1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * on the rights to use, copy, modify, merge, publish, distribute, sub
9  * license, and/or sell copies of the Software, and to permit persons to whom
10  * the Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22  * USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include "si_pipe.h"
27 #include "util/format/u_format.h"
28 #include "util/format_srgb.h"
29 
30 /* Note: Compute shaders always use SI_COMPUTE_DST_CACHE_POLICY for dst
31  * and L2_STREAM for src.
32  */
get_cache_policy(struct si_context * sctx,enum si_coherency coher,uint64_t size)33 static enum si_cache_policy get_cache_policy(struct si_context *sctx, enum si_coherency coher,
34                                              uint64_t size)
35 {
36    if ((sctx->chip_class >= GFX9 && (coher == SI_COHERENCY_CB_META ||
37                                      coher == SI_COHERENCY_DB_META ||
38                                      coher == SI_COHERENCY_CP)) ||
39        (sctx->chip_class >= GFX7 && coher == SI_COHERENCY_SHADER))
40       return size <= 256 * 1024 ? L2_LRU : L2_STREAM;
41 
42    return L2_BYPASS;
43 }
44 
si_get_flush_flags(struct si_context * sctx,enum si_coherency coher,enum si_cache_policy cache_policy)45 unsigned si_get_flush_flags(struct si_context *sctx, enum si_coherency coher,
46                             enum si_cache_policy cache_policy)
47 {
48    switch (coher) {
49    default:
50    case SI_COHERENCY_NONE:
51    case SI_COHERENCY_CP:
52       return 0;
53    case SI_COHERENCY_SHADER:
54       return SI_CONTEXT_INV_SCACHE | SI_CONTEXT_INV_VCACHE |
55              (cache_policy == L2_BYPASS ? SI_CONTEXT_INV_L2 : 0);
56    case SI_COHERENCY_CB_META:
57       return SI_CONTEXT_FLUSH_AND_INV_CB;
58    case SI_COHERENCY_DB_META:
59       return SI_CONTEXT_FLUSH_AND_INV_DB;
60    }
61 }
62 
63 #define SI_CS_IMAGE_OP           (1 << 0)
64 #define SI_CS_WAIT_FOR_IDLE      (1 << 1)
65 #define SI_CS_RENDER_COND_ENABLE (1 << 2)
66 
si_launch_grid_internal(struct si_context * sctx,struct pipe_grid_info * info,void * restore_cs,unsigned flags)67 static void si_launch_grid_internal(struct si_context *sctx, struct pipe_grid_info *info,
68                                     void *restore_cs, unsigned flags)
69 {
70    /* Wait for previous shaders to finish. */
71    sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH | SI_CONTEXT_PS_PARTIAL_FLUSH;
72    /* Invalidate L0-L1 caches. */
73    /* sL0 is never invalidated, because src resources don't use it. */
74    sctx->flags |= SI_CONTEXT_INV_VCACHE;
75 
76    /* Set settings for driver-internal compute dispatches. */
77    sctx->flags &= ~SI_CONTEXT_START_PIPELINE_STATS;
78    sctx->flags |= SI_CONTEXT_STOP_PIPELINE_STATS;
79 
80    if (!(flags & SI_CS_RENDER_COND_ENABLE))
81       sctx->render_cond_force_off = true;
82 
83    /* Skip decompression to prevent infinite recursion. */
84    if (sctx->blitter)
85       sctx->blitter->running = true;
86 
87    /* Dispatch compute. */
88    sctx->b.launch_grid(&sctx->b, info);
89 
90    /* Restore default settings. */
91    sctx->flags &= ~SI_CONTEXT_STOP_PIPELINE_STATS;
92    sctx->flags |= SI_CONTEXT_START_PIPELINE_STATS;
93    sctx->render_cond_force_off = false;
94    if (sctx->blitter)
95       sctx->blitter->running = false;
96 
97    /* Restore the original compute shader. */
98    sctx->b.bind_compute_state(&sctx->b, restore_cs);
99 
100    if (flags & SI_CS_WAIT_FOR_IDLE) {
101       sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH;
102 
103       if (flags & SI_CS_IMAGE_OP) {
104          /* Make sure image stores are visible to CB, which doesn't use L2 on GFX6-8. */
105          sctx->flags |= sctx->chip_class <= GFX8 ? SI_CONTEXT_WB_L2 : 0;
106          /* Make sure image stores are visible to all CUs. */
107          sctx->flags |= SI_CONTEXT_INV_VCACHE;
108       } else {
109          /* Make sure buffer stores are visible to all CUs. */
110          sctx->flags |= SI_CONTEXT_INV_SCACHE | SI_CONTEXT_INV_VCACHE;
111       }
112    } else {
113       assert(!(flags & SI_CS_IMAGE_OP));
114    }
115 }
116 
