 
1405         newTypeArgs.push_back(newTypeArg);
1406       }
1407 
1408       if (anyChanged) {
1409         ArrayRef<ObjCProtocolDecl *> protocols(
1410             objcObjectType->qual_begin(), objcObjectType->getNumProtocols());
1411         return Ctx.getObjCObjectType(objcObjectType->getBaseType(), newTypeArgs,
1412                                      protocols,
1413                                      objcObjectType->isKindOfTypeAsWritten());
1414       }
1415     }
1416 
1417     return BaseType::VisitObjCObjectType(objcObjectType);
1418   }
1419 
VisitAttributedType__anona7c70f230111::SubstObjCTypeArgsVisitor1420   QualType VisitAttributedType(const AttributedType *attrType) {
1421     QualType newType = BaseType::VisitAttributedType(attrType);
1422     if (newType.isNull())
1423       return {};
1424 
1425     const auto *newAttrType = dyn_cast<AttributedType>(newType.getTypePtr());
1426     if (!newAttrType || newAttrType->getAttrKind() != attr::ObjCKindOf)
1427       return newType;
1428 
1429     // Find out if it's an Objective-C object or object pointer type;
1430     QualType newEquivType = newAttrType->getEquivalentType();
1431     const ObjCObjectPointerType *ptrType =
1432         newEquivType->getAs<ObjCObjectPointerType>();
1433     const ObjCObjectType *objType = ptrType
1434                                         ? ptrType->getObjectType()
1435                                         : newEquivType->getAs<ObjCObjectType>();
1436     if (!objType)
1437       return newType;
1438 
1439     // Rebuild the "equivalent" type, which pushes __kindof down into
1440     // the object type.
1441     newEquivType = Ctx.getObjCObjectType(
1442         objType->getBaseType(), objType->getTypeArgsAsWritten(),
1443         objType->getProtocols(),
1444         // There is no need to apply kindof on an unqualified id type.
1445         /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
1446 
1447     // If we started with an object pointer type, rebuild it.
1448     if (ptrType)
1449       newEquivType = Ctx.getObjCObjectPointerType(newEquivType);
1450 
1451     // Rebuild the attributed type.
1452     return Ctx.getAttributedType(newAttrType->getAttrKind(),
1453                                  newAttrType->getModifiedType(), newEquivType);
1454   }
1455 };
1456 
1457 struct StripObjCKindOfTypeVisitor
1458     : public SimpleTransformVisitor<StripObjCKindOfTypeVisitor> {
1459   using BaseType = SimpleTransformVisitor<StripObjCKindOfTypeVisitor>;
1460 
StripObjCKindOfTypeVisitor__anona7c70f230111::StripObjCKindOfTypeVisitor1461   explicit StripObjCKindOfTypeVisitor(ASTContext &ctx) : BaseType(ctx) {}
1462 
VisitObjCObjectType__anona7c70f230111::StripObjCKindOfTypeVisitor1463   QualType VisitObjCObjectType(const ObjCObjectType *objType) {
1464     if (!objType->isKindOfType())
1465       return BaseType::VisitObjCObjectType(objType);
1466 
1467     QualType baseType = objType->getBaseType().stripObjCKindOfType(Ctx);
1468     return Ctx.getObjCObjectType(baseType, objType->getTypeArgsAsWritten(),
1469                                  objType->getProtocols(),
1470                                  /*isKindOf=*/false);
1471   }
1472 };
1473 
1474 } // namespace
1475 
1476 /// Substitute the given type arguments for Objective-C type
1477 /// parameters within the given type, recursively.
substObjCTypeArgs(ASTContext & ctx,ArrayRef<QualType> typeArgs,ObjCSubstitutionContext context) const1478 QualType QualType::substObjCTypeArgs(ASTContext &ctx,
1479                                      ArrayRef<QualType> typeArgs,
1480                                      ObjCSubstitutionContext context) const {
1481   SubstObjCTypeArgsVisitor visitor(ctx, typeArgs, context);
1482   return visitor.recurse(*this);
1483 }
1484 
substObjCMemberType(QualType objectType,const DeclContext * dc,ObjCSubstitutionContext context) const1485 QualType QualType::substObjCMemberType(QualType objectType,
1486                                        const DeclContext *dc,
1487                                        ObjCSubstitutionContext context) const {
1488   if (auto subs = objectType->getObjCSubstitutions(dc))
1489     return substObjCTypeArgs(dc->getParentASTContext(), *subs, context);
1490 
1491   return *this;
1492 }
1493 
stripObjCKindOfType(const ASTContext & constCtx) const1494 QualType QualType::stripObjCKindOfType(const ASTContext &constCtx) const {
1495   // FIXME: Because ASTContext::getAttributedType() is non-const.
1496   auto &ctx = const_cast<ASTContext &>(constCtx);
1497   StripObjCKindOfTypeVisitor visitor(ctx);
1498   return visitor.recurse(*this);
1499 }
1500 
getAtomicUnqualifiedType() const1501 QualType QualType::getAtomicUnqualifiedType() const {
1502   if (const auto AT = getTypePtr()->getAs<AtomicType>())
1503     return AT->getValueType().getUnqualifiedType();
1504   return getUnqualifiedType();
1505 }
1506 
getObjCSubstitutions(const DeclContext * dc) const1507 Optional<ArrayRef<QualType>> Type::getObjCSubstitutions(
1508                                const DeclContext *dc) const {
1509   // Look through method scopes.
1510   if (const auto method = dyn_cast<ObjCMethodDecl>(dc))
1511     dc = method->getDeclContext();
1512 
1513   // Find the class or category in which the type we're substituting
1514   // was declared.
1515   const auto *dcClassDecl = dyn_cast<ObjCInterfaceDecl>(dc);
1516   const ObjCCategoryDecl *dcCategoryDecl = nullptr;
1517   ObjCTypeParamList *dcTypeParams = nullptr;
1518   if (dcClassDecl) {
1519     // If the class does not have any type parameters, there's no
1520     // substitution to do.
1521     dcTypeParams = dcClassDecl->getTypeParamList();
1522     if (!dcTypeParams)
1523       return None;
1524   } else {
1525     // If we are in neither a class nor a category, there's no
1526     // substitution to perform.
1527     dcCategoryDecl = dyn_cast<ObjCCategoryDecl>(dc);
1528     if (!dcCategoryDecl)
1529       return None;
1530 
1531     // If the category does not have any type parameters, there's no
1532     // substitution to do.
1533     dcTypeParams = dcCategoryDecl->getTypeParamList();
1534     if (!dcTypeParams)
1535       return None;
1536 
1537     dcClassDecl = dcCategoryDecl->getClassInterface();
1538     if (!dcClassDecl)
1539       return None;
1540   }
1541   assert(dcTypeParams && "No substitutions to perform");
1542   assert(dcClassDecl && "No class context");
1543 
1544   // Find the underlying object type.
1545   const ObjCObjectType *objectType;
1546   if (const auto *objectPointerType = getAs<ObjCObjectPointerType>()) {
1547     objectType = objectPointerType->getObjectType();
1548   } else if (getAs<BlockPointerType>()) {
1549     ASTContext &ctx = dc->getParentASTContext();
1550     objectType = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, {}, {})
1551                    ->castAs<ObjCObjectType>();
1552   } else {
1553     objectType = getAs<ObjCObjectType>();
1554   }
1555 
1556   /// Extract the class from the receiver object type.
1557   ObjCInterfaceDecl *curClassDecl = objectType ? objectType->getInterface()
1558                                                : nullptr;
1559   if (!curClassDecl) {
1560     // If we don't have a context type (e.g., this is "id" or some
1561     // variant thereof), substitute the bounds.
1562     return llvm::ArrayRef<QualType>();
1563   }
1564 
1565   // Follow the superclass chain until we've mapped the receiver type
1566   // to the same class as the context.
1567   while (curClassDecl != dcClassDecl) {
1568     // Map to the superclass type.
1569     QualType superType = objectType->getSuperClassType();
1570     if (superType.isNull()) {
1571       objectType = nullptr;
1572       break;
1573     }
1574 
1575     objectType = superType->castAs<ObjCObjectType>();
1576     curClassDecl = objectType->getInterface();
1577   }
1578 
1579   // If we don't have a receiver type, or the receiver type does not
1580   // have type arguments, substitute in the defaults.
1581   if (!objectType || objectType->isUnspecialized()) {
1582     return llvm::ArrayRef<QualType>();
1583   }
1584 
1585   // The receiver type has the type arguments we want.
1586   return objectType->getTypeArgs();
1587 }
1588 
acceptsObjCTypeParams() const1589 bool Type::acceptsObjCTypeParams() const {
1590   if (auto *IfaceT = getAsObjCInterfaceType()) {
1591     if (auto *ID = IfaceT->getInterface()) {
1592       if (ID->getTypeParamList())
1593         return true;
1594     }
1595   }
1596 
1597   return false;
1598 }
1599 
computeSuperClassTypeSlow() const1600 void ObjCObjectType::computeSuperClassTypeSlow() const {
1601   // Retrieve the class declaration for this type. If there isn't one
1602   // (e.g., this is some variant of "id" or "Class"), then there is no
1603   // superclass type.
1604   ObjCInterfaceDecl *classDecl = getInterface();
1605   if (!classDecl) {
1606     CachedSuperClassType.setInt(true);
1607     return;
1608   }
1609 
1610   // Extract the superclass type.
1611   const ObjCObjectType *superClassObjTy = classDecl->getSuperClassType();
1612   if (!superClassObjTy) {
1613     CachedSuperClassType.setInt(true);
1614     return;
1615   }
1616 
1617   ObjCInterfaceDecl *superClassDecl = superClassObjTy->getInterface();
1618   if (!superClassDecl) {
1619     CachedSuperClassType.setInt(true);
1620     return;
1621   }
1622 
1623   // If the superclass doesn't have type parameters, then there is no
1624   // substitution to perform.
1625   QualType superClassType(superClassObjTy, 0);
1626   ObjCTypeParamList *superClassTypeParams = superClassDecl->getTypeParamList();
1627   if (!superClassTypeParams) {
1628     CachedSuperClassType.setPointerAndInt(
1629       superClassType->castAs<ObjCObjectType>(), true);
1630     return;
1631   }
1632 
1633   // If the superclass reference is unspecialized, return it.
1634   if (superClassObjTy->isUnspecialized()) {
1635     CachedSuperClassType.setPointerAndInt(superClassObjTy, true);
1636     return;
1637   }
1638 
1639   // If the subclass is not parameterized, there aren't any type
1640   // parameters in the superclass reference to substitute.
1641   ObjCTypeParamList *typeParams = classDecl->getTypeParamList();
1642   if (!typeParams) {
1643     CachedSuperClassType.setPointerAndInt(
1644       superClassType->castAs<ObjCObjectType>(), true);
1645     return;
1646   }
1647 
1648   // If the subclass type isn't specialized, return the unspecialized
1649   // superclass.
1650   if (isUnspecialized()) {
1651     QualType unspecializedSuper
1652       = classDecl->getASTContext().getObjCInterfaceType(
1653           superClassObjTy->getInterface());
1654     CachedSuperClassType.setPointerAndInt(
1655       unspecializedSuper->castAs<ObjCObjectType>(),
1656       true);
1657     return;
1658   }
1659 
1660   // Substitute the provided type arguments into the superclass type.
1661   ArrayRef<QualType> typeArgs = getTypeArgs();
1662   assert(typeArgs.size() == typeParams->size());
1663   CachedSuperClassType.setPointerAndInt(
1664     superClassType.substObjCTypeArgs(classDecl->getASTContext(), typeArgs,
1665                                      ObjCSubstitutionContext::Superclass)
1666       ->castAs<ObjCObjectType>(),
1667     true);
1668 }
1669 
getInterfaceType() const1670 const ObjCInterfaceType *ObjCObjectPointerType::getInterfaceType() const {
1671   if (auto interfaceDecl = getObjectType()->getInterface()) {
1672     return interfaceDecl->getASTContext().getObjCInterfaceType(interfaceDecl)
1673              ->castAs<ObjCInterfaceType>();
1674   }
1675 
1676   return nullptr;
1677 }
1678 
getSuperClassType() const1679 QualType ObjCObjectPointerType::getSuperClassType() const {
1680   QualType superObjectType = getObjectType()->getSuperClassType();
1681   if (superObjectType.isNull())
1682     return superObjectType;
1683 
1684   ASTContext &ctx = getInterfaceDecl()->getASTContext();
1685   return ctx.getObjCObjectPointerType(superObjectType);
1686 }
1687 
getAsObjCQualifiedInterfaceType() const1688 const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
1689   // There is no sugar for ObjCObjectType's, just return the canonical
1690   // type pointer if it is the right class.  There is no typedef information to
1691   // return and these cannot be Address-space qualified.
1692   if (const auto *T = getAs<ObjCObjectType>())
1693     if (T->getNumProtocols() && T->getInterface())
1694       return T;
1695   return nullptr;
1696 }
1697 
isObjCQualifiedInterfaceType() const1698 bool Type::isObjCQualifiedInterfaceType() const {
1699   return getAsObjCQualifiedInterfaceType() != nullptr;
1700 }
1701 
getAsObjCQualifiedIdType() const1702 const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
1703   // There is no sugar for ObjCQualifiedIdType's, just return the canonical
1704   // type pointer if it is the right class.
1705   if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1706     if (OPT->isObjCQualifiedIdType())
1707       return OPT;
1708   }
1709   return nullptr;
1710 }
1711 
getAsObjCQualifiedClassType() const1712 const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
1713   // There is no sugar for ObjCQualifiedClassType's, just return the canonical
1714   // type pointer if it is the right class.
1715   if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1716     if (OPT->isObjCQualifiedClassType())
1717       return OPT;
1718   }
1719   return nullptr;
1720 }
1721 
getAsObjCInterfaceType() const1722 const ObjCObjectType *Type::getAsObjCInterfaceType() const {
1723   if (const auto *OT = getAs<ObjCObjectType>()) {
1724     if (OT->getInterface())
1725       return OT;
1726   }
1727   return nullptr;
1728 }
1729 
getAsObjCInterfacePointerType() const1730 const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
1731   if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1732     if (OPT->getInterfaceType())
1733       return OPT;
1734   }
1735   return nullptr;
1736 }
1737 
getPointeeCXXRecordDecl() const1738 const CXXRecordDecl *Type::getPointeeCXXRecordDecl() const {
1739   QualType PointeeType;
1740   if (const auto *PT = getAs<PointerType>())
1741     PointeeType = PT->getPointeeType();
1742   else if (const auto *RT = getAs<ReferenceType>())
1743     PointeeType = RT->getPointeeType();
1744   else
1745     return nullptr;
1746 
1747   if (const auto *RT = PointeeType->getAs<RecordType>())
1748     return dyn_cast<CXXRecordDecl>(RT->getDecl());
1749 
1750   return nullptr;
1751 }
1752 
getAsCXXRecordDecl() const1753 CXXRecordDecl *Type::getAsCXXRecordDecl() const {
1754   return dyn_cast_or_null<CXXRecordDecl>(getAsTagDecl());
1755 }
1756 
getAsRecordDecl() const1757 RecordDecl *Type::getAsRecordDecl() const {
1758   return dyn_cast_or_null<RecordDecl>(getAsTagDecl());
1759 }
1760 
getAsTagDecl() const1761 TagDecl *Type::getAsTagDecl() const {
1762   if (const auto *TT = getAs<TagType>())
1763     return TT->getDecl();
1764   if (const auto *Injected = getAs<InjectedClassNameType>())
1765     return Injected->getDecl();
1766 
1767   return nullptr;
1768 }
1769 
hasAttr(attr::Kind AK) const1770 bool Type::hasAttr(attr::Kind AK) const {
1771   const Type *Cur = this;
1772   while (const auto *AT = Cur->getAs<AttributedType>()) {
1773     if (AT->getAttrKind() == AK)
1774       return true;
1775     Cur = AT->getEquivalentType().getTypePtr();
1776   }
1777   return false;
1778 }
1779 
1780 namespace {
1781 
1782   class GetContainedDeducedTypeVisitor :
1783     public TypeVisitor<GetContainedDeducedTypeVisitor, Type*> {
1784     bool Syntactic;
1785 
1786   public:
GetContainedDeducedTypeVisitor(bool Syntactic=false)1787     GetContainedDeducedTypeVisitor(bool Syntactic = false)
1788         : Syntactic(Syntactic) {}
1789 
1790     using TypeVisitor<GetContainedDeducedTypeVisitor, Type*>::Visit;
1791 
Visit(QualType T)1792     Type *Visit(QualType T) {
1793       if (T.isNull())
1794         return nullptr;
1795       return Visit(T.getTypePtr());
1796     }
1797 
1798     // The deduced type itself.
