1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the code that handles AST -> LLVM type lowering.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CodeGenTypes.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Module.h"
28 using namespace clang;
29 using namespace CodeGen;
30
CodeGenTypes(CodeGenModule & cgm)31 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
32 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
33 Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
34 TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
35 SkippedLayout = false;
36 }
37
~CodeGenTypes()38 CodeGenTypes::~CodeGenTypes() {
39 for (llvm::FoldingSet<CGFunctionInfo>::iterator
40 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
41 delete &*I++;
42 }
43
getCodeGenOpts() const44 const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const {
45 return CGM.getCodeGenOpts();
46 }
47
addRecordTypeName(const RecordDecl * RD,llvm::StructType * Ty,StringRef suffix)48 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
49 llvm::StructType *Ty,
50 StringRef suffix) {
51 SmallString<256> TypeName;
52 llvm::raw_svector_ostream OS(TypeName);
53 OS << RD->getKindName() << '.';
54
55 // FIXME: We probably want to make more tweaks to the printing policy. For
56 // example, we should probably enable PrintCanonicalTypes and
57 // FullyQualifiedNames.
58 PrintingPolicy Policy = RD->getASTContext().getPrintingPolicy();
59 Policy.SuppressInlineNamespace = false;
60
61 // Name the codegen type after the typedef name
62 // if there is no tag type name available
63 if (RD->getIdentifier()) {
64 // FIXME: We should not have to check for a null decl context here.
65 // Right now we do it because the implicit Obj-C decls don't have one.
66 if (RD->getDeclContext())
67 RD->printQualifiedName(OS, Policy);
68 else
69 RD->printName(OS);
70 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
71 // FIXME: We should not have to check for a null decl context here.
72 // Right now we do it because the implicit Obj-C decls don't have one.
73 if (TDD->getDeclContext())
74 TDD->printQualifiedName(OS, Policy);
75 else
76 TDD->printName(OS);
77 } else
78 OS << "anon";
79
80 if (!suffix.empty())
81 OS << suffix;
82
83 Ty->setName(OS.str());
84 }
85
86 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
87 /// ConvertType in that it is used to convert to the memory representation for
88 /// a type. For example, the scalar representation for _Bool is i1, but the
89 /// memory representation is usually i8 or i32, depending on the target.
ConvertTypeForMem(QualType T,bool ForBitField)90 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T, bool ForBitField) {
91 if (T->isConstantMatrixType()) {
92 const Type *Ty = Context.getCanonicalType(T).getTypePtr();
93 const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
94 return llvm::ArrayType::get(ConvertType(MT->getElementType()),
95 MT->getNumRows() * MT->getNumColumns());
96 }
97
98 llvm::Type *R = ConvertType(T);
99
100 // If this is a bool type, or an ExtIntType in a bitfield representation,
101 // map this integer to the target-specified size.
102 if ((ForBitField && T->isExtIntType()) ||
103 (!T->isExtIntType() && R->isIntegerTy(1)))
104 return llvm::IntegerType::get(getLLVMContext(),
105 (unsigned)Context.getTypeSize(T));
106
107 // Else, don't map it.
108 return R;
109 }
110
111 /// isRecordLayoutComplete - Return true if the specified type is already
112 /// completely laid out.
isRecordLayoutComplete(const Type * Ty) const113 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
114 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
115 RecordDeclTypes.find(Ty);
116 return I != RecordDeclTypes.end() && !I->second->isOpaque();
117 }
118
119 static bool
120 isSafeToConvert(QualType T, CodeGenTypes &CGT,
121 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
122
123
124 /// isSafeToConvert - Return true if it is safe to convert the specified record
125 /// decl to IR and lay it out, false if doing so would cause us to get into a
126 /// recursive compilation mess.
127 static bool
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)128 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
129 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
130 // If we have already checked this type (maybe the same type is used by-value
131 // multiple times in multiple structure fields, don't check again.
132 if (!AlreadyChecked.insert(RD).second)
133 return true;
134
135 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
136
137 // If this type is already laid out, converting it is a noop.
138 if (CGT.isRecordLayoutComplete(Key)) return true;
139
140 // If this type is currently being laid out, we can't recursively compile it.