si_compute_clear_12bytes_buffer(struct si_context * sctx,struct pipe_resource * dst,unsigned dst_offset,unsigned size,const uint32_t * clear_value,enum si_coherency coher)117 static void si_compute_clear_12bytes_buffer(struct si_context *sctx, struct pipe_resource *dst,
118                                             unsigned dst_offset, unsigned size,
119                                             const uint32_t *clear_value, enum si_coherency coher)
120 {
121    struct pipe_context *ctx = &sctx->b;
122 
123    assert(dst_offset % 4 == 0);
124    assert(size % 4 == 0);
125    unsigned size_12 = DIV_ROUND_UP(size, 12);
126 
127    unsigned data[4] = {0};
128    memcpy(data, clear_value, 12);
129 
130    sctx->flags |= si_get_flush_flags(sctx, coher, SI_COMPUTE_DST_CACHE_POLICY);
131 
132    struct pipe_shader_buffer saved_sb = {0};
133    si_get_shader_buffers(sctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_sb);
134 
135    unsigned saved_writable_mask = 0;
136    if (sctx->const_and_shader_buffers[PIPE_SHADER_COMPUTE].writable_mask &
137        (1u << si_get_shaderbuf_slot(0)))
138       saved_writable_mask = 1;
139 
140    struct pipe_constant_buffer saved_cb = {};
141    si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
142 
143    void *saved_cs = sctx->cs_shader_state.program;
144 
145    struct pipe_constant_buffer cb = {};
146    cb.buffer_size = sizeof(data);
147    cb.user_buffer = data;
148    ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &cb);
149 
150    struct pipe_shader_buffer sb = {0};
151    sb.buffer = dst;
152    sb.buffer_offset = dst_offset;
153    sb.buffer_size = size;
154 
155    ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 1, &sb, 0x1);
156 
157    struct pipe_grid_info info = {0};
158 
159    if (!sctx->cs_clear_12bytes_buffer)
160       sctx->cs_clear_12bytes_buffer = si_clear_12bytes_buffer_shader(ctx);
161    ctx->bind_compute_state(ctx, sctx->cs_clear_12bytes_buffer);
162    info.block[0] = 64;
163    info.last_block[0] = size_12 % 64;
164    info.block[1] = 1;
165    info.block[2] = 1;
166    info.grid[0] = DIV_ROUND_UP(size_12, 64);
167    info.grid[1] = 1;
168    info.grid[2] = 1;
169 
170    si_launch_grid_internal(sctx, &info, saved_cs, SI_CS_WAIT_FOR_IDLE);
171 
172    ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_sb, saved_writable_mask);
173    ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
174 
175    pipe_resource_reference(&saved_sb.buffer, NULL);
176    pipe_resource_reference(&saved_cb.buffer, NULL);
177 }
178 
si_compute_do_clear_or_copy(struct si_context * sctx,struct pipe_resource * dst,unsigned dst_offset,struct pipe_resource * src,unsigned src_offset,unsigned size,const uint32_t * clear_value,unsigned clear_value_size,enum si_coherency coher)179 static void si_compute_do_clear_or_copy(struct si_context *sctx, struct pipe_resource *dst,
180                                         unsigned dst_offset, struct pipe_resource *src,
181                                         unsigned src_offset, unsigned size,
182                                         const uint32_t *clear_value, unsigned clear_value_size,
183                                         enum si_coherency coher)
184 {
185    struct pipe_context *ctx = &sctx->b;
186 
187    assert(src_offset % 4 == 0);
188    assert(dst_offset % 4 == 0);
189    assert(size % 4 == 0);
190 
191    assert(dst->target != PIPE_BUFFER || dst_offset + size <= dst->width0);
192    assert(!src || src_offset + size <= src->width0);
193 
194    sctx->flags |= si_get_flush_flags(sctx, coher, SI_COMPUTE_DST_CACHE_POLICY);
195 
196    /* Save states. */
197    void *saved_cs = sctx->cs_shader_state.program;
198    struct pipe_shader_buffer saved_sb[2] = {};
199    si_get_shader_buffers(sctx, PIPE_SHADER_COMPUTE, 0, src ? 2 : 1, saved_sb);
200 
201    unsigned saved_writable_mask = 0;
202    for (unsigned i = 0; i < (src ? 2 : 1); i++) {
203       if (sctx->const_and_shader_buffers[PIPE_SHADER_COMPUTE].writable_mask &
204           (1u << si_get_shaderbuf_slot(i)))
205          saved_writable_mask |= 1 << i;
206    }
207 
208    /* The memory accesses are coalesced, meaning that the 1st instruction writes
209     * the 1st contiguous block of data for the whole wave, the 2nd instruction
210     * writes the 2nd contiguous block of data, etc.