VisitDeducedType(const DeducedType * AT)1799     Type *VisitDeducedType(const DeducedType *AT) {
1800       return const_cast<DeducedType*>(AT);
1801     }
1802 
1803     // Only these types can contain the desired 'auto' type.
1804 
VisitElaboratedType(const ElaboratedType * T)1805     Type *VisitElaboratedType(const ElaboratedType *T) {
1806       return Visit(T->getNamedType());
1807     }
1808 
VisitPointerType(const PointerType * T)1809     Type *VisitPointerType(const PointerType *T) {
1810       return Visit(T->getPointeeType());
1811     }
1812 
VisitBlockPointerType(const BlockPointerType * T)1813     Type *VisitBlockPointerType(const BlockPointerType *T) {
1814       return Visit(T->getPointeeType());
1815     }
1816 
VisitReferenceType(const ReferenceType * T)1817     Type *VisitReferenceType(const ReferenceType *T) {
1818       return Visit(T->getPointeeTypeAsWritten());
1819     }
1820 
VisitMemberPointerType(const MemberPointerType * T)1821     Type *VisitMemberPointerType(const MemberPointerType *T) {
1822       return Visit(T->getPointeeType());
1823     }
1824 
VisitArrayType(const ArrayType * T)1825     Type *VisitArrayType(const ArrayType *T) {
1826       return Visit(T->getElementType());
1827     }
1828 
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)1829     Type *VisitDependentSizedExtVectorType(
1830       const DependentSizedExtVectorType *T) {
1831       return Visit(T->getElementType());
1832     }
1833 
VisitVectorType(const VectorType * T)1834     Type *VisitVectorType(const VectorType *T) {
1835       return Visit(T->getElementType());
1836     }
1837 
VisitDependentSizedMatrixType(const DependentSizedMatrixType * T)1838     Type *VisitDependentSizedMatrixType(const DependentSizedMatrixType *T) {
1839       return Visit(T->getElementType());
1840     }
1841 
VisitConstantMatrixType(const ConstantMatrixType * T)1842     Type *VisitConstantMatrixType(const ConstantMatrixType *T) {
1843       return Visit(T->getElementType());
1844     }
1845 
VisitFunctionProtoType(const FunctionProtoType * T)1846     Type *VisitFunctionProtoType(const FunctionProtoType *T) {
1847       if (Syntactic && T->hasTrailingReturn())
1848         return const_cast<FunctionProtoType*>(T);
1849       return VisitFunctionType(T);
1850     }
1851 
VisitFunctionType(const FunctionType * T)1852     Type *VisitFunctionType(const FunctionType *T) {
1853       return Visit(T->getReturnType());
1854     }
1855 
VisitParenType(const ParenType * T)1856     Type *VisitParenType(const ParenType *T) {
1857       return Visit(T->getInnerType());
1858     }
1859 
VisitAttributedType(const AttributedType * T)1860     Type *VisitAttributedType(const AttributedType *T) {
1861       return Visit(T->getModifiedType());
1862     }
1863 
VisitMacroQualifiedType(const MacroQualifiedType * T)1864     Type *VisitMacroQualifiedType(const MacroQualifiedType *T) {
1865       return Visit(T->getUnderlyingType());
1866     }
1867 
VisitAdjustedType(const AdjustedType * T)1868     Type *VisitAdjustedType(const AdjustedType *T) {
1869       return Visit(T->getOriginalType());
1870     }
1871 
VisitPackExpansionType(const PackExpansionType * T)1872     Type *VisitPackExpansionType(const PackExpansionType *T) {
1873       return Visit(T->getPattern());
1874     }
1875   };
1876 
1877 } // namespace
1878 
getContainedDeducedType() const1879 DeducedType *Type::getContainedDeducedType() const {
1880   return cast_or_null<DeducedType>(
1881       GetContainedDeducedTypeVisitor().Visit(this));
1882 }
1883 
hasAutoForTrailingReturnType() const1884 bool Type::hasAutoForTrailingReturnType() const {
1885   return dyn_cast_or_null<FunctionType>(
1886       GetContainedDeducedTypeVisitor(true).Visit(this));
1887 }
1888 
hasIntegerRepresentation() const1889 bool Type::hasIntegerRepresentation() const {
1890   if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
1891     return VT->getElementType()->isIntegerType();
1892   else
1893     return isIntegerType();
1894 }
1895 
1896 /// Determine whether this type is an integral type.
1897 ///
1898 /// This routine determines whether the given type is an integral type per
1899 /// C++ [basic.fundamental]p7. Although the C standard does not define the
1900 /// term "integral type", it has a similar term "integer type", and in C++
1901 /// the two terms are equivalent. However, C's "integer type" includes
1902 /// enumeration types, while C++'s "integer type" does not. The \c ASTContext
1903 /// parameter is used to determine whether we should be following the C or
1904 /// C++ rules when determining whether this type is an integral/integer type.
1905 ///
1906 /// For cases where C permits "an integer type" and C++ permits "an integral
1907 /// type", use this routine.
1908 ///
1909 /// For cases where C permits "an integer type" and C++ permits "an integral
1910 /// or enumeration type", use \c isIntegralOrEnumerationType() instead.
1911 ///
1912 /// \param Ctx The context in which this type occurs.
1913 ///
1914 /// \returns true if the type is considered an integral type, false otherwise.
isIntegralType(const ASTContext & Ctx) const1915 bool Type::isIntegralType(const ASTContext &Ctx) const {
1916   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1917     return BT->getKind() >= BuiltinType::Bool &&
1918            BT->getKind() <= BuiltinType::Int128;
1919 
1920   // Complete enum types are integral in C.
1921   if (!Ctx.getLangOpts().CPlusPlus)
1922     if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1923       return ET->getDecl()->isComplete();
1924 
1925   return isExtIntType();
1926 }
1927 
isIntegralOrUnscopedEnumerationType() const1928 bool Type::isIntegralOrUnscopedEnumerationType() const {
1929   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1930     return BT->getKind() >= BuiltinType::Bool &&
1931            BT->getKind() <= BuiltinType::Int128;
1932 
1933   if (isExtIntType())
1934     return true;
1935 
1936   return isUnscopedEnumerationType();
1937 }
1938 
isUnscopedEnumerationType() const1939 bool Type::isUnscopedEnumerationType() const {
1940   if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1941     return !ET->getDecl()->isScoped();
1942 
1943   return false;
1944 }
1945 
isCharType() const1946 bool Type::isCharType() const {
1947   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1948     return BT->getKind() == BuiltinType::Char_U ||
1949            BT->getKind() == BuiltinType::UChar ||
1950            BT->getKind() == BuiltinType::Char_S ||
1951            BT->getKind() == BuiltinType::SChar;
1952   return false;
1953 }
1954 
isWideCharType() const1955 bool Type::isWideCharType() const {
1956   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1957     return BT->getKind() == BuiltinType::WChar_S ||
1958            BT->getKind() == BuiltinType::WChar_U;
1959   return false;
1960 }
1961 
isChar8Type() const1962 bool Type::isChar8Type() const {
1963   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1964     return BT->getKind() == BuiltinType::Char8;
1965   return false;
1966 }
1967 
isChar16Type() const1968 bool Type::isChar16Type() const {
1969   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1970     return BT->getKind() == BuiltinType::Char16;
1971   return false;
1972 }
1973 
isChar32Type() const1974 bool Type::isChar32Type() const {
1975   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1976     return BT->getKind() == BuiltinType::Char32;
1977   return false;
1978 }
1979 
1980 /// Determine whether this type is any of the built-in character
1981 /// types.
isAnyCharacterType() const1982 bool Type::isAnyCharacterType() const {
1983   const auto *BT = dyn_cast<BuiltinType>(CanonicalType);
1984   if (!BT) return false;
1985   switch (BT->getKind()) {
1986   default: return false;
1987   case BuiltinType::Char_U:
1988   case BuiltinType::UChar:
1989   case BuiltinType::WChar_U:
1990   case BuiltinType::Char8:
1991   case BuiltinType::Char16:
1992   case BuiltinType::Char32:
1993   case BuiltinType::Char_S:
1994   case BuiltinType::SChar:
1995   case BuiltinType::WChar_S:
1996     return true;
1997   }
1998 }
1999 
2000 /// isSignedIntegerType - Return true if this is an integer type that is
2001 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2002 /// an enum decl which has a signed representation
isSignedIntegerType() const2003 bool Type::isSignedIntegerType() const {
2004   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
2005     return BT->getKind() >= BuiltinType::Char_S &&
2006            BT->getKind() <= BuiltinType::Int128;
2007   }
2008 
2009   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
2010     // Incomplete enum types are not treated as integer types.
2011     // FIXME: In C++, enum types are never integer types.
2012     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
2013       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
2014   }
2015 
2016   if (const ExtIntType *IT = dyn_cast<ExtIntType>(CanonicalType))
2017     return IT->isSigned();
2018 
2019   return false;
2020 }
2021 
isSignedIntegerOrEnumerationType() const2022 bool Type::isSignedIntegerOrEnumerationType() const {
2023   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
2024     return BT->getKind() >= BuiltinType::Char_S &&
2025            BT->getKind() <= BuiltinType::Int128;
2026   }
2027 
2028   if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
2029     if (ET->getDecl()->isComplete())
2030       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
2031   }
2032 
2033   if (const ExtIntType *IT = dyn_cast<ExtIntType>(CanonicalType))
2034     return IT->isSigned();
2035 
2036 
2037   return false;
2038 }
2039 
hasSignedIntegerRepresentation() const2040 bool Type::hasSignedIntegerRepresentation() const {
2041   if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
2042     return VT->getElementType()->isSignedIntegerOrEnumerationType();
2043   else
2044     return isSignedIntegerOrEnumerationType();
2045 }
2046 
2047 /// isUnsignedIntegerType - Return true if this is an integer type that is
2048 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
2049 /// decl which has an unsigned representation
isUnsignedIntegerType() const2050 bool Type::isUnsignedIntegerType() const {
2051   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
2052     return BT->getKind() >= BuiltinType::Bool &&
2053            BT->getKind() <= BuiltinType::UInt128;
2054   }
2055 
2056   if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
2057     // Incomplete enum types are not treated as integer types.
2058     // FIXME: In C++, enum types are never integer types.
2059     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
2060       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
2061   }
2062 
2063   if (const ExtIntType *IT = dyn_cast<ExtIntType>(CanonicalType))
2064     return IT->isUnsigned();
2065 
2066   return false;
2067 }
2068 
isUnsignedIntegerOrEnumerationType() const2069 bool Type::isUnsignedIntegerOrEnumerationType() const {
2070   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
2071     return BT->getKind() >= BuiltinType::Bool &&
2072     BT->getKind() <= BuiltinType::UInt128;
2073   }
2074 
2075   if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
2076     if (ET->getDecl()->isComplete())
2077       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
2078   }
2079 
2080   if (const ExtIntType *IT = dyn_cast<ExtIntType>(CanonicalType))
2081     return IT->isUnsigned();
2082 
2083   return false;
2084 }
2085 
hasUnsignedIntegerRepresentation() const2086 bool Type::hasUnsignedIntegerRepresentation() const {
2087   if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
2088     return VT->getElementType()->isUnsignedIntegerOrEnumerationType();
2089   else
2090     return isUnsignedIntegerOrEnumerationType();
2091 }
2092 
isFloatingType() const2093 bool Type::isFloatingType() const {
2094   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2095     return BT->getKind() >= BuiltinType::Half &&
2096            BT->getKind() <= BuiltinType::Float128;
2097   if (const auto *CT = dyn_cast<ComplexType>(CanonicalType))
2098     return CT->getElementType()->isFloatingType();
2099   return false;
2100 }
2101 
hasFloatingRepresentation() const2102 bool Type::hasFloatingRepresentation() const {
2103   if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
2104     return VT->getElementType()->isFloatingType();
2105   else
2106     return isFloatingType();
2107 }
2108 
isRealFloatingType() const2109 bool Type::isRealFloatingType() const {
2110   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2111     return BT->isFloatingPoint();
2112   return false;
2113 }
2114 
isRealType() const2115 bool Type::isRealType() const {
2116   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2117     return BT->getKind() >= BuiltinType::Bool &&
2118            BT->getKind() <= BuiltinType::Float128;
2119   if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
2120       return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
2121   return isExtIntType();
2122 }
2123 
isArithmeticType() const2124 bool Type::isArithmeticType() const {
2125   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2126     return BT->getKind() >= BuiltinType::Bool &&
2127            BT->getKind() <= BuiltinType::Float128 &&
2128            BT->getKind() != BuiltinType::BFloat16;
2129   if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
2130     // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
2131     // If a body isn't seen by the time we get here, return false.
2132     //
2133     // C++0x: Enumerations are not arithmetic types. For now, just return
2134     // false for scoped enumerations since that will disable any
2135     // unwanted implicit conversions.
2136     return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
2137   return isa<ComplexType>(CanonicalType) || isExtIntType();
2138 }
2139 
getScalarTypeKind() const2140 Type::ScalarTypeKind Type::getScalarTypeKind() const {
2141   assert(isScalarType());
2142 
2143   const Type *T = CanonicalType.getTypePtr();
2144   if (const auto *BT = dyn_cast<BuiltinType>(T)) {
2145     if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
2146     if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
2147     if (BT->isInteger()) return STK_Integral;
2148     if (BT->isFloatingPoint()) return STK_Floating;
2149     if (BT->isFixedPointType()) return STK_FixedPoint;
2150     llvm_unreachable("unknown scalar builtin type");
2151   } else if (isa<PointerType>(T)) {
2152     return STK_CPointer;
2153   } else if (isa<BlockPointerType>(T)) {
2154     return STK_BlockPointer;
2155   } else if (isa<ObjCObjectPointerType>(T)) {
2156     return STK_ObjCObjectPointer;
2157   } else if (isa<MemberPointerType>(T)) {
2158     return STK_MemberPointer;
2159   } else if (isa<EnumType>(T)) {
2160     assert(cast<EnumType>(T)->getDecl()->isComplete());
2161     return STK_Integral;
2162   } else if (const auto *CT = dyn_cast<ComplexType>(T)) {
2163     if (CT->getElementType()->isRealFloatingType())
2164       return STK_FloatingComplex;
2165     return STK_IntegralComplex;
2166   } else if (isExtIntType()) {
2167     return STK_Integral;
2168   }
2169 
2170   llvm_unreachable("unknown scalar type");
2171 }
2172 
2173 /// Determines whether the type is a C++ aggregate type or C
2174 /// aggregate or union type.