141 if (CGT.isRecordBeingLaidOut(Key))
142 return false;
143
144 // If this type would require laying out bases that are currently being laid
145 // out, don't do it. This includes virtual base classes which get laid out
146 // when a class is translated, even though they aren't embedded by-value into
147 // the class.
148 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
149 for (const auto &I : CRD->bases())
150 if (!isSafeToConvert(I.getType()->castAs<RecordType>()->getDecl(), CGT,
151 AlreadyChecked))
152 return false;
153 }
154
155 // If this type would require laying out members that are currently being laid
156 // out, don't do it.
157 for (const auto *I : RD->fields())
158 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
159 return false;
160
161 // If there are no problems, lets do it.
162 return true;
163 }
164
165 /// isSafeToConvert - Return true if it is safe to convert this field type,
166 /// which requires the structure elements contained by-value to all be
167 /// recursively safe to convert.
168 static bool
isSafeToConvert(QualType T,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)169 isSafeToConvert(QualType T, CodeGenTypes &CGT,
170 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
171 // Strip off atomic type sugar.
172 if (const auto *AT = T->getAs<AtomicType>())
173 T = AT->getValueType();
174
175 // If this is a record, check it.
176 if (const auto *RT = T->getAs<RecordType>())
177 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
178
179 // If this is an array, check the elements, which are embedded inline.
180 if (const auto *AT = CGT.getContext().getAsArrayType(T))
181 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
182
183 // Otherwise, there is no concern about transforming this. We only care about
184 // things that are contained by-value in a structure that can have another
185 // structure as a member.
186 return true;
187 }
188
189
190 /// isSafeToConvert - Return true if it is safe to convert the specified record
191 /// decl to IR and lay it out, false if doing so would cause us to get into a
192 /// recursive compilation mess.
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT)193 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
194 // If no structs are being laid out, we can certainly do this one.
195 if (CGT.noRecordsBeingLaidOut()) return true;
196
197 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
198 return isSafeToConvert(RD, CGT, AlreadyChecked);
199 }
200
201 /// isFuncParamTypeConvertible - Return true if the specified type in a
202 /// function parameter or result position can be converted to an IR type at this
203 /// point. This boils down to being whether it is complete, as well as whether
204 /// we've temporarily deferred expanding the type because we're in a recursive
205 /// context.
isFuncParamTypeConvertible(QualType Ty)206 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
207 // Some ABIs cannot have their member pointers represented in IR unless
208 // certain circumstances have been reached.
209 if (const auto *MPT = Ty->getAs<MemberPointerType>())
210 return getCXXABI().isMemberPointerConvertible(MPT);
211
212 // If this isn't a tagged type, we can convert it!
213 const TagType *TT = Ty->getAs<TagType>();
214 if (!TT) return true;
215
216 // Incomplete types cannot be converted.
217 if (TT->isIncompleteType())
218 return false;
219
220 // If this is an enum, then it is always safe to convert.
221 const RecordType *RT = dyn_cast<RecordType>(TT);
222 if (!RT) return true;
223
224 // Otherwise, we have to be careful. If it is a struct that we're in the
225 // process of expanding, then we can't convert the function type. That's ok
226 // though because we must be in a pointer context under the struct, so we can
227 // just convert it to a dummy type.
228 //
229 // We decide this by checking whether ConvertRecordDeclType returns us an
230 // opaque type for a struct that we know is defined.
231 return isSafeToConvert(RT->getDecl(), *this);
232 }
233
234
235 /// Code to verify a given function type is complete, i.e. the return type
236 /// and all of the parameter types are complete. Also check to see if we are in
237 /// a RS_StructPointer context, and if so whether any struct types have been
238 /// pended. If so, we don't want to ask the ABI lowering code to handle a type
239 /// that cannot be converted to an IR type.
isFuncTypeConvertible(const FunctionType * FT)240 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
241 if (!isFuncParamTypeConvertible(FT->getReturnType()))
242 return false;
243
244 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
245 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
246 if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
247 return false;
248
249 return true;
250 }
251
252 /// UpdateCompletedType - When we find the full definition for a TagDecl,
253 /// replace the 'opaque' type we previously made for it if applicable.