211     */
212    unsigned dwords_per_thread =
213       src ? SI_COMPUTE_COPY_DW_PER_THREAD : SI_COMPUTE_CLEAR_DW_PER_THREAD;
214    unsigned instructions_per_thread = MAX2(1, dwords_per_thread / 4);
215    unsigned dwords_per_instruction = dwords_per_thread / instructions_per_thread;
216    unsigned wave_size = sctx->screen->compute_wave_size;
217    unsigned dwords_per_wave = dwords_per_thread * wave_size;
218 
219    unsigned num_dwords = size / 4;
220    unsigned num_instructions = DIV_ROUND_UP(num_dwords, dwords_per_instruction);
221 
222    struct pipe_grid_info info = {};
223    info.block[0] = MIN2(wave_size, num_instructions);
224    info.block[1] = 1;
225    info.block[2] = 1;
226    info.grid[0] = DIV_ROUND_UP(num_dwords, dwords_per_wave);
227    info.grid[1] = 1;
228    info.grid[2] = 1;
229 
230    struct pipe_shader_buffer sb[2] = {};
231    sb[0].buffer = dst;
232    sb[0].buffer_offset = dst_offset;
233    sb[0].buffer_size = size;
234 
235    bool shader_dst_stream_policy = SI_COMPUTE_DST_CACHE_POLICY != L2_LRU;
236 
237    if (src) {
238       sb[1].buffer = src;
239       sb[1].buffer_offset = src_offset;
240       sb[1].buffer_size = size;
241 
242       ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 2, sb, 0x1);
243 
244       if (!sctx->cs_copy_buffer) {
245          sctx->cs_copy_buffer = si_create_dma_compute_shader(
246             &sctx->b, SI_COMPUTE_COPY_DW_PER_THREAD, shader_dst_stream_policy, true);
247       }
248       ctx->bind_compute_state(ctx, sctx->cs_copy_buffer);
249    } else {
250       assert(clear_value_size >= 4 && clear_value_size <= 16 &&
251              util_is_power_of_two_or_zero(clear_value_size));
252 
253       for (unsigned i = 0; i < 4; i++)
254          sctx->cs_user_data[i] = clear_value[i % (clear_value_size / 4)];
255 
256       ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 1, sb, 0x1);
257 
258       if (!sctx->cs_clear_buffer) {
259          sctx->cs_clear_buffer = si_create_dma_compute_shader(
260             &sctx->b, SI_COMPUTE_CLEAR_DW_PER_THREAD, shader_dst_stream_policy, false);
261       }
262       ctx->bind_compute_state(ctx, sctx->cs_clear_buffer);
263    }
264 
265    si_launch_grid_internal(sctx, &info, saved_cs, SI_CS_WAIT_FOR_IDLE);
266 
267    enum si_cache_policy cache_policy = get_cache_policy(sctx, coher, size);
268    sctx->flags |= cache_policy == L2_BYPASS ? SI_CONTEXT_WB_L2 : 0;
269 
270    if (cache_policy != L2_BYPASS)
271       si_resource(dst)->TC_L2_dirty = true;
272 
273    /* Restore states. */
274    ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, src ? 2 : 1, saved_sb, saved_writable_mask);
275    for (int i = 0; i < 2; i++)
276       pipe_resource_reference(&saved_sb[i].buffer, NULL);
277 }
278 
si_clear_buffer(struct si_context * sctx,struct pipe_resource * dst,uint64_t offset,uint64_t size,uint32_t * clear_value,uint32_t clear_value_size,enum si_coherency coher,bool force_cpdma)279 void si_clear_buffer(struct si_context *sctx, struct pipe_resource *dst, uint64_t offset,
280                      uint64_t size, uint32_t *clear_value, uint32_t clear_value_size,
281                      enum si_coherency coher, bool force_cpdma)
282 {
283    if (!size)
284       return;
285 
286    ASSERTED unsigned clear_alignment = MIN2(clear_value_size, 4);
287 
288    assert(clear_value_size != 3 && clear_value_size != 6); /* 12 is allowed. */
289    assert(offset % clear_alignment == 0);
290    assert(size % clear_alignment == 0);
291    assert(size < (UINT_MAX & ~0xf)); /* TODO: test 64-bit sizes in all codepaths */
292 
293    /* Reduce a large clear value size if possible. */
294    if (clear_value_size > 4) {
295       bool clear_dword_duplicated = true;
296 
297       /* See if we can lower large fills to dword fills. */
298       for (unsigned i = 1; i < clear_value_size / 4; i++) {
299          if (clear_value[0] != clear_value[i]) {
300             clear_dword_duplicated = false;
301             break;
302          }
303       }
304       if (clear_dword_duplicated)
305          clear_value_size = 4;
306    }
307 
308    /* Expand a small clear value size. */
309    uint32_t tmp_clear_value;
310    if (clear_value_size <= 2) {
311       if (clear_value_size == 1) {
312          tmp_clear_value = *(uint8_t *)clear_value;
313          tmp_clear_value |=
314             (tmp_clear_value << 8) | (tmp_clear_value << 16) | (tmp_clear_value << 24);
315       } else {
316          tmp_clear_value = *(uint16_t *)clear_value;
317          tmp_clear_value |= tmp_clear_value << 16;
318       }
319       clear_value = &tmp_clear_value;
320       clear_value_size = 4;
321    }
322 
323    if (clear_value_size == 12) {
324       si_compute_clear_12bytes_buffer(sctx, dst, offset, size, clear_value, coher);
325       return;
326    }
327 
328    uint64_t aligned_size = size & ~3ull;
329    if (aligned_size >= 4) {
330       uint64_t compute_min_size;
331 
332       /* CP DMA clears are terribly slow with GTT on GFX6-8, which can always
333        * happen due to BO evictions.