2175 ///
2176 /// An aggregate type is an array or a class type (struct, union, or
2177 /// class) that has no user-declared constructors, no private or
2178 /// protected non-static data members, no base classes, and no virtual
2179 /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
2180 /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
2181 /// includes union types.
isAggregateType() const2182 bool Type::isAggregateType() const {
2183   if (const auto *Record = dyn_cast<RecordType>(CanonicalType)) {
2184     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
2185       return ClassDecl->isAggregate();
2186 
2187     return true;
2188   }
2189 
2190   return isa<ArrayType>(CanonicalType);
2191 }
2192 
2193 /// isConstantSizeType - Return true if this is not a variable sized type,
2194 /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
2195 /// incomplete types or dependent types.
isConstantSizeType() const2196 bool Type::isConstantSizeType() const {
2197   assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
2198   assert(!isDependentType() && "This doesn't make sense for dependent types");
2199   // The VAT must have a size, as it is known to be complete.
2200   return !isa<VariableArrayType>(CanonicalType);
2201 }
2202 
2203 /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
2204 /// - a type that can describe objects, but which lacks information needed to
2205 /// determine its size.
isIncompleteType(NamedDecl ** Def) const2206 bool Type::isIncompleteType(NamedDecl **Def) const {
2207   if (Def)
2208     *Def = nullptr;
2209 
2210   switch (CanonicalType->getTypeClass()) {
2211   default: return false;
2212   case Builtin:
2213     // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
2214     // be completed.
2215     return isVoidType();
2216   case Enum: {
2217     EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
2218     if (Def)
2219       *Def = EnumD;
2220     return !EnumD->isComplete();
2221   }
2222   case Record: {
2223     // A tagged type (struct/union/enum/class) is incomplete if the decl is a
2224     // forward declaration, but not a full definition (C99 6.2.5p22).
2225     RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
2226     if (Def)
2227       *Def = Rec;
2228     return !Rec->isCompleteDefinition();
2229   }
2230   case ConstantArray:
2231     // An array is incomplete if its element type is incomplete
2232     // (C++ [dcl.array]p1).
2233     // We don't handle variable arrays (they're not allowed in C++) or
2234     // dependent-sized arrays (dependent types are never treated as incomplete).
2235     return cast<ArrayType>(CanonicalType)->getElementType()
2236              ->isIncompleteType(Def);
2237   case IncompleteArray:
2238     // An array of unknown size is an incomplete type (C99 6.2.5p22).
2239     return true;
2240   case MemberPointer: {
2241     // Member pointers in the MS ABI have special behavior in
2242     // RequireCompleteType: they attach a MSInheritanceAttr to the CXXRecordDecl
2243     // to indicate which inheritance model to use.
2244     auto *MPTy = cast<MemberPointerType>(CanonicalType);
2245     const Type *ClassTy = MPTy->getClass();
2246     // Member pointers with dependent class types don't get special treatment.
2247     if (ClassTy->isDependentType())
2248       return false;
2249     const CXXRecordDecl *RD = ClassTy->getAsCXXRecordDecl();
2250     ASTContext &Context = RD->getASTContext();
2251     // Member pointers not in the MS ABI don't get special treatment.
2252     if (!Context.getTargetInfo().getCXXABI().isMicrosoft())
2253       return false;
2254     // The inheritance attribute might only be present on the most recent
2255     // CXXRecordDecl, use that one.
2256     RD = RD->getMostRecentNonInjectedDecl();
2257     // Nothing interesting to do if the inheritance attribute is already set.
2258     if (RD->hasAttr<MSInheritanceAttr>())
2259       return false;
2260     return true;
2261   }
2262   case ObjCObject:
2263     return cast<ObjCObjectType>(CanonicalType)->getBaseType()
2264              ->isIncompleteType(Def);
2265   case ObjCInterface: {
2266     // ObjC interfaces are incomplete if they are @class, not @interface.
2267     ObjCInterfaceDecl *Interface
2268       = cast<ObjCInterfaceType>(CanonicalType)->getDecl();
2269     if (Def)
2270       *Def = Interface;
2271     return !Interface->hasDefinition();
2272   }
2273   }
2274 }
2275 
isSizelessBuiltinType() const2276 bool Type::isSizelessBuiltinType() const {
2277   if (const BuiltinType *BT = getAs<BuiltinType>()) {
2278     switch (BT->getKind()) {
2279       // SVE Types
2280 #define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
2281 #include "clang/Basic/AArch64SVEACLETypes.def"
2282       return true;
2283     default:
2284       return false;
2285     }
2286   }
2287   return false;
2288 }
2289 
isSizelessType() const2290 bool Type::isSizelessType() const { return isSizelessBuiltinType(); }
2291 
isVLSTBuiltinType() const2292 bool Type::isVLSTBuiltinType() const {
2293   if (const BuiltinType *BT = getAs<BuiltinType>()) {
2294     switch (BT->getKind()) {
2295     case BuiltinType::SveInt8:
2296     case BuiltinType::SveInt16:
2297     case BuiltinType::SveInt32:
2298     case BuiltinType::SveInt64:
2299     case BuiltinType::SveUint8:
2300     case BuiltinType::SveUint16:
2301     case BuiltinType::SveUint32:
2302     case BuiltinType::SveUint64:
2303     case BuiltinType::SveFloat16:
2304     case BuiltinType::SveFloat32:
2305     case BuiltinType::SveFloat64:
2306     case BuiltinType::SveBFloat16:
2307     case BuiltinType::SveBool:
2308       return true;
2309     default:
2310       return false;
2311     }
2312   }
2313   return false;
2314 }
2315 
getSveEltType(const ASTContext & Ctx) const2316 QualType Type::getSveEltType(const ASTContext &Ctx) const {
2317   assert(isVLSTBuiltinType() && "unsupported type!");
2318 
2319   const BuiltinType *BTy = getAs<BuiltinType>();
2320   if (BTy->getKind() == BuiltinType::SveBool)
2321     // Represent predicates as i8 rather than i1 to avoid any layout issues.
2322     // The type is bitcasted to a scalable predicate type when casting between
2323     // scalable and fixed-length vectors.
2324     return Ctx.UnsignedCharTy;
2325   else
2326     return Ctx.getBuiltinVectorTypeInfo(BTy).ElementType;
2327 }
2328 
isPODType(const ASTContext & Context) const2329 bool QualType::isPODType(const ASTContext &Context) const {
2330   // C++11 has a more relaxed definition of POD.
2331   if (Context.getLangOpts().CPlusPlus11)
2332     return isCXX11PODType(Context);
2333 
2334   return isCXX98PODType(Context);
2335 }
2336 
isCXX98PODType(const ASTContext & Context) const2337 bool QualType::isCXX98PODType(const ASTContext &Context) const {
2338   // The compiler shouldn't query this for incomplete types, but the user might.
2339   // We return false for that case. Except for incomplete arrays of PODs, which
2340   // are PODs according to the standard.
2341   if (isNull())
2342     return false;
2343 
2344   if ((*this)->isIncompleteArrayType())
2345     return Context.getBaseElementType(*this).isCXX98PODType(Context);
2346 
2347   if ((*this)->isIncompleteType())
2348     return false;
2349 
2350   if (hasNonTrivialObjCLifetime())
2351     return false;
2352 
2353   QualType CanonicalType = getTypePtr()->CanonicalType;
2354   switch (CanonicalType->getTypeClass()) {
2355     // Everything not explicitly mentioned is not POD.
2356   default: return false;
2357   case Type::VariableArray:
2358   case Type::ConstantArray:
2359     // IncompleteArray is handled above.
2360     return Context.getBaseElementType(*this).isCXX98PODType(Context);
2361 
2362   case Type::ObjCObjectPointer:
2363   case Type::BlockPointer:
2364   case Type::Builtin:
2365   case Type::Complex:
2366   case Type::Pointer:
2367   case Type::MemberPointer:
2368   case Type::Vector:
2369   case Type::ExtVector:
2370   case Type::ExtInt:
2371     return true;
2372 
2373   case Type::Enum:
2374     return true;
2375 
2376   case Type::Record:
2377     if (const auto *ClassDecl =
2378             dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
2379       return ClassDecl->isPOD();
2380 
2381     // C struct/union is POD.
2382     return true;
2383   }
2384 }
2385 
isTrivialType(const ASTContext & Context) const2386 bool QualType::isTrivialType(const ASTContext &Context) const {
2387   // The compiler shouldn't query this for incomplete types, but the user might.
2388   // We return false for that case. Except for incomplete arrays of PODs, which
2389   // are PODs according to the standard.
2390   if (isNull())
2391     return false;
2392 
2393   if ((*this)->isArrayType())
2394     return Context.getBaseElementType(*this).isTrivialType(Context);
2395 
2396   if ((*this)->isSizelessBuiltinType())
2397     return true;
2398 
2399   // Return false for incomplete types after skipping any incomplete array
2400   // types which are expressly allowed by the standard and thus our API.
2401   if ((*this)->isIncompleteType())
2402     return false;
2403 
2404   if (hasNonTrivialObjCLifetime())
2405     return false;
2406 
2407   QualType CanonicalType = getTypePtr()->CanonicalType;
2408   if (CanonicalType->isDependentType())
2409     return false;
2410 
2411   // C++0x [basic.types]p9:
2412   //   Scalar types, trivial class types, arrays of such types, and
2413   //   cv-qualified versions of these types are collectively called trivial
2414   //   types.
2415 
2416   // As an extension, Clang treats vector types as Scalar types.
2417   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2418     return true;
2419   if (const auto *RT = CanonicalType->getAs<RecordType>()) {
2420     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2421       // C++11 [class]p6:
2422       //   A trivial class is a class that has a default constructor,
2423       //   has no non-trivial default constructors, and is trivially
2424       //   copyable.
2425       return ClassDecl->hasDefaultConstructor() &&
2426              !ClassDecl->hasNonTrivialDefaultConstructor() &&
2427              ClassDecl->isTriviallyCopyable();
2428     }
2429 
2430     return true;
2431   }
2432 
2433   // No other types can match.
2434   return false;
2435 }
2436 
isTriviallyCopyableType(const ASTContext & Context) const2437 bool QualType::isTriviallyCopyableType(const ASTContext &Context) const {
2438   if ((*this)->isArrayType())
2439     return Context.getBaseElementType(*this).isTriviallyCopyableType(Context);
2440 
2441   if (hasNonTrivialObjCLifetime())
2442     return false;
2443 
2444   // C++11 [basic.types]p9 - See Core 2094
2445   //   Scalar types, trivially copyable class types, arrays of such types, and
2446   //   cv-qualified versions of these types are collectively
2447   //   called trivially copyable types.
2448 
2449   QualType CanonicalType = getCanonicalType();
2450   if (CanonicalType->isDependentType())
2451     return false;
2452 
2453   if (CanonicalType->isSizelessBuiltinType())
2454     return true;
2455 
2456   // Return false for incomplete types after skipping any incomplete array types
2457   // which are expressly allowed by the standard and thus our API.
2458   if (CanonicalType->isIncompleteType())
2459     return false;
2460 
2461   // As an extension, Clang treats vector types as Scalar types.
2462   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2463     return true;
2464 
2465   if (const auto *RT = CanonicalType->getAs<RecordType>()) {
2466     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2467       if (!ClassDecl->isTriviallyCopyable()) return false;
2468     }
2469 
2470     return true;
2471   }
2472 
2473   // No other types can match.
2474   return false;
2475 }
2476 
isNonWeakInMRRWithObjCWeak(const ASTContext & Context) const2477 bool QualType::isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const {
2478   return !Context.getLangOpts().ObjCAutoRefCount &&
2479          Context.getLangOpts().ObjCWeak &&
2480          getObjCLifetime() != Qualifiers::OCL_Weak;
2481 }
2482 
hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl * RD)2483 bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD) {
2484   return RD->hasNonTrivialToPrimitiveDefaultInitializeCUnion();
2485 }
2486 
hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl * RD)2487 bool QualType::hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD) {
2488   return RD->hasNonTrivialToPrimitiveDestructCUnion();
2489 }
2490 
hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl * RD)2491 bool QualType::hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD) {
2492   return RD->hasNonTrivialToPrimitiveCopyCUnion();
2493 }
2494 
2495 QualType::PrimitiveDefaultInitializeKind
isNonTrivialToPrimitiveDefaultInitialize() const2496 QualType::isNonTrivialToPrimitiveDefaultInitialize() const {
2497   if (const auto *RT =
2498           getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>())
2499     if (RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize())
2500       return PDIK_Struct;
2501 
2502   switch (getQualifiers().getObjCLifetime()) {
2503   case Qualifiers::OCL_Strong:
2504     return PDIK_ARCStrong;
2505   case Qualifiers::OCL_Weak:
2506     return PDIK_ARCWeak;
2507   default:
2508     return PDIK_Trivial;
2509   }
2510 }
2511 
isNonTrivialToPrimitiveCopy() const2512 QualType::PrimitiveCopyKind QualType::isNonTrivialToPrimitiveCopy() const {
2513   if (const auto *RT =
2514           getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>())
2515     if (RT->getDecl()->isNonTrivialToPrimitiveCopy())
2516       return PCK_Struct;
2517 
2518   Qualifiers Qs = getQualifiers();
2519   switch (Qs.getObjCLifetime()) {
2520   case Qualifiers::OCL_Strong:
2521     return PCK_ARCStrong;
2522   case Qualifiers::OCL_Weak:
2523     return PCK_ARCWeak;
2524   default:
2525     return Qs.hasVolatile() ? PCK_VolatileTrivial : PCK_Trivial;
2526   }
2527 }
2528 
2529 QualType::PrimitiveCopyKind
isNonTrivialToPrimitiveDestructiveMove() const2530 QualType::isNonTrivialToPrimitiveDestructiveMove() const {
2531   return isNonTrivialToPrimitiveCopy();
2532 }
2533 
isLiteralType(const ASTContext & Ctx) const2534 bool Type::isLiteralType(const ASTContext &Ctx) const {
2535   if (isDependentType())
2536     return false;
2537 
2538   // C++1y [basic.types]p10:
2539   //   A type is a literal type if it is:
2540   //   -- cv void; or
2541   if (Ctx.getLangOpts().CPlusPlus14 && isVoidType())
2542     return true;
2543 
2544   // C++11 [basic.types]p10:
2545   //   A type is a literal type if it is:
2546   //   [...]
2547   //   -- an array of literal type other than an array of runtime bound; or
2548   if (isVariableArrayType())
2549     return false;
2550   const Type *BaseTy = getBaseElementTypeUnsafe();
2551   assert(BaseTy && "NULL element type");
2552 
2553   // Return false for incomplete types after skipping any incomplete array
2554   // types; those are expressly allowed by the standard and thus our API.
2555   if (BaseTy->isIncompleteType())
2556     return false;
2557 
2558   // C++11 [basic.types]p10:
2559   //   A type is a literal type if it is:
2560   //    -- a scalar type; or
2561   // As an extension, Clang treats vector types and complex types as
2562   // literal types.