UpdateCompletedType(const TagDecl * TD)254 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
255 // If this is an enum being completed, then we flush all non-struct types from
256 // the cache. This allows function types and other things that may be derived
257 // from the enum to be recomputed.
258 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
259 // Only flush the cache if we've actually already converted this type.
260 if (TypeCache.count(ED->getTypeForDecl())) {
261 // Okay, we formed some types based on this. We speculated that the enum
262 // would be lowered to i32, so we only need to flush the cache if this
263 // didn't happen.
264 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
265 TypeCache.clear();
266 }
267 // If necessary, provide the full definition of a type only used with a
268 // declaration so far.
269 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
270 DI->completeType(ED);
271 return;
272 }
273
274 // If we completed a RecordDecl that we previously used and converted to an
275 // anonymous type, then go ahead and complete it now.
276 const RecordDecl *RD = cast<RecordDecl>(TD);
277 if (RD->isDependentType()) return;
278
279 // Only complete it if we converted it already. If we haven't converted it
280 // yet, we'll just do it lazily.
281 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
282 ConvertRecordDeclType(RD);
283
284 // If necessary, provide the full definition of a type only used with a
285 // declaration so far.
286 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
287 DI->completeType(RD);
288 }
289
RefreshTypeCacheForClass(const CXXRecordDecl * RD)290 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
291 QualType T = Context.getRecordType(RD);
292 T = Context.getCanonicalType(T);
293
294 const Type *Ty = T.getTypePtr();
295 if (RecordsWithOpaqueMemberPointers.count(Ty)) {
296 TypeCache.clear();
297 RecordsWithOpaqueMemberPointers.clear();
298 }
299 }
300
getTypeForFormat(llvm::LLVMContext & VMContext,const llvm::fltSemantics & format,bool UseNativeHalf=false)301 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
302 const llvm::fltSemantics &format,
303 bool UseNativeHalf = false) {
304 if (&format == &llvm::APFloat::IEEEhalf()) {
305 if (UseNativeHalf)
306 return llvm::Type::getHalfTy(VMContext);
307 else
308 return llvm::Type::getInt16Ty(VMContext);
309 }
310 if (&format == &llvm::APFloat::BFloat())
311 return llvm::Type::getBFloatTy(VMContext);
312 if (&format == &llvm::APFloat::IEEEsingle())
313 return llvm::Type::getFloatTy(VMContext);
314 if (&format == &llvm::APFloat::IEEEdouble())
315 return llvm::Type::getDoubleTy(VMContext);
316 if (&format == &llvm::APFloat::IEEEquad())
317 return llvm::Type::getFP128Ty(VMContext);
318 if (&format == &llvm::APFloat::PPCDoubleDouble())
319 return llvm::Type::getPPC_FP128Ty(VMContext);
320 if (&format == &llvm::APFloat::x87DoubleExtended())
321 return llvm::Type::getX86_FP80Ty(VMContext);
322 llvm_unreachable("Unknown float format!");
323 }
324
ConvertFunctionTypeInternal(QualType QFT)325 llvm::Type *CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT) {
326 assert(QFT.isCanonical());
327 const Type *Ty = QFT.getTypePtr();
328 const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr());
329 // First, check whether we can build the full function type. If the
330 // function type depends on an incomplete type (e.g. a struct or enum), we
331 // cannot lower the function type.
332 if (!isFuncTypeConvertible(FT)) {
333 // This function's type depends on an incomplete tag type.
334
335 // Force conversion of all the relevant record types, to make sure
336 // we re-convert the FunctionType when appropriate.
337 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
338 ConvertRecordDeclType(RT->getDecl());
339 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
340 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
341 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
342 ConvertRecordDeclType(RT->getDecl());
343
344 SkippedLayout = true;
345
346 // Return a placeholder type.
347 return llvm::StructType::get(getLLVMContext());
348 }
349
350 // While we're converting the parameter types for a function, we don't want
351 // to recursively convert any pointed-to structs. Converting directly-used
352 // structs is ok though.
353 if (!RecordsBeingLaidOut.insert(Ty).second) {
354 SkippedLayout = true;
355 return llvm::StructType::get(getLLVMContext());
356 }
357
358 // The function type can be built; call the appropriate routines to
359 // build it.