334        */
335       if (sctx->chip_class <= GFX8) {
336          compute_min_size = 0;
337       } else if (sctx->chip_class >= GFX10 &&
338                  sctx->screen->info.has_dedicated_vram &&
339                  si_resource(dst)->domains & RADEON_DOMAIN_VRAM) {
340          /* VRAM clears on gfx10 dGPUs */
341          if (sctx->screen->info.vram_bit_width >= 192)
342             compute_min_size = 128 * 1024;
343          else
344             compute_min_size = 1024 * 1024;
345       } else if (sctx->screen->info.has_dedicated_vram &&
346                  si_resource(dst)->domains & RADEON_DOMAIN_GTT) {
347          /* GTT clears on gfx9 and gfx10 dGPUs */
348          compute_min_size = UINT64_MAX; /* CP DMA is the best due to slow PCIe */
349       } else {
350          compute_min_size = 32 * 1024;
351       }
352 
353       if (clear_value_size > 4 || (!force_cpdma && clear_value_size == 4 && offset % 4 == 0 &&
354                                    size > compute_min_size)) {
355          si_compute_do_clear_or_copy(sctx, dst, offset, NULL, 0, aligned_size, clear_value,
356                                      clear_value_size, coher);
357       } else {
358          assert(clear_value_size == 4);
359          si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, dst, offset, aligned_size, *clear_value, 0,
360                                 coher, get_cache_policy(sctx, coher, size));
361       }
362 
363       offset += aligned_size;
364       size -= aligned_size;
365    }
366 
367    /* Handle non-dword alignment. */
368    if (size) {
369       assert(dst);
370       assert(dst->target == PIPE_BUFFER);
371       assert(size < 4);
372 
373       pipe_buffer_write(&sctx->b, dst, offset, size, clear_value);
374    }
375 }
376 
si_pipe_clear_buffer(struct pipe_context * ctx,struct pipe_resource * dst,unsigned offset,unsigned size,const void * clear_value,int clear_value_size)377 static void si_pipe_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst,
378                                  unsigned offset, unsigned size, const void *clear_value,
379                                  int clear_value_size)
380 {
381    si_clear_buffer((struct si_context *)ctx, dst, offset, size, (uint32_t *)clear_value,
382                    clear_value_size, SI_COHERENCY_SHADER, false);
383 }
384 
si_copy_buffer(struct si_context * sctx,struct pipe_resource * dst,struct pipe_resource * src,uint64_t dst_offset,uint64_t src_offset,unsigned size)385 void si_copy_buffer(struct si_context *sctx, struct pipe_resource *dst, struct pipe_resource *src,
386                     uint64_t dst_offset, uint64_t src_offset, unsigned size)
387 {
388    if (!size)
389       return;
390 
391    enum si_coherency coher = SI_COHERENCY_SHADER;
392    enum si_cache_policy cache_policy = get_cache_policy(sctx, coher, size);
393    uint64_t compute_min_size;
394 
395    if (sctx->chip_class >= GFX10 &&
396        sctx->screen->info.has_dedicated_vram &&
397        si_resource(dst)->domains & RADEON_DOMAIN_VRAM &&
398        si_resource(src)->domains & RADEON_DOMAIN_VRAM) {
399       /* VRAM copies on gfx10 dGPUs */
400       if (sctx->screen->info.vram_bit_width >= 192)
401          compute_min_size = 128 * 1024;
402       else
403          compute_min_size = 1024 * 1024;
404    } else if (sctx->chip_class >= GFX10 &&
405               sctx->screen->info.has_dedicated_vram &&
406               (si_resource(dst)->domains | si_resource(src)->domains) & RADEON_DOMAIN_GTT) {
407       compute_min_size = UINT64_MAX; /* CP DMA is the best due to slow PCIe */
408    } else {
409       compute_min_size = 32 * 1024;
410    }
411 
412    /* Only use compute for VRAM copies on dGPUs. */
413    if (sctx->screen->info.has_dedicated_vram && si_resource(dst)->domains & RADEON_DOMAIN_VRAM &&
414        si_resource(src)->domains & RADEON_DOMAIN_VRAM && size > compute_min_size &&
415        dst_offset % 4 == 0 && src_offset % 4 == 0 && size % 4 == 0) {
416       si_compute_do_clear_or_copy(sctx, dst, dst_offset, src, src_offset, size, NULL, 0, coher);
417    } else {
418       si_cp_dma_copy_buffer(sctx, dst, src, dst_offset, src_offset, size, 0, coher, cache_policy);
419    }
420 }
421 
si_compute_copy_image(struct si_context * sctx,struct pipe_resource * dst,unsigned dst_level,struct pipe_resource * src,unsigned src_level,unsigned dstx,unsigned dsty,unsigned dstz,const struct pipe_box * src_box,bool is_dcc_decompress)422 void si_compute_copy_image(struct si_context *sctx, struct pipe_resource *dst, unsigned dst_level,
423                            struct pipe_resource *src, unsigned src_level, unsigned dstx,
424                            unsigned dsty, unsigned dstz, const struct pipe_box *src_box,
425                            bool is_dcc_decompress)
426 {
427    struct pipe_context *ctx = &sctx->b;
428    unsigned width = src_box->width;
429    unsigned height = src_box->height;
430    unsigned depth = src_box->depth;
431    enum pipe_format src_format = util_format_linear(src->format);
432    enum pipe_format dst_format = util_format_linear(dst->format);
433    bool is_linear = ((struct si_texture*)src)->surface.is_linear ||
434                     ((struct si_texture*)dst)->surface.is_linear;
435 
436    assert(util_format_is_subsampled_422(src_format) == util_format_is_subsampled_422(dst_format));
437 
438    if (!vi_dcc_enabled((struct si_texture*)src, src_level) &&
439        src_format == dst_format &&
440        util_format_is_float(src_format) &&
441        !util_format_is_compressed(src_format)) {
442       /* Interpret as integer values to avoid NaN issues */
443       switch(util_format_get_blocksizebits(src_format)) {
444         case 16:
445           src_format = dst_format = PIPE_FORMAT_R16_UINT;
446           break;
447         case 32:
448           src_format = dst_format = PIPE_FORMAT_R32_UINT;
449           break;
450         case 64:
451           src_format = dst_format = PIPE_FORMAT_R32G32_UINT;
452           break;
453         case 128:
454           src_format = dst_format = PIPE_FORMAT_R32G32B32A32_UINT;
455           break;
456         default:
457           assert(false);
458       }
459    }
460 
461    if (util_format_is_subsampled_422(src_format)) {
462       src_format = dst_format = PIPE_FORMAT_R32_UINT;
463       /* Interpreting 422 subsampled format (16 bpp) as 32 bpp
464        * should force us to divide src_box->x, dstx and width by 2.