2563   if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
2564       BaseTy->isAnyComplexType())
2565     return true;
2566   //    -- a reference type; or
2567   if (BaseTy->isReferenceType())
2568     return true;
2569   //    -- a class type that has all of the following properties:
2570   if (const auto *RT = BaseTy->getAs<RecordType>()) {
2571     //    -- a trivial destructor,
2572     //    -- every constructor call and full-expression in the
2573     //       brace-or-equal-initializers for non-static data members (if any)
2574     //       is a constant expression,
2575     //    -- it is an aggregate type or has at least one constexpr
2576     //       constructor or constructor template that is not a copy or move
2577     //       constructor, and
2578     //    -- all non-static data members and base classes of literal types
2579     //
2580     // We resolve DR1361 by ignoring the second bullet.
2581     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2582       return ClassDecl->isLiteral();
2583 
2584     return true;
2585   }
2586 
2587   // We treat _Atomic T as a literal type if T is a literal type.
2588   if (const auto *AT = BaseTy->getAs<AtomicType>())
2589     return AT->getValueType()->isLiteralType(Ctx);
2590 
2591   // If this type hasn't been deduced yet, then conservatively assume that
2592   // it'll work out to be a literal type.
2593   if (isa<AutoType>(BaseTy->getCanonicalTypeInternal()))
2594     return true;
2595 
2596   return false;
2597 }
2598 
isStructuralType() const2599 bool Type::isStructuralType() const {
2600   // C++20 [temp.param]p6:
2601   //   A structural type is one of the following:
2602   //   -- a scalar type; or
2603   //   -- a vector type [Clang extension]; or
2604   if (isScalarType() || isVectorType())
2605     return true;
2606   //   -- an lvalue reference type; or
2607   if (isLValueReferenceType())
2608     return true;
2609   //  -- a literal class type [...under some conditions]
2610   if (const CXXRecordDecl *RD = getAsCXXRecordDecl())
2611     return RD->isStructural();
2612   return false;
2613 }
2614 
isStandardLayoutType() const2615 bool Type::isStandardLayoutType() const {
2616   if (isDependentType())
2617     return false;
2618 
2619   // C++0x [basic.types]p9:
2620   //   Scalar types, standard-layout class types, arrays of such types, and
2621   //   cv-qualified versions of these types are collectively called
2622   //   standard-layout types.
2623   const Type *BaseTy = getBaseElementTypeUnsafe();
2624   assert(BaseTy && "NULL element type");
2625 
2626   // Return false for incomplete types after skipping any incomplete array
2627   // types which are expressly allowed by the standard and thus our API.
2628   if (BaseTy->isIncompleteType())
2629     return false;
2630 
2631   // As an extension, Clang treats vector types as Scalar types.
2632   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2633   if (const auto *RT = BaseTy->getAs<RecordType>()) {
2634     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2635       if (!ClassDecl->isStandardLayout())
2636         return false;
2637 
2638     // Default to 'true' for non-C++ class types.
2639     // FIXME: This is a bit dubious, but plain C structs should trivially meet
2640     // all the requirements of standard layout classes.
2641     return true;
2642   }
2643 
2644   // No other types can match.
2645   return false;
2646 }
2647 
2648 // This is effectively the intersection of isTrivialType and
2649 // isStandardLayoutType. We implement it directly to avoid redundant
2650 // conversions from a type to a CXXRecordDecl.
isCXX11PODType(const ASTContext & Context) const2651 bool QualType::isCXX11PODType(const ASTContext &Context) const {
2652   const Type *ty = getTypePtr();
2653   if (ty->isDependentType())
2654     return false;
2655 
2656   if (hasNonTrivialObjCLifetime())
2657     return false;
2658 
2659   // C++11 [basic.types]p9:
2660   //   Scalar types, POD classes, arrays of such types, and cv-qualified
2661   //   versions of these types are collectively called trivial types.
2662   const Type *BaseTy = ty->getBaseElementTypeUnsafe();
2663   assert(BaseTy && "NULL element type");
2664 
2665   if (BaseTy->isSizelessBuiltinType())
2666     return true;
2667 
2668   // Return false for incomplete types after skipping any incomplete array
2669   // types which are expressly allowed by the standard and thus our API.
2670   if (BaseTy->isIncompleteType())
2671     return false;
2672 
2673   // As an extension, Clang treats vector types as Scalar types.
2674   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2675   if (const auto *RT = BaseTy->getAs<RecordType>()) {
2676     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2677       // C++11 [class]p10:
2678       //   A POD struct is a non-union class that is both a trivial class [...]
2679       if (!ClassDecl->isTrivial()) return false;
2680 
2681       // C++11 [class]p10:
2682       //   A POD struct is a non-union class that is both a trivial class and
2683       //   a standard-layout class [...]
2684       if (!ClassDecl->isStandardLayout()) return false;
2685 
2686       // C++11 [class]p10:
2687       //   A POD struct is a non-union class that is both a trivial class and
2688       //   a standard-layout class, and has no non-static data members of type
2689       //   non-POD struct, non-POD union (or array of such types). [...]
2690       //
2691       // We don't directly query the recursive aspect as the requirements for
2692       // both standard-layout classes and trivial classes apply recursively
2693       // already.
2694     }
2695 
2696     return true;
2697   }
2698 
2699   // No other types can match.
2700   return false;
2701 }
2702 
isNothrowT() const2703 bool Type::isNothrowT() const {
2704   if (const auto *RD = getAsCXXRecordDecl()) {
2705     IdentifierInfo *II = RD->getIdentifier();
2706     if (II && II->isStr("nothrow_t") && RD->isInStdNamespace())
2707       return true;
2708   }
2709   return false;
2710 }
2711 
isAlignValT() const2712 bool Type::isAlignValT() const {
2713   if (const auto *ET = getAs<EnumType>()) {
2714     IdentifierInfo *II = ET->getDecl()->getIdentifier();
2715     if (II && II->isStr("align_val_t") && ET->getDecl()->isInStdNamespace())
2716       return true;
2717   }
2718   return false;
2719 }
2720 
isStdByteType() const2721 bool Type::isStdByteType() const {
2722   if (const auto *ET = getAs<EnumType>()) {
2723     IdentifierInfo *II = ET->getDecl()->getIdentifier();
2724     if (II && II->isStr("byte") && ET->getDecl()->isInStdNamespace())
2725       return true;
2726   }
2727   return false;
2728 }
2729 
isPromotableIntegerType() const2730 bool Type::isPromotableIntegerType() const {
2731   if (const auto *BT = getAs<BuiltinType>())
2732     switch (BT->getKind()) {
2733     case BuiltinType::Bool:
2734     case BuiltinType::Char_S:
2735     case BuiltinType::Char_U:
2736     case BuiltinType::SChar:
2737     case BuiltinType::UChar:
2738     case BuiltinType::Short:
2739     case BuiltinType::UShort:
2740     case BuiltinType::WChar_S:
2741     case BuiltinType::WChar_U:
2742     case BuiltinType::Char8:
2743     case BuiltinType::Char16:
2744     case BuiltinType::Char32:
2745       return true;
2746     default:
2747       return false;
2748     }
2749 
2750   // Enumerated types are promotable to their compatible integer types
2751   // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
2752   if (const auto *ET = getAs<EnumType>()){
2753     if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
2754         || ET->getDecl()->isScoped())
2755       return false;
2756 
2757     return true;
2758   }
2759 
2760   return false;
2761 }
2762 
isSpecifierType() const2763 bool Type::isSpecifierType() const {
2764   // Note that this intentionally does not use the canonical type.
2765   switch (getTypeClass()) {
2766   case Builtin:
2767   case Record:
2768   case Enum:
2769   case Typedef:
2770   case Complex:
2771   case TypeOfExpr:
2772   case TypeOf:
2773   case TemplateTypeParm:
2774   case SubstTemplateTypeParm:
2775   case TemplateSpecialization:
2776   case Elaborated:
2777   case DependentName:
2778   case DependentTemplateSpecialization:
2779   case ObjCInterface:
2780   case ObjCObject:
2781   case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
2782     return true;
2783   default:
2784     return false;
2785   }
2786 }
2787 
2788 ElaboratedTypeKeyword
getKeywordForTypeSpec(unsigned TypeSpec)2789 TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
2790   switch (TypeSpec) {
2791   default: return ETK_None;
2792   case TST_typename: return ETK_Typename;
2793   case TST_class: return ETK_Class;
2794   case TST_struct: return ETK_Struct;
2795   case TST_interface: return ETK_Interface;
2796   case TST_union: return ETK_Union;
2797   case TST_enum: return ETK_Enum;
2798   }
2799 }
2800 
2801 TagTypeKind
getTagTypeKindForTypeSpec(unsigned TypeSpec)2802 TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
2803   switch(TypeSpec) {
2804   case TST_class: return TTK_Class;
2805   case TST_struct: return TTK_Struct;
2806   case TST_interface: return TTK_Interface;
2807   case TST_union: return TTK_Union;
2808   case TST_enum: return TTK_Enum;
2809   }
2810 
2811   llvm_unreachable("Type specifier is not a tag type kind.");
2812 }
2813 
2814 ElaboratedTypeKeyword
getKeywordForTagTypeKind(TagTypeKind Kind)2815 TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
2816   switch (Kind) {
2817   case TTK_Class: return ETK_Class;
2818   case TTK_Struct: return ETK_Struct;
2819   case TTK_Interface: return ETK_Interface;
2820   case TTK_Union: return ETK_Union;
2821   case TTK_Enum: return ETK_Enum;
2822   }
2823   llvm_unreachable("Unknown tag type kind.");
2824 }
2825 
2826 TagTypeKind
getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword)2827 TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
2828   switch (Keyword) {
2829   case ETK_Class: return TTK_Class;
2830   case ETK_Struct: return TTK_Struct;
2831   case ETK_Interface: return TTK_Interface;
2832   case ETK_Union: return TTK_Union;
2833   case ETK_Enum: return TTK_Enum;
2834   case ETK_None: // Fall through.
2835   case ETK_Typename:
2836     llvm_unreachable("Elaborated type keyword is not a tag type kind.");
2837   }
2838   llvm_unreachable("Unknown elaborated type keyword.");
2839 }
2840 
2841 bool
KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword)2842 TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
2843   switch (Keyword) {
2844   case ETK_None:
2845   case ETK_Typename:
2846     return false;
2847   case ETK_Class:
2848   case ETK_Struct:
2849   case ETK_Interface:
2850   case ETK_Union:
2851   case ETK_Enum:
2852     return true;
2853   }
2854   llvm_unreachable("Unknown elaborated type keyword.");
2855 }
2856 
getKeywordName(ElaboratedTypeKeyword Keyword)2857 StringRef TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
2858   switch (Keyword) {
2859   case ETK_None: return {};
2860   case ETK_Typename: return "typename";
2861   case ETK_Class:  return "class";
2862   case ETK_Struct: return "struct";
2863   case ETK_Interface: return "__interface";
2864   case ETK_Union:  return "union";
2865   case ETK_Enum:   return "enum";
2866   }
2867 
2868   llvm_unreachable("Unknown elaborated type keyword.");
2869 }
2870 
DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,ArrayRef<TemplateArgument> Args,QualType Canon)2871 DependentTemplateSpecializationType::DependentTemplateSpecializationType(
2872     ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2873     const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args, QualType Canon)
2874     : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon,
2875                       TypeDependence::DependentInstantiation |
2876                           (NNS ? toTypeDependence(NNS->getDependence())
2877                                : TypeDependence::None)),
2878       NNS(NNS), Name(Name) {
2879   DependentTemplateSpecializationTypeBits.NumArgs = Args.size();
2880   assert((!NNS || NNS->isDependent()) &&
2881          "DependentTemplateSpecializatonType requires dependent qualifier");
2882   TemplateArgument *ArgBuffer = getArgBuffer();
2883   for (const TemplateArgument &Arg : Args) {
2884     addDependence(toTypeDependence(Arg.getDependence() &
2885                                    TemplateArgumentDependence::UnexpandedPack));
2886 
2887     new (ArgBuffer++) TemplateArgument(Arg);
2888   }
2889 }
2890 
2891 void
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,ElaboratedTypeKeyword Keyword,NestedNameSpecifier * Qualifier,const IdentifierInfo * Name,ArrayRef<TemplateArgument> Args)2892 DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
2893                                              const ASTContext &Context,
2894                                              ElaboratedTypeKeyword Keyword,
2895                                              NestedNameSpecifier *Qualifier,
2896                                              const IdentifierInfo *Name,
2897                                              ArrayRef<TemplateArgument> Args) {
2898   ID.AddInteger(Keyword);
2899   ID.AddPointer(Qualifier);
2900   ID.AddPointer(Name);
2901   for (const TemplateArgument &Arg : Args)
2902     Arg.Profile(ID, Context);
2903 }
2904 
isElaboratedTypeSpecifier() const2905 bool Type::isElaboratedTypeSpecifier() const {
2906   ElaboratedTypeKeyword Keyword;
2907   if (const auto *Elab = dyn_cast<ElaboratedType>(this))
2908     Keyword = Elab->getKeyword();
2909   else if (const auto *DepName = dyn_cast<DependentNameType>(this))
2910     Keyword = DepName->getKeyword();
2911   else if (const auto *DepTST =
2912                dyn_cast<DependentTemplateSpecializationType>(this))
2913     Keyword = DepTST->getKeyword();
2914   else
2915     return false;
2916 
2917   return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
2918 }
2919 
getTypeClassName() const2920 const char *Type::getTypeClassName() const {
2921   switch (TypeBits.TC) {
2922 #define ABSTRACT_TYPE(Derived, Base)
2923 #define TYPE(Derived, Base) case Derived: return #Derived;
2924 #include "clang/AST/TypeNodes.inc"
2925   }
2926 
2927   llvm_unreachable("Invalid type class.");
2928 }
2929 
getName(const PrintingPolicy & Policy) const2930 StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
2931   switch (getKind()) {
2932   case Void:
2933     return "void";
2934   case Bool:
2935     return Policy.Bool ? "bool" : "_Bool";
2936   case Char_S:
2937     return "char";
2938   case Char_U:
2939     return "char";
2940   case SChar:
2941     return "signed char";
2942   case Short:
2943     return "short";
2944   case Int:
2945     return "int";
2946   case Long:
2947     return "long";
2948   case LongLong:
2949     return "long long";
2950   case Int128:
2951     return "__int128";
2952   case UChar:
2953     return "unsigned char";
2954   case UShort:
2955     return "unsigned short";
2956   case UInt:
2957     return "unsigned int";
2958   case ULong:
2959     return "unsigned long";
2960   case ULongLong:
2961     return "unsigned long long";
2962   case UInt128:
2963     return "unsigned __int128";
2964   case Half:
2965     return Policy.Half ? "half" : "__fp16";
2966   case BFloat16:
2967     return "__bf16";
2968   case Float:
2969     return "float";
2970   case Double:
2971     return "double";
2972   case LongDouble:
2973     return "long double";
2974   case ShortAccum:
2975     return "short _Accum";
2976   case Accum:
2977     return "_Accum";
2978   case LongAccum:
2979     return "long _Accum";
2980   case UShortAccum:
2981     return "unsigned short _Accum";
2982   case UAccum:
2983     return "unsigned _Accum";
2984   case ULongAccum:
2985     return "unsigned long _Accum";
2986   case BuiltinType::ShortFract:
2987     return "short _Fract";
2988   case BuiltinType::Fract:
2989     return "_Fract";
2990   case BuiltinType::LongFract:
2991     return "long _Fract";
2992   case BuiltinType::UShortFract:
2993     return "unsigned short _Fract";
2994   case BuiltinType::UFract:
2995     return "unsigned _Fract";
2996   case BuiltinType::ULongFract:
2997     return "unsigned long _Fract";
2998   case BuiltinType::SatShortAccum:
2999     return "_Sat short _Accum";
3000   case BuiltinType::SatAccum:
3001     return "_Sat _Accum";
3002   case BuiltinType::SatLongAccum:
3003     return "_Sat long _Accum";
3004   case BuiltinType::SatUShortAccum:
3005     return "_Sat unsigned short _Accum";
3006   case BuiltinType::SatUAccum:
3007     return "_Sat unsigned _Accum";
3008   case BuiltinType::SatULongAccum:
3009     return "_Sat unsigned long _Accum";
3010   case BuiltinType::SatShortFract:
3011     return "_Sat short _Fract";
3012   case BuiltinType::SatFract:
3013     return "_Sat _Fract";
3014   case BuiltinType::SatLongFract:
3015     return "_Sat long _Fract";
3016   case BuiltinType::SatUShortFract:
3017     return "_Sat unsigned short _Fract";
3018   case BuiltinType::SatUFract:
3019     return "_Sat unsigned _Fract";
3020   case BuiltinType::SatULongFract:
3021     return "_Sat unsigned long _Fract";
3022   case Float16:
3023     return "_Float16";
3024   case Float128:
3025     return "__float128";
3026   case WChar_S:
3027   case WChar_U:
3028     return Policy.MSWChar ? "__wchar_t" : "wchar_t";
3029   case Char8:
3030     return "char8_t";
3031   case Char16:
3032     return "char16_t";
3033   case Char32:
3034     return "char32_t";
3035   case NullPtr:
3036     return "nullptr_t";
3037   case Overload:
3038     return "<overloaded function type>";
3039   case BoundMember:
3040     return "<bound member function type>";
3041   case PseudoObject:
3042     return "<pseudo-object type>";
3043   case Dependent:
3044     return "<dependent type>";
3045   case UnknownAny:
3046     return "<unknown type>";
3047   case ARCUnbridgedCast:
3048     return "<ARC unbridged cast type>";
3049   case BuiltinFn:
3050     return "<builtin fn type>";
3051   case ObjCId:
3052     return "id";
3053   case ObjCClass:
3054     return "Class";
3055   case ObjCSel:
3056     return "SEL";
3057 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3058   case Id: \
3059     return "__" #Access " " #ImgType "_t";
3060 #include "clang/Basic/OpenCLImageTypes.def"
3061   case OCLSampler:
3062     return "sampler_t";
3063   case OCLEvent:
3064     return "event_t";
3065   case OCLClkEvent:
3066     return "clk_event_t";
3067   case OCLQueue:
3068     return "queue_t";
3069   case OCLReserveID:
3070     return "reserve_id_t";
3071   case IncompleteMatrixIdx:
3072     return "<incomplete matrix index type>";
3073   case OMPArraySection:
3074     return "<OpenMP array section type>";
3075   case OMPArrayShaping:
3076     return "<OpenMP array shaping type>";
3077   case OMPIterator:
3078     return "<OpenMP iterator type>";
3079 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3080   case Id: \
3081     return #ExtType;
3082 #include "clang/Basic/OpenCLExtensionTypes.def"
3083 #define SVE_TYPE(Name, Id, SingletonId) \
3084   case Id: \
3085     return Name;
3086 #include "clang/Basic/AArch64SVEACLETypes.def"
3087 #define PPC_MMA_VECTOR_TYPE(Name, Id, Size) \
3088   case Id: \
3089     return #Name;
3090 #include "clang/Basic/PPCTypes.def"
3091   }
3092 
3093   llvm_unreachable("Invalid builtin type.");
3094 }
3095 
getNonPackExpansionType() const3096 QualType QualType::getNonPackExpansionType() const {
3097   // We never wrap type sugar around a PackExpansionType.