360 const CGFunctionInfo *FI;
361 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
362 FI = &arrangeFreeFunctionType(
363 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
364 } else {
365 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
366 FI = &arrangeFreeFunctionType(
367 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
368 }
369
370 llvm::Type *ResultType = nullptr;
371 // If there is something higher level prodding our CGFunctionInfo, then
372 // don't recurse into it again.
373 if (FunctionsBeingProcessed.count(FI)) {
374
375 ResultType = llvm::StructType::get(getLLVMContext());
376 SkippedLayout = true;
377 } else {
378
379 // Otherwise, we're good to go, go ahead and convert it.
380 ResultType = GetFunctionType(*FI);
381 }
382
383 RecordsBeingLaidOut.erase(Ty);
384
385 if (SkippedLayout)
386 TypeCache.clear();
387
388 if (RecordsBeingLaidOut.empty())
389 while (!DeferredRecords.empty())
390 ConvertRecordDeclType(DeferredRecords.pop_back_val());
391 return ResultType;
392 }
393
394 /// ConvertType - Convert the specified type to its LLVM form.
ConvertType(QualType T)395 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
396 T = Context.getCanonicalType(T);
397
398 const Type *Ty = T.getTypePtr();
399
400 // For the device-side compilation, CUDA device builtin surface/texture types
401 // may be represented in different types.
402 if (Context.getLangOpts().CUDAIsDevice) {
403 if (T->isCUDADeviceBuiltinSurfaceType()) {
404 if (auto *Ty = CGM.getTargetCodeGenInfo()
405 .getCUDADeviceBuiltinSurfaceDeviceType())
406 return Ty;
407 } else if (T->isCUDADeviceBuiltinTextureType()) {
408 if (auto *Ty = CGM.getTargetCodeGenInfo()
409 .getCUDADeviceBuiltinTextureDeviceType())
410 return Ty;
411 }
412 }
413
414 // RecordTypes are cached and processed specially.
415 if (const RecordType *RT = dyn_cast<RecordType>(Ty))
416 return ConvertRecordDeclType(RT->getDecl());
417
418 // See if type is already cached.
419 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
420 // If type is found in map then use it. Otherwise, convert type T.
421 if (TCI != TypeCache.end())
422 return TCI->second;
423
424 // If we don't have it in the cache, convert it now.
425 llvm::Type *ResultType = nullptr;
426 switch (Ty->getTypeClass()) {
427 case Type::Record: // Handled above.
428 #define TYPE(Class, Base)
429 #define ABSTRACT_TYPE(Class, Base)
430 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
431 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
432 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
433 #include "clang/AST/TypeNodes.inc"
434 llvm_unreachable("Non-canonical or dependent types aren't possible.");
435
436 case Type::Builtin: {
437 switch (cast<BuiltinType>(Ty)->getKind()) {
438 case BuiltinType::Void:
439 case BuiltinType::ObjCId:
440 case BuiltinType::ObjCClass:
441 case BuiltinType::ObjCSel:
442 // LLVM void type can only be used as the result of a function call. Just
443 // map to the same as char.
444 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
445 break;
446
447 case BuiltinType::Bool:
448 // Note that we always return bool as i1 for use as a scalar type.