465        * But given that ac_surface allocates this format as 32 bpp
466        * and that surf_size is then modified to pack the values
467        * we must keep the original values to get the correct results.
468        */
469    }
470 
471    if (width == 0 || height == 0)
472       return;
473 
474    /* The driver doesn't decompress resources automatically here. */
475    si_decompress_subresource(ctx, dst, PIPE_MASK_RGBAZS, dst_level, dstz,
476                              dstz + src_box->depth - 1);
477    si_decompress_subresource(ctx, src, PIPE_MASK_RGBAZS, src_level, src_box->z,
478                              src_box->z + src_box->depth - 1);
479 
480    /* src and dst have the same number of samples. */
481    si_make_CB_shader_coherent(sctx, src->nr_samples, true,
482                               /* Only src can have DCC.*/
483                               ((struct si_texture *)src)->surface.u.gfx9.dcc.pipe_aligned);
484 
485    struct pipe_constant_buffer saved_cb = {};
486 
487    struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE];
488    struct pipe_image_view saved_image[2] = {0};
489    util_copy_image_view(&saved_image[0], &images->views[0]);
490    util_copy_image_view(&saved_image[1], &images->views[1]);
491 
492    void *saved_cs = sctx->cs_shader_state.program;
493 
494    if (!is_dcc_decompress) {
495       unsigned data[] = {src_box->x, src_box->y, src_box->z, 0, dstx, dsty, dstz, 0};
496 
497       si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
498 
499       struct pipe_constant_buffer cb = {};
500       cb.buffer_size = sizeof(data);
501       cb.user_buffer = data;
502       ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &cb);
503    }
504 
505    struct pipe_image_view image[2] = {0};
506    image[0].resource = src;
507    image[0].shader_access = image[0].access = PIPE_IMAGE_ACCESS_READ;
508    image[0].format = src_format;
509    image[0].u.tex.level = src_level;
510    image[0].u.tex.first_layer = 0;
511    image[0].u.tex.last_layer = src->target == PIPE_TEXTURE_3D ? u_minify(src->depth0, src_level) - 1
512                                                               : (unsigned)(src->array_size - 1);
513    image[1].resource = dst;
514    image[1].shader_access = image[1].access = PIPE_IMAGE_ACCESS_WRITE;
515    image[1].format = dst_format;
516    image[1].u.tex.level = dst_level;
517    image[1].u.tex.first_layer = 0;
518    image[1].u.tex.last_layer = dst->target == PIPE_TEXTURE_3D ? u_minify(dst->depth0, dst_level) - 1
519                                                               : (unsigned)(dst->array_size - 1);
520 
521    /* SNORM8 blitting has precision issues on some chips. Use the SINT
522     * equivalent instead, which doesn't force DCC decompression.
523     * Note that some chips avoid this issue by using SDMA.
524     */
525    if (util_format_is_snorm8(dst->format)) {
526       image[0].format = image[1].format = util_format_snorm8_to_sint8(dst->format);
527    }
528 
529    if (is_dcc_decompress)
530       image[1].access |= SI_IMAGE_ACCESS_DCC_OFF;
531 
532    ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 2, image);
533 
534    struct pipe_grid_info info = {0};
535 
536    if (is_dcc_decompress) {
537       /* The DCC decompression is a normal blit where the load is compressed
538        * and the store is uncompressed. The workgroup size is either equal to
539        * the DCC block size or a multiple thereof. The shader uses a barrier
540        * between loads and stores to safely overwrite each DCC block of pixels.