3098   if (auto *PET = dyn_cast<PackExpansionType>(getTypePtr()))
3099     return PET->getPattern();
3100   return *this;
3101 }
3102 
getNonLValueExprType(const ASTContext & Context) const3103 QualType QualType::getNonLValueExprType(const ASTContext &Context) const {
3104   if (const auto *RefType = getTypePtr()->getAs<ReferenceType>())
3105     return RefType->getPointeeType();
3106 
3107   // C++0x [basic.lval]:
3108   //   Class prvalues can have cv-qualified types; non-class prvalues always
3109   //   have cv-unqualified types.
3110   //
3111   // See also C99 6.3.2.1p2.
3112   if (!Context.getLangOpts().CPlusPlus ||
3113       (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
3114     return getUnqualifiedType();
3115 
3116   return *this;
3117 }
3118 
getNameForCallConv(CallingConv CC)3119 StringRef FunctionType::getNameForCallConv(CallingConv CC) {
3120   switch (CC) {
3121   case CC_C: return "cdecl";
3122   case CC_X86StdCall: return "stdcall";
3123   case CC_X86FastCall: return "fastcall";
3124   case CC_X86ThisCall: return "thiscall";
3125   case CC_X86Pascal: return "pascal";
3126   case CC_X86VectorCall: return "vectorcall";
3127   case CC_Win64: return "ms_abi";
3128   case CC_X86_64SysV: return "sysv_abi";
3129   case CC_X86RegCall : return "regcall";
3130   case CC_AAPCS: return "aapcs";
3131   case CC_AAPCS_VFP: return "aapcs-vfp";
3132   case CC_AArch64VectorCall: return "aarch64_vector_pcs";
3133   case CC_IntelOclBicc: return "intel_ocl_bicc";
3134   case CC_SpirFunction: return "spir_function";
3135   case CC_OpenCLKernel: return "opencl_kernel";
3136   case CC_Swift: return "swiftcall";
3137   case CC_PreserveMost: return "preserve_most";
3138   case CC_PreserveAll: return "preserve_all";
3139   }
3140 
3141   llvm_unreachable("Invalid calling convention.");
3142 }
3143 
FunctionProtoType(QualType result,ArrayRef<QualType> params,QualType canonical,const ExtProtoInfo & epi)3144 FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params,
3145                                      QualType canonical,
3146                                      const ExtProtoInfo &epi)
3147     : FunctionType(FunctionProto, result, canonical, result->getDependence(),
3148                    epi.ExtInfo) {
3149   FunctionTypeBits.FastTypeQuals = epi.TypeQuals.getFastQualifiers();
3150   FunctionTypeBits.RefQualifier = epi.RefQualifier;
3151   FunctionTypeBits.NumParams = params.size();
3152   assert(getNumParams() == params.size() && "NumParams overflow!");
3153   FunctionTypeBits.ExceptionSpecType = epi.ExceptionSpec.Type;
3154   FunctionTypeBits.HasExtParameterInfos = !!epi.ExtParameterInfos;
3155   FunctionTypeBits.Variadic = epi.Variadic;
3156   FunctionTypeBits.HasTrailingReturn = epi.HasTrailingReturn;
3157 
3158   // Fill in the extra trailing bitfields if present.
3159   if (hasExtraBitfields(epi.ExceptionSpec.Type)) {
3160     auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>();
3161     ExtraBits.NumExceptionType = epi.ExceptionSpec.Exceptions.size();
3162   }
3163 
3164   // Fill in the trailing argument array.
3165   auto *argSlot = getTrailingObjects<QualType>();
3166   for (unsigned i = 0; i != getNumParams(); ++i) {
3167     addDependence(params[i]->getDependence() &
3168                   ~TypeDependence::VariablyModified);
3169     argSlot[i] = params[i];
3170   }
3171 
3172   // Fill in the exception type array if present.
3173   if (getExceptionSpecType() == EST_Dynamic) {
3174     assert(hasExtraBitfields() && "missing trailing extra bitfields!");
3175     auto *exnSlot =
3176         reinterpret_cast<QualType *>(getTrailingObjects<ExceptionType>());
3177     unsigned I = 0;
3178     for (QualType ExceptionType : epi.ExceptionSpec.Exceptions) {
3179       // Note that, before C++17, a dependent exception specification does
3180       // *not* make a type dependent; it's not even part of the C++ type
3181       // system.
3182       addDependence(
3183           ExceptionType->getDependence() &
3184           (TypeDependence::Instantiation | TypeDependence::UnexpandedPack));
3185 
3186       exnSlot[I++] = ExceptionType;
3187     }
3188   }
3189   // Fill in the Expr * in the exception specification if present.
3190   else if (isComputedNoexcept(getExceptionSpecType())) {
3191     assert(epi.ExceptionSpec.NoexceptExpr && "computed noexcept with no expr");
3192     assert((getExceptionSpecType() == EST_DependentNoexcept) ==
3193            epi.ExceptionSpec.NoexceptExpr->isValueDependent());
3194 
3195     // Store the noexcept expression and context.
3196     *getTrailingObjects<Expr *>() = epi.ExceptionSpec.NoexceptExpr;
3197 
3198     addDependence(
3199         toTypeDependence(epi.ExceptionSpec.NoexceptExpr->getDependence()) &
3200         (TypeDependence::Instantiation | TypeDependence::UnexpandedPack));
3201   }
3202   // Fill in the FunctionDecl * in the exception specification if present.
3203   else if (getExceptionSpecType() == EST_Uninstantiated) {
3204     // Store the function decl from which we will resolve our
3205     // exception specification.
3206     auto **slot = getTrailingObjects<FunctionDecl *>();
3207     slot[0] = epi.ExceptionSpec.SourceDecl;
3208     slot[1] = epi.ExceptionSpec.SourceTemplate;
3209     // This exception specification doesn't make the type dependent, because
3210     // it's not instantiated as part of instantiating the type.
3211   } else if (getExceptionSpecType() == EST_Unevaluated) {
3212     // Store the function decl from which we will resolve our
3213     // exception specification.
3214     auto **slot = getTrailingObjects<FunctionDecl *>();
3215     slot[0] = epi.ExceptionSpec.SourceDecl;
3216   }
3217 
3218   // If this is a canonical type, and its exception specification is dependent,
3219   // then it's a dependent type. This only happens in C++17 onwards.
3220   if (isCanonicalUnqualified()) {
3221     if (getExceptionSpecType() == EST_Dynamic ||
3222         getExceptionSpecType() == EST_DependentNoexcept) {
3223       assert(hasDependentExceptionSpec() && "type should not be canonical");
3224       addDependence(TypeDependence::DependentInstantiation);
3225     }
3226   } else if (getCanonicalTypeInternal()->isDependentType()) {
3227     // Ask our canonical type whether our exception specification was dependent.
3228     addDependence(TypeDependence::DependentInstantiation);
3229   }
3230 
3231   // Fill in the extra parameter info if present.
3232   if (epi.ExtParameterInfos) {
3233     auto *extParamInfos = getTrailingObjects<ExtParameterInfo>();
3234     for (unsigned i = 0; i != getNumParams(); ++i)
3235       extParamInfos[i] = epi.ExtParameterInfos[i];
3236   }
3237 
3238   if (epi.TypeQuals.hasNonFastQualifiers()) {
3239     FunctionTypeBits.HasExtQuals = 1;
3240     *getTrailingObjects<Qualifiers>() = epi.TypeQuals;
3241   } else {
3242     FunctionTypeBits.HasExtQuals = 0;
3243   }
3244 
3245   // Fill in the Ellipsis location info if present.
3246   if (epi.Variadic) {
3247     auto &EllipsisLoc = *getTrailingObjects<SourceLocation>();
3248     EllipsisLoc = epi.EllipsisLoc;
3249   }
3250 }
3251 
hasDependentExceptionSpec() const3252 bool FunctionProtoType::hasDependentExceptionSpec() const {
3253   if (Expr *NE = getNoexceptExpr())
3254     return NE->isValueDependent();
3255   for (QualType ET : exceptions())
3256     // A pack expansion with a non-dependent pattern is still dependent,
3257     // because we don't know whether the pattern is in the exception spec
3258     // or not (that depends on whether the pack has 0 expansions).
3259     if (ET->isDependentType() || ET->getAs<PackExpansionType>())
3260       return true;
3261   return false;
3262 }
3263 
hasInstantiationDependentExceptionSpec() const3264 bool FunctionProtoType::hasInstantiationDependentExceptionSpec() const {
3265   if (Expr *NE = getNoexceptExpr())
3266     return NE->isInstantiationDependent();
3267   for (QualType ET : exceptions())
3268     if (ET->isInstantiationDependentType())
3269       return true;
3270   return false;
3271 }
3272 
canThrow() const3273 CanThrowResult FunctionProtoType::canThrow() const {
3274   switch (getExceptionSpecType()) {
3275   case EST_Unparsed:
3276   case EST_Unevaluated:
3277   case EST_Uninstantiated:
3278     llvm_unreachable("should not call this with unresolved exception specs");
3279 
3280   case EST_DynamicNone:
3281   case EST_BasicNoexcept:
3282   case EST_NoexceptTrue:
3283   case EST_NoThrow:
3284     return CT_Cannot;
3285 
3286   case EST_None:
3287   case EST_MSAny:
3288   case EST_NoexceptFalse:
3289     return CT_Can;
3290 
3291   case EST_Dynamic:
3292     // A dynamic exception specification is throwing unless every exception
3293     // type is an (unexpanded) pack expansion type.
3294     for (unsigned I = 0; I != getNumExceptions(); ++I)
3295       if (!getExceptionType(I)->getAs<PackExpansionType>())
3296         return CT_Can;
3297     return CT_Dependent;
3298 
3299   case EST_DependentNoexcept:
3300     return CT_Dependent;
3301   }
3302 
3303   llvm_unreachable("unexpected exception specification kind");
3304 }
3305 
isTemplateVariadic() const3306 bool FunctionProtoType::isTemplateVariadic() const {
3307   for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx)
3308     if (isa<PackExpansionType>(getParamType(ArgIdx - 1)))
3309       return true;
3310 
3311   return false;
3312 }
3313 
Profile(llvm::FoldingSetNodeID & ID,QualType Result,const QualType * ArgTys,unsigned NumParams,const ExtProtoInfo & epi,const ASTContext & Context,bool Canonical)3314 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3315                                 const QualType *ArgTys, unsigned NumParams,
3316                                 const ExtProtoInfo &epi,
3317                                 const ASTContext &Context, bool Canonical) {
3318   // We have to be careful not to get ambiguous profile encodings.
3319   // Note that valid type pointers are never ambiguous with anything else.
3320   //
3321   // The encoding grammar begins:
3322   //      type type* bool int bool
3323   // If that final bool is true, then there is a section for the EH spec:
3324   //      bool type*
3325   // This is followed by an optional "consumed argument" section of the
3326   // same length as the first type sequence:
3327   //      bool*
3328   // Finally, we have the ext info and trailing return type flag:
3329   //      int bool
3330   //
3331   // There is no ambiguity between the consumed arguments and an empty EH
3332   // spec because of the leading 'bool' which unambiguously indicates
3333   // whether the following bool is the EH spec or part of the arguments.
3334 
3335   ID.AddPointer(Result.getAsOpaquePtr());
3336   for (unsigned i = 0; i != NumParams; ++i)
3337     ID.AddPointer(ArgTys[i].getAsOpaquePtr());
3338   // This method is relatively performance sensitive, so as a performance
3339   // shortcut, use one AddInteger call instead of four for the next four
3340   // fields.