449 ResultType = llvm::Type::getInt1Ty(getLLVMContext());
450 break;
451
452 case BuiltinType::Char_S:
453 case BuiltinType::Char_U:
454 case BuiltinType::SChar:
455 case BuiltinType::UChar:
456 case BuiltinType::Short:
457 case BuiltinType::UShort:
458 case BuiltinType::Int:
459 case BuiltinType::UInt:
460 case BuiltinType::Long:
461 case BuiltinType::ULong:
462 case BuiltinType::LongLong:
463 case BuiltinType::ULongLong:
464 case BuiltinType::WChar_S:
465 case BuiltinType::WChar_U:
466 case BuiltinType::Char8:
467 case BuiltinType::Char16:
468 case BuiltinType::Char32:
469 case BuiltinType::ShortAccum:
470 case BuiltinType::Accum:
471 case BuiltinType::LongAccum:
472 case BuiltinType::UShortAccum:
473 case BuiltinType::UAccum:
474 case BuiltinType::ULongAccum:
475 case BuiltinType::ShortFract:
476 case BuiltinType::Fract:
477 case BuiltinType::LongFract:
478 case BuiltinType::UShortFract:
479 case BuiltinType::UFract:
480 case BuiltinType::ULongFract:
481 case BuiltinType::SatShortAccum:
482 case BuiltinType::SatAccum:
483 case BuiltinType::SatLongAccum:
484 case BuiltinType::SatUShortAccum:
485 case BuiltinType::SatUAccum:
486 case BuiltinType::SatULongAccum:
487 case BuiltinType::SatShortFract:
488 case BuiltinType::SatFract:
489 case BuiltinType::SatLongFract:
490 case BuiltinType::SatUShortFract:
491 case BuiltinType::SatUFract:
492 case BuiltinType::SatULongFract:
493 ResultType = llvm::IntegerType::get(getLLVMContext(),
494 static_cast<unsigned>(Context.getTypeSize(T)));
495 break;
496
497 case BuiltinType::Float16:
498 ResultType =
499 getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
500 /* UseNativeHalf = */ true);
501 break;
502
503 case BuiltinType::Half:
504 // Half FP can either be storage-only (lowered to i16) or native.
505 ResultType = getTypeForFormat(
506 getLLVMContext(), Context.getFloatTypeSemantics(T),
507 Context.getLangOpts().NativeHalfType ||
508 !Context.getTargetInfo().useFP16ConversionIntrinsics());
509 break;
510 case BuiltinType::BFloat16:
511 case BuiltinType::Float:
512 case BuiltinType::Double:
513 case BuiltinType::LongDouble:
514 case BuiltinType::Float128:
515 ResultType = getTypeForFormat(getLLVMContext(),
516 Context.getFloatTypeSemantics(T),
517 /* UseNativeHalf = */ false);
518 break;
519
520 case BuiltinType::NullPtr:
521 // Model std::nullptr_t as i8*
522 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
523 break;
524
525 case BuiltinType::UInt128:
526 case BuiltinType::Int128:
527 ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
528 break;
529
530 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
531 case BuiltinType::Id:
532 #include "clang/Basic/OpenCLImageTypes.def"
533 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
534 case BuiltinType::Id:
535 #include "clang/Basic/OpenCLExtensionTypes.def"
536 case BuiltinType::OCLSampler:
537 case BuiltinType::OCLEvent:
538 case BuiltinType::OCLClkEvent:
539 case BuiltinType::OCLQueue:
540 case BuiltinType::OCLReserveID:
541 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
542 break;
543 case BuiltinType::SveInt8:
544 case BuiltinType::SveUint8:
545 case BuiltinType::SveInt8x2:
546 case BuiltinType::SveUint8x2:
547 case BuiltinType::SveInt8x3:
548 case BuiltinType::SveUint8x3:
549 case BuiltinType::SveInt8x4:
550 case BuiltinType::SveUint8x4:
551 case BuiltinType::SveInt16:
552 case BuiltinType::SveUint16:
553 case BuiltinType::SveInt16x2:
554 case BuiltinType::SveUint16x2:
555 case BuiltinType::SveInt16x3:
556 case BuiltinType::SveUint16x3:
557 case BuiltinType::SveInt16x4:
558 case BuiltinType::SveUint16x4:
559 case BuiltinType::SveInt32:
560 case BuiltinType::SveUint32:
561 case BuiltinType::SveInt32x2:
562 case BuiltinType::SveUint32x2:
563 case BuiltinType::SveInt32x3:
564 case BuiltinType::SveUint32x3:
565 case BuiltinType::SveInt32x4:
566 case BuiltinType::SveUint32x4:
567 case BuiltinType::SveInt64:
568 case BuiltinType::SveUint64:
569 case BuiltinType::SveInt64x2:
570 case BuiltinType::SveUint64x2:
571 case BuiltinType::SveInt64x3:
572 case BuiltinType::SveUint64x3:
573 case BuiltinType::SveInt64x4:
574 case BuiltinType::SveUint64x4:
575 case BuiltinType::SveBool:
576 case BuiltinType::SveFloat16:
577 case BuiltinType::SveFloat16x2:
578 case BuiltinType::SveFloat16x3:
579 case BuiltinType::SveFloat16x4:
580 case BuiltinType::SveFloat32:
581 case BuiltinType::SveFloat32x2:
582 case BuiltinType::SveFloat32x3:
583 case BuiltinType::SveFloat32x4:
584 case BuiltinType::SveFloat64:
585 case BuiltinType::SveFloat64x2:
586 case BuiltinType::SveFloat64x3:
587 case BuiltinType::SveFloat64x4:
588 case BuiltinType::SveBFloat16:
589 case BuiltinType::SveBFloat16x2:
590 case BuiltinType::SveBFloat16x3:
591 case BuiltinType::SveBFloat16x4: {
592 ASTContext::BuiltinVectorTypeInfo Info =
593 Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty));
594 return llvm::ScalableVectorType::get(ConvertType(Info.ElementType),
595 Info.EC.getKnownMinValue() *
596 Info.NumVectors);
597 }
598 #define PPC_MMA_VECTOR_TYPE(Name, Id, Size) \
599 case BuiltinType::Id: \
600 ResultType = \
601 llvm::FixedVectorType::get(ConvertType(Context.BoolTy), Size); \
602 break;
603 #include "clang/Basic/PPCTypes.def"
604 case BuiltinType::Dependent:
605 #define BUILTIN_TYPE(Id, SingletonId)
606 #define PLACEHOLDER_TYPE(Id, SingletonId) \
607 case BuiltinType::Id:
608 #include "clang/AST/BuiltinTypes.def"
609 llvm_unreachable("Unexpected placeholder builtin type!");
610 }
611 break;
612 }
613 case Type::Auto:
614 case Type::DeducedTemplateSpecialization:
615 llvm_unreachable("Unexpected undeduced type!");
616 case Type::Complex: {
617 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
618 ResultType = llvm::StructType::get(EltTy, EltTy);
619 break;
620 }
621 case Type::LValueReference:
622 case Type::RValueReference: {
623 const ReferenceType *RTy = cast<ReferenceType>(Ty);
624 QualType ETy = RTy->getPointeeType();
625 llvm::Type *PointeeType = ConvertTypeForMem(ETy);
626 unsigned AS = Context.getTargetAddressSpace(ETy);
627 ResultType = llvm::PointerType::get(PointeeType, AS);
628 break;
629 }
630 case Type::Pointer: {
631 const PointerType *PTy = cast<PointerType>(Ty);
632 QualType ETy = PTy->getPointeeType();
633 llvm::Type *PointeeType = ConvertTypeForMem(ETy);
634 if (PointeeType->isVoidTy())
635 PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
636
637 unsigned AS = PointeeType->isFunctionTy()
638 ? getDataLayout().getProgramAddressSpace()
639 : Context.getTargetAddressSpace(ETy);
640
641 ResultType = llvm::PointerType::get(PointeeType, AS);
642 break;
643 }
644
645 case Type::VariableArray: {
646 const VariableArrayType *A = cast<VariableArrayType>(Ty);
647 assert(A->getIndexTypeCVRQualifiers() == 0 &&
648 "FIXME: We only handle trivial array types so far!");
649 // VLAs resolve to the innermost element type; this matches
650 // the return of alloca, and there isn't any obviously better choice.
651 ResultType = ConvertTypeForMem(A->getElementType());
652 break;
653 }
654 case Type::IncompleteArray: {
655 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
656 assert(A->getIndexTypeCVRQualifiers() == 0 &&
657 "FIXME: We only handle trivial array types so far!");
658 // int X[] -> [0 x int], unless the element type is not sized. If it is
659 // unsized (e.g. an incomplete struct) just use [0 x i8].
660 ResultType = ConvertTypeForMem(A->getElementType());
661 if (!ResultType->isSized()) {
662 SkippedLayout = true;
663 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
664 }
665 ResultType = llvm::ArrayType::get(ResultType, 0);
666 break;
667 }
668 case Type::ConstantArray: {
669 const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
670 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
671
672 // Lower arrays of undefined struct type to arrays of i8 just to have a
673 // concrete type.