541        */
542       struct si_texture *tex = (struct si_texture*)src;
543       unsigned dim[3] = {src_box->width, src_box->height, src_box->depth};
544 
545       assert(src == dst);
546       assert(dst->target != PIPE_TEXTURE_1D && dst->target != PIPE_TEXTURE_1D_ARRAY);
547 
548       if (!sctx->cs_dcc_decompress)
549          sctx->cs_dcc_decompress = si_create_dcc_decompress_cs(ctx);
550       ctx->bind_compute_state(ctx, sctx->cs_dcc_decompress);
551 
552       info.block[0] = tex->surface.u.gfx9.dcc_block_width;
553       info.block[1] = tex->surface.u.gfx9.dcc_block_height;
554       info.block[2] = tex->surface.u.gfx9.dcc_block_depth;
555 
556       /* Make sure the block size is at least the same as wave size. */
557       while (info.block[0] * info.block[1] * info.block[2] <
558              sctx->screen->compute_wave_size) {
559          info.block[0] *= 2;
560       }
561 
562       for (unsigned i = 0; i < 3; i++) {
563          info.last_block[i] = dim[i] % info.block[i];
564          info.grid[i] = DIV_ROUND_UP(dim[i], info.block[i]);
565       }
566    } else if (dst->target == PIPE_TEXTURE_1D_ARRAY && src->target == PIPE_TEXTURE_1D_ARRAY) {
567       if (!sctx->cs_copy_image_1d_array)
568          sctx->cs_copy_image_1d_array = si_create_copy_image_compute_shader_1d_array(ctx);
569       ctx->bind_compute_state(ctx, sctx->cs_copy_image_1d_array);
570       info.block[0] = 64;
571       info.last_block[0] = width % 64;
572       info.block[1] = 1;
573       info.block[2] = 1;
574       info.grid[0] = DIV_ROUND_UP(width, 64);
575       info.grid[1] = depth;
576       info.grid[2] = 1;
577    } else {
578       if (!sctx->cs_copy_image)
579          sctx->cs_copy_image = si_create_copy_image_compute_shader(ctx);
580       ctx->bind_compute_state(ctx, sctx->cs_copy_image);
581 
582       /* This is better for access over PCIe. */
583       if (is_linear) {
584          info.block[0] = 64;
585          info.block[1] = 1;
586       } else {
587          info.block[0] = 8;
588          info.block[1] = 8;
589       }
590       info.last_block[0] = width % info.block[0];
591       info.last_block[1] = height % info.block[1];
592       info.block[2] = 1;
593       info.grid[0] = DIV_ROUND_UP(width, info.block[0]);
594       info.grid[1] = DIV_ROUND_UP(height, info.block[1]);
595       info.grid[2] = depth;
596    }
597 
598    si_launch_grid_internal(sctx, &info, saved_cs,
599                            SI_CS_WAIT_FOR_IDLE | SI_CS_IMAGE_OP);
600 
601    ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 2, saved_image);
602    for (int i = 0; i < 2; i++)
603       pipe_resource_reference(&saved_image[i].resource, NULL);
604    if (!is_dcc_decompress) {
605       ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
606       pipe_resource_reference(&saved_cb.buffer, NULL);
607    }
608 }
609 
si_retile_dcc(struct si_context * sctx,struct si_texture * tex)610 void si_retile_dcc(struct si_context *sctx, struct si_texture *tex)
611 {
612    struct pipe_context *ctx = &sctx->b;
613 
614    sctx->flags |= si_get_flush_flags(sctx, SI_COHERENCY_CB_META, L2_LRU);
615 
616    /* Save states. */
617    void *saved_cs = sctx->cs_shader_state.program;
618    struct pipe_image_view saved_img[3] = {};
619 
620    for (unsigned i = 0; i < 3; i++) {
621       util_copy_image_view(&saved_img[i], &sctx->images[PIPE_SHADER_COMPUTE].views[i]);
622    }
623 
624    /* Set images. */
625    bool use_uint16 = tex->surface.u.gfx9.dcc_retile_use_uint16;
626    unsigned num_elements = tex->surface.u.gfx9.dcc_retile_num_elements;
627    struct pipe_image_view img[3];
628 
629    assert(tex->dcc_retile_buffer);
630    assert(tex->surface.dcc_offset && tex->surface.dcc_offset <= UINT_MAX);
631    assert(tex->surface.display_dcc_offset && tex->surface.display_dcc_offset <= UINT_MAX);
632 
633    for (unsigned i = 0; i < 3; i++) {
634       img[i].resource = i == 0 ? &tex->dcc_retile_buffer->b.b : &tex->buffer.b.b;
635       img[i].access = i == 2 ? PIPE_IMAGE_ACCESS_WRITE : PIPE_IMAGE_ACCESS_READ;
636       img[i].shader_access = SI_IMAGE_ACCESS_AS_BUFFER;
637    }
638 
639    img[0].format = use_uint16 ? PIPE_FORMAT_R16G16B16A16_UINT : PIPE_FORMAT_R32G32B32A32_UINT;
640    img[0].u.buf.offset = 0;
641    img[0].u.buf.size = num_elements * (use_uint16 ? 2 : 4);
642 
643    img[1].format = PIPE_FORMAT_R8_UINT;
644    img[1].u.buf.offset = tex->surface.dcc_offset;
645    img[1].u.buf.size = tex->surface.dcc_size;
646 
647    img[2].format = PIPE_FORMAT_R8_UINT;
648    img[2].u.buf.offset = tex->surface.display_dcc_offset;
649    img[2].u.buf.size = tex->surface.u.gfx9.display_dcc_size;
650 
651    ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 3, img);
652 
653    /* Bind the compute shader. */
654    if (!sctx->cs_dcc_retile)
655       sctx->cs_dcc_retile = si_create_dcc_retile_cs(ctx);
656    ctx->bind_compute_state(ctx, sctx->cs_dcc_retile);
657 
658    /* Dispatch compute. */
659    /* img[0] has 4 channels per element containing 2 pairs of DCC offsets. */
660    unsigned num_threads = num_elements / 4;
661 
662    struct pipe_grid_info info = {};
663    info.block[0] = 64;
664    info.block[1] = 1;
665    info.block[2] = 1;
666    info.grid[0] = DIV_ROUND_UP(num_threads, 64); /* includes the partial block */
667    info.grid[1] = 1;
668    info.grid[2] = 1;
669    info.last_block[0] = num_threads % 64;
670 
671    si_launch_grid_internal(sctx, &info, saved_cs, 0);
672 
673    /* Don't flush caches or wait. The driver will wait at the end of this IB,
674     * and L2 will be flushed by the kernel fence.