3341   assert(!(unsigned(epi.Variadic) & ~1) &&
3342          !(unsigned(epi.RefQualifier) & ~3) &&
3343          !(unsigned(epi.ExceptionSpec.Type) & ~15) &&
3344          "Values larger than expected.");
3345   ID.AddInteger(unsigned(epi.Variadic) +
3346                 (epi.RefQualifier << 1) +
3347                 (epi.ExceptionSpec.Type << 3));
3348   ID.Add(epi.TypeQuals);
3349   if (epi.ExceptionSpec.Type == EST_Dynamic) {
3350     for (QualType Ex : epi.ExceptionSpec.Exceptions)
3351       ID.AddPointer(Ex.getAsOpaquePtr());
3352   } else if (isComputedNoexcept(epi.ExceptionSpec.Type)) {
3353     epi.ExceptionSpec.NoexceptExpr->Profile(ID, Context, Canonical);
3354   } else if (epi.ExceptionSpec.Type == EST_Uninstantiated ||
3355              epi.ExceptionSpec.Type == EST_Unevaluated) {
3356     ID.AddPointer(epi.ExceptionSpec.SourceDecl->getCanonicalDecl());
3357   }
3358   if (epi.ExtParameterInfos) {
3359     for (unsigned i = 0; i != NumParams; ++i)
3360       ID.AddInteger(epi.ExtParameterInfos[i].getOpaqueValue());
3361   }
3362   epi.ExtInfo.Profile(ID);
3363   ID.AddBoolean(epi.HasTrailingReturn);
3364 }
3365 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Ctx)3366 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
3367                                 const ASTContext &Ctx) {
3368   Profile(ID, getReturnType(), param_type_begin(), getNumParams(),
3369           getExtProtoInfo(), Ctx, isCanonicalUnqualified());
3370 }
3371 
TypedefType(TypeClass tc,const TypedefNameDecl * D,QualType can)3372 TypedefType::TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
3373     : Type(tc, can, D->getUnderlyingType()->getDependence()),
3374       Decl(const_cast<TypedefNameDecl *>(D)) {
3375   assert(!isa<TypedefType>(can) && "Invalid canonical type");
3376 }
3377 
desugar() const3378 QualType TypedefType::desugar() const {
3379   return getDecl()->getUnderlyingType();
3380 }
3381 
desugar() const3382 QualType MacroQualifiedType::desugar() const { return getUnderlyingType(); }
3383 
getModifiedType() const3384 QualType MacroQualifiedType::getModifiedType() const {
3385   // Step over MacroQualifiedTypes from the same macro to find the type
3386   // ultimately qualified by the macro qualifier.
3387   QualType Inner = cast<AttributedType>(getUnderlyingType())->getModifiedType();
3388   while (auto *InnerMQT = dyn_cast<MacroQualifiedType>(Inner)) {
3389     if (InnerMQT->getMacroIdentifier() != getMacroIdentifier())
3390       break;
3391     Inner = InnerMQT->getModifiedType();
3392   }
3393   return Inner;
3394 }
3395 
TypeOfExprType(Expr * E,QualType can)3396 TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
3397     : Type(TypeOfExpr, can,
3398            toTypeDependence(E->getDependence()) |
3399                (E->getType()->getDependence() &
3400                 TypeDependence::VariablyModified)),
3401       TOExpr(E) {}
3402 
isSugared() const3403 bool TypeOfExprType::isSugared() const {
3404   return !TOExpr->isTypeDependent();
3405 }
3406 
desugar() const3407 QualType TypeOfExprType::desugar() const {
3408   if (isSugared())
3409     return getUnderlyingExpr()->getType();
3410 
3411   return QualType(this, 0);
3412 }
3413 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,Expr * E)3414 void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
3415                                       const ASTContext &Context, Expr *E) {
3416   E->Profile(ID, Context, true);
3417 }
3418 
DecltypeType(Expr * E,QualType underlyingType,QualType can)3419 DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
3420     // C++11 [temp.type]p2: "If an expression e involves a template parameter,
3421     // decltype(e) denotes a unique dependent type." Hence a decltype type is
3422     // type-dependent even if its expression is only instantiation-dependent.
3423     : Type(Decltype, can,
3424            toTypeDependence(E->getDependence()) |
3425                (E->isInstantiationDependent() ? TypeDependence::Dependent
3426                                               : TypeDependence::None) |
3427                (E->getType()->getDependence() &
3428                 TypeDependence::VariablyModified)),
3429       E(E), UnderlyingType(underlyingType) {}
3430 
isSugared() const3431 bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
3432 
desugar() const3433 QualType DecltypeType::desugar() const {
3434   if (isSugared())
3435     return getUnderlyingType();
3436 
3437   return QualType(this, 0);
3438 }
3439 
DependentDecltypeType(const ASTContext & Context,Expr * E)3440 DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
3441     : DecltypeType(E, Context.DependentTy), Context(Context) {}
3442 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,Expr * E)3443 void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
3444                                     const ASTContext &Context, Expr *E) {
3445   E->Profile(ID, Context, true);
3446 }
3447 
UnaryTransformType(QualType BaseType,QualType UnderlyingType,UTTKind UKind,QualType CanonicalType)3448 UnaryTransformType::UnaryTransformType(QualType BaseType,
3449                                        QualType UnderlyingType, UTTKind UKind,
3450                                        QualType CanonicalType)
3451     : Type(UnaryTransform, CanonicalType, BaseType->getDependence()),
3452       BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind) {}
3453 
DependentUnaryTransformType(const ASTContext & C,QualType BaseType,UTTKind UKind)3454 DependentUnaryTransformType::DependentUnaryTransformType(const ASTContext &C,
3455                                                          QualType BaseType,
3456                                                          UTTKind UKind)
3457      : UnaryTransformType(BaseType, C.DependentTy, UKind, QualType()) {}
3458 
TagType(TypeClass TC,const TagDecl * D,QualType can)3459 TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
3460     : Type(TC, can,
3461            D->isDependentType() ? TypeDependence::DependentInstantiation
3462                                 : TypeDependence::None),
3463       decl(const_cast<TagDecl *>(D)) {}
3464 
getInterestingTagDecl(TagDecl * decl)3465 static TagDecl *getInterestingTagDecl(TagDecl *decl) {
3466   for (auto I : decl->redecls()) {
3467     if (I->isCompleteDefinition() || I->isBeingDefined())
3468       return I;
3469   }
3470   // If there's no definition (not even in progress), return what we have.
3471   return decl;
3472 }
3473 
getDecl() const3474 TagDecl *TagType::getDecl() const {
3475   return getInterestingTagDecl(decl);
3476 }
3477 
isBeingDefined() const3478 bool TagType::isBeingDefined() const {
3479   return getDecl()->isBeingDefined();
3480 }
3481 
hasConstFields() const3482 bool RecordType::hasConstFields() const {
3483   std::vector<const RecordType*> RecordTypeList;
3484   RecordTypeList.push_back(this);
3485   unsigned NextToCheckIndex = 0;
3486 
3487   while (RecordTypeList.size() > NextToCheckIndex) {
3488     for (FieldDecl *FD :
3489          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
3490       QualType FieldTy = FD->getType();
3491       if (FieldTy.isConstQualified())
3492         return true;
3493       FieldTy = FieldTy.getCanonicalType();
3494       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
3495         if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
3496           RecordTypeList.push_back(FieldRecTy);
3497       }
3498     }
3499     ++NextToCheckIndex;
3500   }
3501   return false;
3502 }
3503 
isQualifier() const3504 bool AttributedType::isQualifier() const {
3505   // FIXME: Generate this with TableGen.
3506   switch (getAttrKind()) {
3507   // These are type qualifiers in the traditional C sense: they annotate
3508   // something about a specific value/variable of a type.  (They aren't
3509   // always part of the canonical type, though.)
3510   case attr::ObjCGC:
3511   case attr::ObjCOwnership:
3512   case attr::ObjCInertUnsafeUnretained:
3513   case attr::TypeNonNull:
3514   case attr::TypeNullable:
3515   case attr::TypeNullableResult:
3516   case attr::TypeNullUnspecified:
3517   case attr::LifetimeBound:
3518   case attr::AddressSpace:
3519     return true;
3520 
3521   // All other type attributes aren't qualifiers; they rewrite the modified
3522   // type to be a semantically different type.
3523   default:
3524     return false;
3525   }
3526 }
3527 
isMSTypeSpec() const3528 bool AttributedType::isMSTypeSpec() const {
3529   // FIXME: Generate this with TableGen?
3530   switch (getAttrKind()) {
3531   default: return false;
3532   case attr::Ptr32:
3533   case attr::Ptr64:
3534   case attr::SPtr:
3535   case attr::UPtr:
3536     return true;
3537   }
3538   llvm_unreachable("invalid attr kind");
3539 }
3540 
isCallingConv() const3541 bool AttributedType::isCallingConv() const {
3542   // FIXME: Generate this with TableGen.
3543   switch (getAttrKind()) {
3544   default: return false;
3545   case attr::Pcs:
3546   case attr::CDecl:
3547   case attr::FastCall:
3548   case attr::StdCall:
3549   case attr::ThisCall:
3550   case attr::RegCall:
3551   case attr::SwiftCall:
3552   case attr::VectorCall:
3553   case attr::AArch64VectorPcs:
3554   case attr::Pascal:
3555   case attr::MSABI:
3556   case attr::SysVABI:
3557   case attr::IntelOclBicc:
3558   case attr::PreserveMost:
3559   case attr::PreserveAll:
3560     return true;
3561   }
3562   llvm_unreachable("invalid attr kind");
3563 }
3564 
getDecl() const3565 CXXRecordDecl *InjectedClassNameType::getDecl() const {
3566   return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
3567 }
3568 
getIdentifier() const3569 IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
3570   return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier();
3571 }
3572 
SubstTemplateTypeParmPackType(const TemplateTypeParmType * Param,QualType Canon,const TemplateArgument & ArgPack)3573 SubstTemplateTypeParmPackType::SubstTemplateTypeParmPackType(
3574     const TemplateTypeParmType *Param, QualType Canon,
3575     const TemplateArgument &ArgPack)
3576     : Type(SubstTemplateTypeParmPack, Canon,
3577            TypeDependence::DependentInstantiation |
3578                TypeDependence::UnexpandedPack),
3579       Replaced(Param), Arguments(ArgPack.pack_begin()) {
3580   SubstTemplateTypeParmPackTypeBits.NumArgs = ArgPack.pack_size();
3581 }
3582 
getArgumentPack() const3583 TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
3584   return TemplateArgument(llvm::makeArrayRef(Arguments, getNumArgs()));
3585 }
3586 
Profile(llvm::FoldingSetNodeID & ID)3587 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
3588   Profile(ID, getReplacedParameter(), getArgumentPack());
3589 }
3590 
Profile(llvm::FoldingSetNodeID & ID,const TemplateTypeParmType * Replaced,const TemplateArgument & ArgPack)3591 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
3592                                            const TemplateTypeParmType *Replaced,
3593                                             const TemplateArgument &ArgPack) {
3594   ID.AddPointer(Replaced);
3595   ID.AddInteger(ArgPack.pack_size());
3596   for (const auto &P : ArgPack.pack_elements())
3597     ID.AddPointer(P.getAsType().getAsOpaquePtr());
3598 }
3599 
3600 bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgumentListInfo & Args,bool & InstantiationDependent)3601 anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
3602                               bool &InstantiationDependent) {
3603   return anyDependentTemplateArguments(Args.arguments(),
3604                                        InstantiationDependent);
3605 }
3606 
3607 bool TemplateSpecializationType::
anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,bool & InstantiationDependent)3608 anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
3609                               bool &InstantiationDependent) {
3610   for (const TemplateArgumentLoc &ArgLoc : Args) {
3611     if (ArgLoc.getArgument().isDependent()) {
3612       InstantiationDependent = true;
3613       return true;
3614     }
3615 
3616     if (ArgLoc.getArgument().isInstantiationDependent())
3617       InstantiationDependent = true;
3618   }
3619   return false;
3620 }
3621 
TemplateSpecializationType(TemplateName T,ArrayRef<TemplateArgument> Args,QualType Canon,QualType AliasedType)3622 TemplateSpecializationType::TemplateSpecializationType(
3623     TemplateName T, ArrayRef<TemplateArgument> Args, QualType Canon,
3624     QualType AliasedType)
3625     : Type(TemplateSpecialization, Canon.isNull() ? QualType(this, 0) : Canon,
3626            (Canon.isNull()
3627                 ? TypeDependence::DependentInstantiation
3628                 : Canon->getDependence() & ~(TypeDependence::VariablyModified |
3629                                              TypeDependence::UnexpandedPack)) |
3630                (toTypeDependence(T.getDependence()) &
3631                 TypeDependence::UnexpandedPack)),
3632       Template(T) {
3633   TemplateSpecializationTypeBits.NumArgs = Args.size();
3634   TemplateSpecializationTypeBits.TypeAlias = !AliasedType.isNull();
3635 
3636   assert(!T.getAsDependentTemplateName() &&
3637          "Use DependentTemplateSpecializationType for dependent template-name");
3638   assert((T.getKind() == TemplateName::Template ||
3639           T.getKind() == TemplateName::SubstTemplateTemplateParm ||
3640           T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
3641          "Unexpected template name for TemplateSpecializationType");
3642 
3643   auto *TemplateArgs = reinterpret_cast<TemplateArgument *>(this + 1);
3644   for (const TemplateArgument &Arg : Args) {
3645     // Update instantiation-dependent, variably-modified, and error bits.
3646     // If the canonical type exists and is non-dependent, the template
3647     // specialization type can be non-dependent even if one of the type
3648     // arguments is. Given:
3649     //   template<typename T> using U = int;
3650     // U<T> is always non-dependent, irrespective of the type T.
3651     // However, U<Ts> contains an unexpanded parameter pack, even though
3652     // its expansion (and thus its desugared type) doesn't.
3653     addDependence(toTypeDependence(Arg.getDependence()) &
3654                   ~TypeDependence::Dependent);
3655     if (Arg.getKind() == TemplateArgument::Type)
3656       addDependence(Arg.getAsType()->getDependence() &
3657                     TypeDependence::VariablyModified);
3658     new (TemplateArgs++) TemplateArgument(Arg);
3659   }
3660 
3661   // Store the aliased type if this is a type alias template specialization.