674 if (!EltTy->isSized()) {
675 SkippedLayout = true;
676 EltTy = llvm::Type::getInt8Ty(getLLVMContext());
677 }
678
679 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
680 break;
681 }
682 case Type::ExtVector:
683 case Type::Vector: {
684 const VectorType *VT = cast<VectorType>(Ty);
685 ResultType = llvm::FixedVectorType::get(ConvertType(VT->getElementType()),
686 VT->getNumElements());
687 break;
688 }
689 case Type::ConstantMatrix: {
690 const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
691 ResultType =
692 llvm::FixedVectorType::get(ConvertType(MT->getElementType()),
693 MT->getNumRows() * MT->getNumColumns());
694 break;
695 }
696 case Type::FunctionNoProto:
697 case Type::FunctionProto:
698 ResultType = ConvertFunctionTypeInternal(T);
699 break;
700 case Type::ObjCObject:
701 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
702 break;
703
704 case Type::ObjCInterface: {
705 // Objective-C interfaces are always opaque (outside of the
706 // runtime, which can do whatever it likes); we never refine
707 // these.
708 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
709 if (!T)
710 T = llvm::StructType::create(getLLVMContext());
711 ResultType = T;
712 break;
713 }
714
715 case Type::ObjCObjectPointer: {
716 // Protocol qualifications do not influence the LLVM type, we just return a
717 // pointer to the underlying interface type. We don't need to worry about
718 // recursive conversion.
719 llvm::Type *T =
720 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
721 ResultType = T->getPointerTo();
722 break;
723 }
724
725 case Type::Enum: {
726 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
727 if (ED->isCompleteDefinition() || ED->isFixed())
728 return ConvertType(ED->getIntegerType());
729 // Return a placeholder 'i32' type. This can be changed later when the
730 // type is defined (see UpdateCompletedType), but is likely to be the
731 // "right" answer.
732 ResultType = llvm::Type::getInt32Ty(getLLVMContext());
733 break;
734 }
735
736 case Type::BlockPointer: {
737 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
738 llvm::Type *PointeeType = CGM.getLangOpts().OpenCL
739 ? CGM.getGenericBlockLiteralType()
740 : ConvertTypeForMem(FTy);
741 unsigned AS = Context.getTargetAddressSpace(FTy);
742 ResultType = llvm::PointerType::get(PointeeType, AS);
743 break;
744 }
745
746 case Type::MemberPointer: {
747 auto *MPTy = cast<MemberPointerType>(Ty);
748 if (!getCXXABI().isMemberPointerConvertible(MPTy)) {
749 RecordsWithOpaqueMemberPointers.insert(MPTy->getClass());
750 ResultType = llvm::StructType::create(getLLVMContext());
751 } else {
752 ResultType = getCXXABI().ConvertMemberPointerType(MPTy);
753 }
754 break;
755 }
756
757 case Type::Atomic: {
758 QualType valueType = cast<AtomicType>(Ty)->getValueType();
759 ResultType = ConvertTypeForMem(valueType);
760
761 // Pad out to the inflated size if necessary.
762 uint64_t valueSize = Context.getTypeSize(valueType);
763 uint64_t atomicSize = Context.getTypeSize(Ty);
764 if (valueSize != atomicSize) {
765 assert(valueSize < atomicSize);
766 llvm::Type *elts[] = {
767 ResultType,
768 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
769 };
770 ResultType = llvm::StructType::get(getLLVMContext(),
771 llvm::makeArrayRef(elts));
772 }
773 break;
774 }
775 case Type::Pipe: {
776 ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty));
777 break;
778 }
779 case Type::ExtInt: {
780 const auto &EIT = cast<ExtIntType>(Ty);
781 ResultType = llvm::Type::getIntNTy(getLLVMContext(), EIT->getNumBits());
782 break;
783 }
784 }
785
786 assert(ResultType && "Didn't convert a type?");
787
788 TypeCache[Ty] = ResultType;
789 return ResultType;
790 }
791
isPaddedAtomicType(QualType type)792 bool CodeGenModule::isPaddedAtomicType(QualType type) {
793 return isPaddedAtomicType(type->castAs<AtomicType>());
794 }
795
isPaddedAtomicType(const AtomicType * type)796 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
797 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
798 }
799
800 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
ConvertRecordDeclType(const RecordDecl * RD)801 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
802 // TagDecl's are not necessarily unique, instead use the (clang)
803 // type connected to the decl.