675     */
676 
677    /* Restore states. */
678    ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 3, saved_img);
679 
680    for (unsigned i = 0; i < 3; i++) {
681       pipe_resource_reference(&saved_img[i].resource, NULL);
682    }
683 }
684 
685 /* Expand FMASK to make it identity, so that image stores can ignore it. */
si_compute_expand_fmask(struct pipe_context * ctx,struct pipe_resource * tex)686 void si_compute_expand_fmask(struct pipe_context *ctx, struct pipe_resource *tex)
687 {
688    struct si_context *sctx = (struct si_context *)ctx;
689    bool is_array = tex->target == PIPE_TEXTURE_2D_ARRAY;
690    unsigned log_fragments = util_logbase2(tex->nr_storage_samples);
691    unsigned log_samples = util_logbase2(tex->nr_samples);
692    assert(tex->nr_samples >= 2);
693 
694    /* EQAA FMASK expansion is unimplemented. */
695    if (tex->nr_samples != tex->nr_storage_samples)
696       return;
697 
698    si_make_CB_shader_coherent(sctx, tex->nr_samples, true,
699                               true /* DCC is not possible with image stores */);
700 
701    /* Save states. */
702    void *saved_cs = sctx->cs_shader_state.program;
703    struct pipe_image_view saved_image = {0};
704    util_copy_image_view(&saved_image, &sctx->images[PIPE_SHADER_COMPUTE].views[0]);
705 
706    /* Bind the image. */
707    struct pipe_image_view image = {0};
708    image.resource = tex;
709    /* Don't set WRITE so as not to trigger FMASK expansion, causing
710     * an infinite loop. */
711    image.shader_access = image.access = PIPE_IMAGE_ACCESS_READ;
712    image.format = util_format_linear(tex->format);
713    if (is_array)
714       image.u.tex.last_layer = tex->array_size - 1;
715 
716    ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &image);
717 
718    /* Bind the shader. */
719    void **shader = &sctx->cs_fmask_expand[log_samples - 1][is_array];
720    if (!*shader)
721       *shader = si_create_fmask_expand_cs(ctx, tex->nr_samples, is_array);
722    ctx->bind_compute_state(ctx, *shader);
723 
724    /* Dispatch compute. */
725    struct pipe_grid_info info = {0};
726    info.block[0] = 8;
727    info.last_block[0] = tex->width0 % 8;
728    info.block[1] = 8;
729    info.last_block[1] = tex->height0 % 8;
730    info.block[2] = 1;
731    info.grid[0] = DIV_ROUND_UP(tex->width0, 8);
732    info.grid[1] = DIV_ROUND_UP(tex->height0, 8);
733    info.grid[2] = is_array ? tex->array_size : 1;
734 
735    si_launch_grid_internal(sctx, &info, saved_cs,
736                            SI_CS_WAIT_FOR_IDLE | SI_CS_IMAGE_OP);
737 
738    /* Restore previous states. */
739    ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_image);
740    pipe_resource_reference(&saved_image.resource, NULL);
741 
742    /* Array of fully expanded FMASK values, arranged by [log2(fragments)][log2(samples)-1]. */
743 #define INVALID 0 /* never used */
744    static const uint64_t fmask_expand_values[][4] = {
745       /* samples */
746       /* 2 (8 bpp) 4 (8 bpp)   8 (8-32bpp) 16 (16-64bpp)      fragments */
747       {0x02020202, 0x0E0E0E0E, 0xFEFEFEFE, 0xFFFEFFFE},      /* 1 */
748       {0x02020202, 0xA4A4A4A4, 0xAAA4AAA4, 0xAAAAAAA4},      /* 2 */
749       {INVALID, 0xE4E4E4E4, 0x44443210, 0x4444444444443210}, /* 4 */
750       {INVALID, INVALID, 0x76543210, 0x8888888876543210},    /* 8 */
751    };
752 
753    /* Clear FMASK to identity. */
754    struct si_texture *stex = (struct si_texture *)tex;
755    si_clear_buffer(sctx, tex, stex->surface.fmask_offset, stex->surface.fmask_size,
756                    (uint32_t *)&fmask_expand_values[log_fragments][log_samples - 1],
757                    log_fragments >= 2 && log_samples == 4 ? 8 : 4,
758                    SI_COHERENCY_SHADER, false);
759 }
760 
si_init_compute_blit_functions(struct si_context * sctx)761 void si_init_compute_blit_functions(struct si_context *sctx)
762 {
763    sctx->b.clear_buffer = si_pipe_clear_buffer;
764 }
765 
766 /* Clear a region of a color surface to a constant value. */