3662   if (isTypeAlias()) {
3663     auto *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
3664     *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
3665   }
3666 }
3667 
3668 void
Profile(llvm::FoldingSetNodeID & ID,TemplateName T,ArrayRef<TemplateArgument> Args,const ASTContext & Context)3669 TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
3670                                     TemplateName T,
3671                                     ArrayRef<TemplateArgument> Args,
3672                                     const ASTContext &Context) {
3673   T.Profile(ID);
3674   for (const TemplateArgument &Arg : Args)
3675     Arg.Profile(ID, Context);
3676 }
3677 
3678 QualType
apply(const ASTContext & Context,QualType QT) const3679 QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
3680   if (!hasNonFastQualifiers())
3681     return QT.withFastQualifiers(getFastQualifiers());
3682 
3683   return Context.getQualifiedType(QT, *this);
3684 }
3685 
3686 QualType
apply(const ASTContext & Context,const Type * T) const3687 QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
3688   if (!hasNonFastQualifiers())
3689     return QualType(T, getFastQualifiers());
3690 
3691   return Context.getQualifiedType(T, *this);
3692 }
3693 
Profile(llvm::FoldingSetNodeID & ID,QualType BaseType,ArrayRef<QualType> typeArgs,ArrayRef<ObjCProtocolDecl * > protocols,bool isKindOf)3694 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
3695                                  QualType BaseType,
3696                                  ArrayRef<QualType> typeArgs,
3697                                  ArrayRef<ObjCProtocolDecl *> protocols,
3698                                  bool isKindOf) {
3699   ID.AddPointer(BaseType.getAsOpaquePtr());
3700   ID.AddInteger(typeArgs.size());
3701   for (auto typeArg : typeArgs)
3702     ID.AddPointer(typeArg.getAsOpaquePtr());
3703   ID.AddInteger(protocols.size());
3704   for (auto proto : protocols)
3705     ID.AddPointer(proto);
3706   ID.AddBoolean(isKindOf);
3707 }
3708 
Profile(llvm::FoldingSetNodeID & ID)3709 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
3710   Profile(ID, getBaseType(), getTypeArgsAsWritten(),
3711           llvm::makeArrayRef(qual_begin(), getNumProtocols()),
3712           isKindOfTypeAsWritten());
3713 }
3714 
Profile(llvm::FoldingSetNodeID & ID,const ObjCTypeParamDecl * OTPDecl,QualType CanonicalType,ArrayRef<ObjCProtocolDecl * > protocols)3715 void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID,
3716                                 const ObjCTypeParamDecl *OTPDecl,
3717                                 QualType CanonicalType,
3718                                 ArrayRef<ObjCProtocolDecl *> protocols) {
3719   ID.AddPointer(OTPDecl);
3720   ID.AddPointer(CanonicalType.getAsOpaquePtr());
3721   ID.AddInteger(protocols.size());
3722   for (auto proto : protocols)
3723     ID.AddPointer(proto);
3724 }
3725 
Profile(llvm::FoldingSetNodeID & ID)3726 void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID) {
3727   Profile(ID, getDecl(), getCanonicalTypeInternal(),
3728           llvm::makeArrayRef(qual_begin(), getNumProtocols()));
3729 }
3730 
3731 namespace {
3732 
3733 /// The cached properties of a type.
3734 class CachedProperties {
3735   Linkage L;
3736   bool local;
3737 
3738 public:
CachedProperties(Linkage L,bool local)3739   CachedProperties(Linkage L, bool local) : L(L), local(local) {}
3740 
getLinkage() const3741   Linkage getLinkage() const { return L; }
hasLocalOrUnnamedType() const3742   bool hasLocalOrUnnamedType() const { return local; }
3743 
merge(CachedProperties L,CachedProperties R)3744   friend CachedProperties merge(CachedProperties L, CachedProperties R) {
3745     Linkage MergedLinkage = minLinkage(L.L, R.L);
3746     return CachedProperties(MergedLinkage,
3747                          L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
3748   }
3749 };
3750 
3751 } // namespace
3752 
3753 static CachedProperties computeCachedProperties(const Type *T);
3754 
3755 namespace clang {
3756 
3757 /// The type-property cache.  This is templated so as to be
3758 /// instantiated at an internal type to prevent unnecessary symbol
3759 /// leakage.
3760 template <class Private> class TypePropertyCache {
3761 public:
get(QualType T)3762   static CachedProperties get(QualType T) {
3763     return get(T.getTypePtr());
3764   }
3765 
get(const Type * T)3766   static CachedProperties get(const Type *T) {
3767     ensure(T);
3768     return CachedProperties(T->TypeBits.getLinkage(),
3769                             T->TypeBits.hasLocalOrUnnamedType());
3770   }
3771 
ensure(const Type * T)3772   static void ensure(const Type *T) {
3773     // If the cache is valid, we're okay.
3774     if (T->TypeBits.isCacheValid()) return;
3775 
3776     // If this type is non-canonical, ask its canonical type for the
3777     // relevant information.
3778     if (!T->isCanonicalUnqualified()) {
3779       const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
3780       ensure(CT);
3781       T->TypeBits.CacheValid = true;
3782       T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
3783       T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
3784       return;
3785     }
3786 
3787     // Compute the cached properties and then set the cache.
3788     CachedProperties Result = computeCachedProperties(T);
3789     T->TypeBits.CacheValid = true;
3790     T->TypeBits.CachedLinkage = Result.getLinkage();
3791     T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
3792   }
3793 };
3794 
3795 } // namespace clang
3796 
3797 // Instantiate the friend template at a private class.  In a
3798 // reasonable implementation, these symbols will be internal.
3799 // It is terrible that this is the best way to accomplish this.
3800 namespace {
3801 
3802 class Private {};
3803 
3804 } // namespace
3805 
3806 using Cache = TypePropertyCache<Private>;
3807 
computeCachedProperties(const Type * T)3808 static CachedProperties computeCachedProperties(const Type *T) {
3809   switch (T->getTypeClass()) {
3810 #define TYPE(Class,Base)
3811 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
3812 #include "clang/AST/TypeNodes.inc"
3813     llvm_unreachable("didn't expect a non-canonical type here");
3814 
3815 #define TYPE(Class,Base)
3816 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
3817 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
3818 #include "clang/AST/TypeNodes.inc"
3819     // Treat instantiation-dependent types as external.
3820     if (!T->isInstantiationDependentType()) T->dump();
3821     assert(T->isInstantiationDependentType());
3822     return CachedProperties(ExternalLinkage, false);
3823 
3824   case Type::Auto:
3825   case Type::DeducedTemplateSpecialization:
3826     // Give non-deduced 'auto' types external linkage. We should only see them
3827     // here in error recovery.
3828     return CachedProperties(ExternalLinkage, false);
3829 
3830   case Type::ExtInt:
3831   case Type::Builtin:
3832     // C++ [basic.link]p8:
3833     //   A type is said to have linkage if and only if:
3834     //     - it is a fundamental type (3.9.1); or
3835     return CachedProperties(ExternalLinkage, false);
3836 
3837   case Type::Record:
3838   case Type::Enum: {
3839     const TagDecl *Tag = cast<TagType>(T)->getDecl();
3840 
3841     // C++ [basic.link]p8:
3842     //     - it is a class or enumeration type that is named (or has a name
3843     //       for linkage purposes (7.1.3)) and the name has linkage; or
3844     //     -  it is a specialization of a class template (14); or
3845     Linkage L = Tag->getLinkageInternal();
3846     bool IsLocalOrUnnamed =
3847       Tag->getDeclContext()->isFunctionOrMethod() ||
3848       !Tag->hasNameForLinkage();
3849     return CachedProperties(L, IsLocalOrUnnamed);
3850   }
3851 
3852     // C++ [basic.link]p8:
3853     //   - it is a compound type (3.9.2) other than a class or enumeration,
3854     //     compounded exclusively from types that have linkage; or
3855   case Type::Complex:
3856     return Cache::get(cast<ComplexType>(T)->getElementType());
3857   case Type::Pointer:
3858     return Cache::get(cast<PointerType>(T)->getPointeeType());
3859   case Type::BlockPointer:
3860     return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
3861   case Type::LValueReference:
3862   case Type::RValueReference:
3863     return Cache::get(cast<ReferenceType>(T)->getPointeeType());
3864   case Type::MemberPointer: {
3865     const auto *MPT = cast<MemberPointerType>(T);
3866     return merge(Cache::get(MPT->getClass()),
3867                  Cache::get(MPT->getPointeeType()));
3868   }
3869   case Type::ConstantArray:
3870   case Type::IncompleteArray:
3871   case Type::VariableArray:
3872     return Cache::get(cast<ArrayType>(T)->getElementType());
3873   case Type::Vector:
3874   case Type::ExtVector:
3875     return Cache::get(cast<VectorType>(T)->getElementType());
3876   case Type::ConstantMatrix:
3877     return Cache::get(cast<ConstantMatrixType>(T)->getElementType());
3878   case Type::FunctionNoProto:
3879     return Cache::get(cast<FunctionType>(T)->getReturnType());
3880   case Type::FunctionProto: {
3881     const auto *FPT = cast<FunctionProtoType>(T);
3882     CachedProperties result = Cache::get(FPT->getReturnType());
3883     for (const auto &ai : FPT->param_types())
3884       result = merge(result, Cache::get(ai));
3885     return result;
3886   }
3887   case Type::ObjCInterface: {
3888     Linkage L = cast<ObjCInterfaceType>(T)->getDecl()->getLinkageInternal();
3889     return CachedProperties(L, false);
3890   }
3891   case Type::ObjCObject:
3892     return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
3893   case Type::ObjCObjectPointer:
3894     return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
3895   case Type::Atomic:
3896     return Cache::get(cast<AtomicType>(T)->getValueType());
3897   case Type::Pipe:
3898     return Cache::get(cast<PipeType>(T)->getElementType());
3899   }
3900 
3901   llvm_unreachable("unhandled type class");
3902 }
3903 
3904 /// Determine the linkage of this type.
getLinkage() const3905 Linkage Type::getLinkage() const {
3906   Cache::ensure(this);
3907   return TypeBits.getLinkage();
3908 }
3909 
hasUnnamedOrLocalType() const3910 bool Type::hasUnnamedOrLocalType() const {
3911   Cache::ensure(this);
3912   return TypeBits.hasLocalOrUnnamedType();
3913 }
3914 
computeTypeLinkageInfo(const Type * T)3915 LinkageInfo LinkageComputer::computeTypeLinkageInfo(const Type *T) {
3916   switch (T->getTypeClass()) {
3917 #define TYPE(Class,Base)
3918 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
3919 #include "clang/AST/TypeNodes.inc"
3920     llvm_unreachable("didn't expect a non-canonical type here");
3921 
3922 #define TYPE(Class,Base)
3923 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
3924 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
3925 #include "clang/AST/TypeNodes.inc"
3926     // Treat instantiation-dependent types as external.
3927     assert(T->isInstantiationDependentType());
3928     return LinkageInfo::external();
3929 
3930   case Type::ExtInt:
3931   case Type::Builtin:
3932     return LinkageInfo::external();
3933 
3934   case Type::Auto:
3935   case Type::DeducedTemplateSpecialization:
3936     return LinkageInfo::external();
3937 
3938   case Type::Record:
3939   case Type::Enum:
3940     return getDeclLinkageAndVisibility(cast<TagType>(T)->getDecl());
3941 
3942   case Type::Complex:
3943     return computeTypeLinkageInfo(cast<ComplexType>(T)->getElementType());
3944   case Type::Pointer:
3945     return computeTypeLinkageInfo(cast<PointerType>(T)->getPointeeType());
3946   case Type::BlockPointer:
3947     return computeTypeLinkageInfo(cast<BlockPointerType>(T)->getPointeeType());
3948   case Type::LValueReference:
3949   case Type::RValueReference:
3950     return computeTypeLinkageInfo(cast<ReferenceType>(T)->getPointeeType());
3951   case Type::MemberPointer: {
3952     const auto *MPT = cast<MemberPointerType>(T);
3953     LinkageInfo LV = computeTypeLinkageInfo(MPT->getClass());
3954     LV.merge(computeTypeLinkageInfo(MPT->getPointeeType()));
3955     return LV;
3956   }
3957   case Type::ConstantArray:
3958   case Type::IncompleteArray:
3959   case Type::VariableArray:
3960     return computeTypeLinkageInfo(cast<ArrayType>(T)->getElementType());
3961   case Type::Vector:
3962   case Type::ExtVector:
3963     return computeTypeLinkageInfo(cast<VectorType>(T)->getElementType());
3964   case Type::ConstantMatrix:
3965     return computeTypeLinkageInfo(
3966         cast<ConstantMatrixType>(T)->getElementType());
3967   case Type::FunctionNoProto:
3968     return computeTypeLinkageInfo(cast<FunctionType>(T)->getReturnType());
3969   case Type::FunctionProto: {
3970     const auto *FPT = cast<FunctionProtoType>(T);
3971     LinkageInfo LV = computeTypeLinkageInfo(FPT->getReturnType());
3972     for (const auto &ai : FPT->param_types())
3973       LV.merge(computeTypeLinkageInfo(ai));
3974     return LV;
3975   }
3976   case Type::ObjCInterface:
3977     return getDeclLinkageAndVisibility(cast<ObjCInterfaceType>(T)->getDecl());
3978   case Type::ObjCObject:
3979     return computeTypeLinkageInfo(cast<ObjCObjectType>(T)->getBaseType());
3980   case Type::ObjCObjectPointer:
3981     return computeTypeLinkageInfo(
3982         cast<ObjCObjectPointerType>(T)->getPointeeType());
3983   case Type::Atomic:
3984     return computeTypeLinkageInfo(cast<AtomicType>(T)->getValueType());
3985   case Type::Pipe:
3986     return computeTypeLinkageInfo(cast<PipeType>(T)->getElementType());
3987   }
3988 
3989   llvm_unreachable("unhandled type class");
3990 }
3991 
isLinkageValid() const3992 bool Type::isLinkageValid() const {
3993   if (!TypeBits.isCacheValid())
3994     return true;
3995 
3996   Linkage L = LinkageComputer{}
3997                   .computeTypeLinkageInfo(getCanonicalTypeInternal())
3998                   .getLinkage();
3999   return L == TypeBits.getLinkage();
4000 }
4001 
getTypeLinkageAndVisibility(const Type * T)4002 LinkageInfo LinkageComputer::getTypeLinkageAndVisibility(const Type *T) {
4003   if (!T->isCanonicalUnqualified())
4004     return computeTypeLinkageInfo(T->getCanonicalTypeInternal());
4005 
4006   LinkageInfo LV = computeTypeLinkageInfo(T);
4007   assert(LV.getLinkage() == T->getLinkage());
4008   return LV;
4009 }
4010 
getLinkageAndVisibility() const4011 LinkageInfo Type::getLinkageAndVisibility() const {
4012   return LinkageComputer{}.getTypeLinkageAndVisibility(this);
4013 }
4014 
4015 Optional<NullabilityKind>
getNullability(const ASTContext & Context) const4016 Type::getNullability(const ASTContext &Context) const {
4017   QualType Type(this, 0);
4018   while (const auto *AT = Type->getAs<AttributedType>()) {
4019     // Check whether this is an attributed type with nullability
4020     // information.
4021     if (auto Nullability = AT->getImmediateNullability())
4022       return Nullability;
4023 
4024     Type = AT->getEquivalentType();
4025   }
4026   return None;
4027 }
4028 
canHaveNullability(bool ResultIfUnknown) const4029 bool Type::canHaveNullability(bool ResultIfUnknown) const {
4030   QualType type = getCanonicalTypeInternal();
4031 
4032   switch (type->getTypeClass()) {
4033   // We'll only see canonical types here.
4034 #define NON_CANONICAL_TYPE(Class, Parent)       \
4035   case Type::Class:                             \
4036     llvm_unreachable("non-canonical type");
4037 #define TYPE(Class, Parent)
4038 #include "clang/AST/TypeNodes.inc"
4039 
4040   // Pointer types.
4041   case Type::Pointer:
4042   case Type::BlockPointer:
4043   case Type::MemberPointer:
4044   case Type::ObjCObjectPointer:
4045     return true;
4046 
4047   // Dependent types that could instantiate to pointer types.