804 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
805
806 llvm::StructType *&Entry = RecordDeclTypes[Key];
807
808 // If we don't have a StructType at all yet, create the forward declaration.
809 if (!Entry) {
810 Entry = llvm::StructType::create(getLLVMContext());
811 addRecordTypeName(RD, Entry, "");
812 }
813 llvm::StructType *Ty = Entry;
814
815 // If this is still a forward declaration, or the LLVM type is already
816 // complete, there's nothing more to do.
817 RD = RD->getDefinition();
818 if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
819 return Ty;
820
821 // If converting this type would cause us to infinitely loop, don't do it!
822 if (!isSafeToConvert(RD, *this)) {
823 DeferredRecords.push_back(RD);
824 return Ty;
825 }
826
827 // Okay, this is a definition of a type. Compile the implementation now.
828 bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
829 (void)InsertResult;
830 assert(InsertResult && "Recursively compiling a struct?");
831
832 // Force conversion of non-virtual base classes recursively.
833 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
834 for (const auto &I : CRD->bases()) {
835 if (I.isVirtual()) continue;
836 ConvertRecordDeclType(I.getType()->castAs<RecordType>()->getDecl());
837 }
838 }
839
840 // Layout fields.
841 std::unique_ptr<CGRecordLayout> Layout = ComputeRecordLayout(RD, Ty);
842 CGRecordLayouts[Key] = std::move(Layout);
843
844 // We're done laying out this struct.
845 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
846 assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
847
848 // If this struct blocked a FunctionType conversion, then recompute whatever
849 // was derived from that.
850 // FIXME: This is hugely overconservative.
851 if (SkippedLayout)
852 TypeCache.clear();
853
854 // If we're done converting the outer-most record, then convert any deferred
855 // structs as well.
856 if (RecordsBeingLaidOut.empty())
857 while (!DeferredRecords.empty())
858 ConvertRecordDeclType(DeferredRecords.pop_back_val());
859
860 return Ty;
861 }
862
863 /// getCGRecordLayout - Return record layout info for the given record decl.
864 const CGRecordLayout &
getCGRecordLayout(const RecordDecl * RD)865 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
866 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
867
868 auto I = CGRecordLayouts.find(Key);
869 if (I != CGRecordLayouts.end())
870 return *I->second;
871 // Compute the type information.
872 ConvertRecordDeclType(RD);
873
874 // Now try again.
875 I = CGRecordLayouts.find(Key);
876
877 assert(I != CGRecordLayouts.end() &&
878 "Unable to find record layout information for type");
879 return *I->second;
880 }
881
isPointerZeroInitializable(QualType T)882 bool CodeGenTypes::isPointerZeroInitializable(QualType T) {
883 assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type");
884 return isZeroInitializable(T);
885 }
886
isZeroInitializable(QualType T)887 bool CodeGenTypes::isZeroInitializable(QualType T) {
888 if (T->getAs<PointerType>())
889 return Context.getTargetNullPointerValue(T) == 0;
890
891 if (const auto *AT = Context.getAsArrayType(T)) {
892 if (isa<IncompleteArrayType>(AT))
893 return true;
894 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
895 if (Context.getConstantArrayElementCount(CAT) == 0)
896 return true;
897 T = Context.getBaseElementType(T);
898 }
899
900 // Records are non-zero-initializable if they contain any
901 // non-zero-initializable subobjects.
902 if (const RecordType *RT = T->getAs<RecordType>()) {
903 const RecordDecl *RD = RT->getDecl();
904 return isZeroInitializable(RD);
905 }
906
907 // We have to ask the ABI about member pointers.
908 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
909 return getCXXABI().isZeroInitializable(MPT);
910
911 // Everything else is okay.
912 return true;
913 }
914
isZeroInitializable(const RecordDecl * RD)915 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
916 return getCGRecordLayout(RD).isZeroInitializable();
917 }
918