si_compute_clear_render_target(struct pipe_context * ctx,struct pipe_surface * dstsurf,const union pipe_color_union * color,unsigned dstx,unsigned dsty,unsigned width,unsigned height,bool render_condition_enabled)767 void si_compute_clear_render_target(struct pipe_context *ctx, struct pipe_surface *dstsurf,
768                                     const union pipe_color_union *color, unsigned dstx,
769                                     unsigned dsty, unsigned width, unsigned height,
770                                     bool render_condition_enabled)
771 {
772    struct si_context *sctx = (struct si_context *)ctx;
773    unsigned num_layers = dstsurf->u.tex.last_layer - dstsurf->u.tex.first_layer + 1;
774    unsigned data[4 + sizeof(color->ui)] = {dstx, dsty, dstsurf->u.tex.first_layer, 0};
775 
776    if (width == 0 || height == 0)
777       return;
778 
779    /* The driver doesn't decompress resources automatically here. */
780    si_decompress_subresource(ctx, dstsurf->texture, PIPE_MASK_RGBA, dstsurf->u.tex.level,
781                              dstsurf->u.tex.first_layer, dstsurf->u.tex.last_layer);
782 
783    if (util_format_is_srgb(dstsurf->format)) {
784       union pipe_color_union color_srgb;
785       for (int i = 0; i < 3; i++)
786          color_srgb.f[i] = util_format_linear_to_srgb_float(color->f[i]);
787       color_srgb.f[3] = color->f[3];
788       memcpy(data + 4, color_srgb.ui, sizeof(color->ui));
789    } else {
790       memcpy(data + 4, color->ui, sizeof(color->ui));
791    }
792 
793    si_make_CB_shader_coherent(sctx, dstsurf->texture->nr_samples, true,
794                               true /* DCC is not possible with image stores */);
795 
796    struct pipe_constant_buffer saved_cb = {};
797    si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
798 
799    struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE];
800    struct pipe_image_view saved_image = {0};
801    util_copy_image_view(&saved_image, &images->views[0]);
802 
803    void *saved_cs = sctx->cs_shader_state.program;
804 
805    struct pipe_constant_buffer cb = {};
806    cb.buffer_size = sizeof(data);
807    cb.user_buffer = data;
808    ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &cb);
809 
810    struct pipe_image_view image = {0};
811    image.resource = dstsurf->texture;
812    image.shader_access = image.access = PIPE_IMAGE_ACCESS_WRITE;
813    image.format = util_format_linear(dstsurf->format);
814    image.u.tex.level = dstsurf->u.tex.level;
815    image.u.tex.first_layer = 0; /* 3D images ignore first_layer (BASE_ARRAY) */
816    image.u.tex.last_layer = dstsurf->u.tex.last_layer;
817 
818    ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &image);
819 
820    struct pipe_grid_info info = {0};
821 
822    if (dstsurf->texture->target != PIPE_TEXTURE_1D_ARRAY) {
823       if (!sctx->cs_clear_render_target)
824          sctx->cs_clear_render_target = si_clear_render_target_shader(ctx);
825       ctx->bind_compute_state(ctx, sctx->cs_clear_render_target);
826       info.block[0] = 8;
827       info.last_block[0] = width % 8;
828       info.block[1] = 8;
829       info.last_block[1] = height % 8;
830       info.block[2] = 1;
831       info.grid[0] = DIV_ROUND_UP(width, 8);
832       info.grid[1] = DIV_ROUND_UP(height, 8);
833       info.grid[2] = num_layers;
834    } else {
835       if (!sctx->cs_clear_render_target_1d_array)
836          sctx->cs_clear_render_target_1d_array = si_clear_render_target_shader_1d_array(ctx);
837       ctx->bind_compute_state(ctx, sctx->cs_clear_render_target_1d_array);
838       info.block[0] = 64;
839       info.last_block[0] = width % 64;
840       info.block[1] = 1;
841       info.block[2] = 1;
842       info.grid[0] = DIV_ROUND_UP(width, 64);
843       info.grid[1] = num_layers;
844       info.grid[2] = 1;
845    }
846 
847    si_launch_grid_internal(sctx, &info, saved_cs,
848                            SI_CS_WAIT_FOR_IDLE | SI_CS_IMAGE_OP |
849                            (render_condition_enabled ? SI_CS_RENDER_COND_ENABLE : 0));
850 
851    ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_image);
852    ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
853    pipe_resource_reference(&saved_image.resource, NULL);
854    pipe_resource_reference(&saved_cb.buffer, NULL);
855 }
856