4048   case Type::UnresolvedUsing:
4049   case Type::TypeOfExpr:
4050   case Type::TypeOf:
4051   case Type::Decltype:
4052   case Type::UnaryTransform:
4053   case Type::TemplateTypeParm:
4054   case Type::SubstTemplateTypeParmPack:
4055   case Type::DependentName:
4056   case Type::DependentTemplateSpecialization:
4057   case Type::Auto:
4058     return ResultIfUnknown;
4059 
4060   // Dependent template specializations can instantiate to pointer
4061   // types unless they're known to be specializations of a class
4062   // template.
4063   case Type::TemplateSpecialization:
4064     if (TemplateDecl *templateDecl
4065           = cast<TemplateSpecializationType>(type.getTypePtr())
4066               ->getTemplateName().getAsTemplateDecl()) {
4067       if (isa<ClassTemplateDecl>(templateDecl))
4068         return false;
4069     }
4070     return ResultIfUnknown;
4071 
4072   case Type::Builtin:
4073     switch (cast<BuiltinType>(type.getTypePtr())->getKind()) {
4074       // Signed, unsigned, and floating-point types cannot have nullability.
4075 #define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
4076 #define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
4077 #define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id:
4078 #define BUILTIN_TYPE(Id, SingletonId)
4079 #include "clang/AST/BuiltinTypes.def"
4080       return false;
4081 
4082     // Dependent types that could instantiate to a pointer type.
4083     case BuiltinType::Dependent:
4084     case BuiltinType::Overload:
4085     case BuiltinType::BoundMember:
4086     case BuiltinType::PseudoObject:
4087     case BuiltinType::UnknownAny:
4088     case BuiltinType::ARCUnbridgedCast:
4089       return ResultIfUnknown;
4090 
4091     case BuiltinType::Void:
4092     case BuiltinType::ObjCId:
4093     case BuiltinType::ObjCClass:
4094     case BuiltinType::ObjCSel:
4095 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
4096     case BuiltinType::Id:
4097 #include "clang/Basic/OpenCLImageTypes.def"
4098 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
4099     case BuiltinType::Id:
4100 #include "clang/Basic/OpenCLExtensionTypes.def"
4101     case BuiltinType::OCLSampler:
4102     case BuiltinType::OCLEvent:
4103     case BuiltinType::OCLClkEvent:
4104     case BuiltinType::OCLQueue:
4105     case BuiltinType::OCLReserveID:
4106 #define SVE_TYPE(Name, Id, SingletonId) \
4107     case BuiltinType::Id:
4108 #include "clang/Basic/AArch64SVEACLETypes.def"
4109 #define PPC_MMA_VECTOR_TYPE(Name, Id, Size) \
4110     case BuiltinType::Id:
4111 #include "clang/Basic/PPCTypes.def"
4112     case BuiltinType::BuiltinFn:
4113     case BuiltinType::NullPtr:
4114     case BuiltinType::IncompleteMatrixIdx:
4115     case BuiltinType::OMPArraySection:
4116     case BuiltinType::OMPArrayShaping:
4117     case BuiltinType::OMPIterator:
4118       return false;
4119     }
4120     llvm_unreachable("unknown builtin type");
4121 
4122   // Non-pointer types.
4123   case Type::Complex:
4124   case Type::LValueReference:
4125   case Type::RValueReference:
4126   case Type::ConstantArray:
4127   case Type::IncompleteArray:
4128   case Type::VariableArray:
4129   case Type::DependentSizedArray:
4130   case Type::DependentVector:
4131   case Type::DependentSizedExtVector:
4132   case Type::Vector:
4133   case Type::ExtVector:
4134   case Type::ConstantMatrix:
4135   case Type::DependentSizedMatrix:
4136   case Type::DependentAddressSpace:
4137   case Type::FunctionProto:
4138   case Type::FunctionNoProto:
4139   case Type::Record:
4140   case Type::DeducedTemplateSpecialization:
4141   case Type::Enum:
4142   case Type::InjectedClassName:
4143   case Type::PackExpansion:
4144   case Type::ObjCObject:
4145   case Type::ObjCInterface:
4146   case Type::Atomic:
4147   case Type::Pipe:
4148   case Type::ExtInt:
4149   case Type::DependentExtInt:
4150     return false;
4151   }
4152   llvm_unreachable("bad type kind!");
4153 }
4154 
4155 llvm::Optional<NullabilityKind>
getImmediateNullability() const4156 AttributedType::getImmediateNullability() const {
4157   if (getAttrKind() == attr::TypeNonNull)
4158     return NullabilityKind::NonNull;
4159   if (getAttrKind() == attr::TypeNullable)
4160     return NullabilityKind::Nullable;
4161   if (getAttrKind() == attr::TypeNullUnspecified)
4162     return NullabilityKind::Unspecified;
4163   if (getAttrKind() == attr::TypeNullableResult)
4164     return NullabilityKind::NullableResult;
4165   return None;
4166 }
4167 
stripOuterNullability(QualType & T)4168 Optional<NullabilityKind> AttributedType::stripOuterNullability(QualType &T) {
4169   QualType AttrTy = T;
4170   if (auto MacroTy = dyn_cast<MacroQualifiedType>(T))
4171     AttrTy = MacroTy->getUnderlyingType();
4172 
4173   if (auto attributed = dyn_cast<AttributedType>(AttrTy)) {
4174     if (auto nullability = attributed->getImmediateNullability()) {
4175       T = attributed->getModifiedType();
4176       return nullability;
4177     }
4178   }
4179 
4180   return None;
4181 }
4182 
isBlockCompatibleObjCPointerType(ASTContext & ctx) const4183 bool Type::isBlockCompatibleObjCPointerType(ASTContext &ctx) const {
4184   const auto *objcPtr = getAs<ObjCObjectPointerType>();
4185   if (!objcPtr)
4186     return false;
4187 
4188   if (objcPtr->isObjCIdType()) {
4189     // id is always okay.
4190     return true;
4191   }
4192 
4193   // Blocks are NSObjects.
4194   if (ObjCInterfaceDecl *iface = objcPtr->getInterfaceDecl()) {
4195     if (iface->getIdentifier() != ctx.getNSObjectName())
4196       return false;
4197 
4198     // Continue to check qualifiers, below.
4199   } else if (objcPtr->isObjCQualifiedIdType()) {
4200     // Continue to check qualifiers, below.
4201   } else {
4202     return false;
4203   }
4204 
4205   // Check protocol qualifiers.
4206   for (ObjCProtocolDecl *proto : objcPtr->quals()) {
4207     // Blocks conform to NSObject and NSCopying.
4208     if (proto->getIdentifier() != ctx.getNSObjectName() &&
4209         proto->getIdentifier() != ctx.getNSCopyingName())
4210       return false;
4211   }
4212 
4213   return true;
4214 }
4215 
getObjCARCImplicitLifetime() const4216 Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
4217   if (isObjCARCImplicitlyUnretainedType())
4218     return Qualifiers::OCL_ExplicitNone;
4219   return Qualifiers::OCL_Strong;
4220 }
4221 
isObjCARCImplicitlyUnretainedType() const4222 bool Type::isObjCARCImplicitlyUnretainedType() const {
4223   assert(isObjCLifetimeType() &&
4224          "cannot query implicit lifetime for non-inferrable type");
4225 
4226   const Type *canon = getCanonicalTypeInternal().getTypePtr();
4227 
4228   // Walk down to the base type.  We don't care about qualifiers for this.
4229   while (const auto *array = dyn_cast<ArrayType>(canon))
4230     canon = array->getElementType().getTypePtr();
4231 
4232   if (const auto *opt = dyn_cast<ObjCObjectPointerType>(canon)) {
4233     // Class and Class<Protocol> don't require retention.
4234     if (opt->getObjectType()->isObjCClass())
4235       return true;
4236   }
4237 
4238   return false;
4239 }
4240 
isObjCNSObjectType() const4241 bool Type::isObjCNSObjectType() const {
4242   const Type *cur = this;
4243   while (true) {
4244     if (const auto *typedefType = dyn_cast<TypedefType>(cur))
4245       return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
4246 
4247     // Single-step desugar until we run out of sugar.
4248     QualType next = cur->getLocallyUnqualifiedSingleStepDesugaredType();
4249     if (next.getTypePtr() == cur) return false;
4250     cur = next.getTypePtr();
4251   }
4252 }
4253 
isObjCIndependentClassType() const4254 bool Type::isObjCIndependentClassType() const {
4255   if (const auto *typedefType = dyn_cast<TypedefType>(this))
4256     return typedefType->getDecl()->hasAttr<ObjCIndependentClassAttr>();
4257   return false;
4258 }
4259 
isObjCRetainableType() const4260 bool Type::isObjCRetainableType() const {
4261   return isObjCObjectPointerType() ||
4262          isBlockPointerType() ||
4263          isObjCNSObjectType();
4264 }
4265 
isObjCIndirectLifetimeType() const4266 bool Type::isObjCIndirectLifetimeType() const {
4267   if (isObjCLifetimeType())
4268     return true;
4269   if (const auto *OPT = getAs<PointerType>())
4270     return OPT->getPointeeType()->isObjCIndirectLifetimeType();
4271   if (const auto *Ref = getAs<ReferenceType>())
4272     return Ref->getPointeeType()->isObjCIndirectLifetimeType();
4273   if (const auto *MemPtr = getAs<MemberPointerType>())
4274     return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
4275   return false;
4276 }
4277 
4278 /// Returns true if objects of this type have lifetime semantics under
4279 /// ARC.
isObjCLifetimeType() const4280 bool Type::isObjCLifetimeType() const {
4281   const Type *type = this;
4282   while (const ArrayType *array = type->getAsArrayTypeUnsafe())
4283     type = array->getElementType().getTypePtr();
4284   return type->isObjCRetainableType();
4285 }
4286 
4287 /// Determine whether the given type T is a "bridgable" Objective-C type,
4288 /// which is either an Objective-C object pointer type or an
isObjCARCBridgableType() const4289 bool Type::isObjCARCBridgableType() const {
4290   return isObjCObjectPointerType() || isBlockPointerType();
4291 }
4292 
4293 /// Determine whether the given type T is a "bridgeable" C type.
isCARCBridgableType() const4294 bool Type::isCARCBridgableType() const {
4295   const auto *Pointer = getAs<PointerType>();
4296   if (!Pointer)
4297     return false;
4298 
4299   QualType Pointee = Pointer->getPointeeType();
4300   return Pointee->isVoidType() || Pointee->isRecordType();
4301 }
4302 
4303 /// Check if the specified type is the CUDA device builtin surface type.
isCUDADeviceBuiltinSurfaceType() const4304 bool Type::isCUDADeviceBuiltinSurfaceType() const {
4305   if (const auto *RT = getAs<RecordType>())
4306     return RT->getDecl()->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>();
4307   return false;
4308 }
4309 
4310 /// Check if the specified type is the CUDA device builtin texture type.
isCUDADeviceBuiltinTextureType() const4311 bool Type::isCUDADeviceBuiltinTextureType() const {
4312   if (const auto *RT = getAs<RecordType>())
4313     return RT->getDecl()->hasAttr<CUDADeviceBuiltinTextureTypeAttr>();
4314   return false;
4315 }
4316 
hasSizedVLAType() const4317 bool Type::hasSizedVLAType() const {
4318   if (!isVariablyModifiedType()) return false;
4319 
4320   if (const auto *ptr = getAs<PointerType>())
4321     return ptr->getPointeeType()->hasSizedVLAType();
4322   if (const auto *ref = getAs<ReferenceType>())
4323     return ref->getPointeeType()->hasSizedVLAType();
4324   if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
4325     if (isa<VariableArrayType>(arr) &&
4326         cast<VariableArrayType>(arr)->getSizeExpr())
4327       return true;
4328 
4329     return arr->getElementType()->hasSizedVLAType();
4330   }
4331 
4332   return false;
4333 }
4334 
isDestructedTypeImpl(QualType type)4335 QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
4336   switch (type.getObjCLifetime()) {
4337   case Qualifiers::OCL_None:
4338   case Qualifiers::OCL_ExplicitNone:
4339   case Qualifiers::OCL_Autoreleasing:
4340     break;
4341 
4342   case Qualifiers::OCL_Strong:
4343     return DK_objc_strong_lifetime;
4344   case Qualifiers::OCL_Weak:
4345     return DK_objc_weak_lifetime;
4346   }
4347 
4348   if (const auto *RT =
4349           type->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
4350     const RecordDecl *RD = RT->getDecl();
4351     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4352       /// Check if this is a C++ object with a non-trivial destructor.
4353       if (CXXRD->hasDefinition() && !CXXRD->hasTrivialDestructor())
4354         return DK_cxx_destructor;
4355     } else {
4356       /// Check if this is a C struct that is non-trivial to destroy or an array
4357       /// that contains such a struct.
4358       if (RD->isNonTrivialToPrimitiveDestroy())
4359         return DK_nontrivial_c_struct;
4360     }
4361   }
4362 
4363   return DK_none;
4364 }
4365 
getMostRecentCXXRecordDecl() const4366 CXXRecordDecl *MemberPointerType::getMostRecentCXXRecordDecl() const {
4367   return getClass()->getAsCXXRecordDecl()->getMostRecentNonInjectedDecl();
4368 }
4369 
FixedPointValueToString(SmallVectorImpl<char> & Str,llvm::APSInt Val,unsigned Scale)4370 void clang::FixedPointValueToString(SmallVectorImpl<char> &Str,
4371                                     llvm::APSInt Val, unsigned Scale) {
4372   llvm::FixedPointSemantics FXSema(Val.getBitWidth(), Scale, Val.isSigned(),
4373                                    /*IsSaturated=*/false,
4374                                    /*HasUnsignedPadding=*/false);
4375   llvm::APFixedPoint(Val, FXSema).toString(Str);
4376 }
4377 
AutoType(QualType DeducedAsType,AutoTypeKeyword Keyword,TypeDependence ExtraDependence,ConceptDecl * TypeConstraintConcept,ArrayRef<TemplateArgument> TypeConstraintArgs)4378 AutoType::AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4379                    TypeDependence ExtraDependence,
4380                    ConceptDecl *TypeConstraintConcept,
4381                    ArrayRef<TemplateArgument> TypeConstraintArgs)
4382     : DeducedType(Auto, DeducedAsType, ExtraDependence) {
4383   AutoTypeBits.Keyword = (unsigned)Keyword;
4384   AutoTypeBits.NumArgs = TypeConstraintArgs.size();
4385   this->TypeConstraintConcept = TypeConstraintConcept;
4386   if (TypeConstraintConcept) {
4387     TemplateArgument *ArgBuffer = getArgBuffer();
4388     for (const TemplateArgument &Arg : TypeConstraintArgs) {
4389       addDependence(toTypeDependence(
4390           Arg.getDependence() & TemplateArgumentDependence::UnexpandedPack));
4391 
4392       new (ArgBuffer++) TemplateArgument(Arg);
4393     }
4394   }
4395 }
4396 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType Deduced,AutoTypeKeyword Keyword,bool IsDependent,ConceptDecl * CD,ArrayRef<TemplateArgument> Arguments)4397 void AutoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4398                       QualType Deduced, AutoTypeKeyword Keyword,
4399                       bool IsDependent, ConceptDecl *CD,
4400                       ArrayRef<TemplateArgument> Arguments) {
4401   ID.AddPointer(Deduced.getAsOpaquePtr());
4402   ID.AddInteger((unsigned)Keyword);
4403   ID.AddBoolean(IsDependent);
4404   ID.AddPointer(CD);
4405   for (const TemplateArgument &Arg : Arguments)
4406     Arg.Profile(ID, Context);
4407 }
4408