1 /*
2  * Copyright 2008-2009 Katholieke Universiteit Leuven
3  *
4  * Use of this software is governed by the MIT license
5  *
6  * Written by Sven Verdoolaege, K.U.Leuven, Departement
7  * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8  */
9 
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
12 #include "isl_sample.h"
13 #include <isl/vec.h>
14 #include <isl/mat.h>
15 #include <isl_seq.h>
16 #include "isl_equalities.h"
17 #include "isl_tab.h"
18 #include "isl_basis_reduction.h"
19 #include <isl_factorization.h>
20 #include <isl_point_private.h>
21 #include <isl_options_private.h>
22 #include <isl_vec_private.h>
23 
24 #include <bset_from_bmap.c>
25 #include <set_to_map.c>
26 
empty_sample(__isl_take isl_basic_set * bset)27 static __isl_give isl_vec *empty_sample(__isl_take isl_basic_set *bset)
28 {
29 	struct isl_vec *vec;
30 
31 	vec = isl_vec_alloc(bset->ctx, 0);
32 	isl_basic_set_free(bset);
33 	return vec;
34 }
35 
36 /* Construct a zero sample of the same dimension as bset.
37  * As a special case, if bset is zero-dimensional, this
38  * function creates a zero-dimensional sample point.
39  */
zero_sample(__isl_take isl_basic_set * bset)40 static __isl_give isl_vec *zero_sample(__isl_take isl_basic_set *bset)
41 {
42 	isl_size dim;
43 	struct isl_vec *sample;
44 
45 	dim = isl_basic_set_dim(bset, isl_dim_all);
46 	if (dim < 0)
47 		goto error;
48 	sample = isl_vec_alloc(bset->ctx, 1 + dim);
49 	if (sample) {
50 		isl_int_set_si(sample->el[0], 1);
51 		isl_seq_clr(sample->el + 1, dim);
52 	}
53 	isl_basic_set_free(bset);
54 	return sample;
55 error:
56 	isl_basic_set_free(bset);
57 	return NULL;
58 }
59 
interval_sample(__isl_take isl_basic_set * bset)60 static __isl_give isl_vec *interval_sample(__isl_take isl_basic_set *bset)
61 {
62 	int i;
63 	isl_int t;
64 	struct isl_vec *sample;
65 
66 	bset = isl_basic_set_simplify(bset);
67 	if (!bset)
68 		return NULL;
69 	if (isl_basic_set_plain_is_empty(bset))
70 		return empty_sample(bset);
71 	if (bset->n_eq == 0 && bset->n_ineq == 0)
72 		return zero_sample(bset);
73 
74 	sample = isl_vec_alloc(bset->ctx, 2);
75 	if (!sample)
76 		goto error;
77 	if (!bset)
78 		return NULL;
79 	isl_int_set_si(sample->block.data[0], 1);
80 
81 	if (bset->n_eq > 0) {
82 		isl_assert(bset->ctx, bset->n_eq == 1, goto error);
83 		isl_assert(bset->ctx, bset->n_ineq == 0, goto error);
84 		if (isl_int_is_one(bset->eq[0][1]))
85 			isl_int_neg(sample->el[1], bset->eq[0][0]);
86 		else {
87 			isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]),
88 				   goto error);
89 			isl_int_set(sample->el[1], bset->eq[0][0]);
90 		}
91 		isl_basic_set_free(bset);
92 		return sample;
93 	}
94 
95 	isl_int_init(t);
96 	if (isl_int_is_one(bset->ineq[0][1]))
97 		isl_int_neg(sample->block.data[1], bset->ineq[0][0]);
98 	else
99 		isl_int_set(sample->block.data[1], bset->ineq[0][0]);
100 	for (i = 1; i < bset->n_ineq; ++i) {
101 		isl_seq_inner_product(sample->block.data,
102 					bset->ineq[i], 2, &t);
103 		if (isl_int_is_neg(t))
104 			break;
105 	}
106 	isl_int_clear(t);
107 	if (i < bset->n_ineq) {
108 		isl_vec_free(sample);
109 		return empty_sample(bset);
110 	}
111 
112 	isl_basic_set_free(bset);
113 	return sample;
114 error:
115 	isl_basic_set_free(bset);
116 	isl_vec_free(sample);
117 	return NULL;
118 }
119 
120 /* Find a sample integer point, if any, in bset, which is known
121  * to have equalities.  If bset contains no integer points, then
122  * return a zero-length vector.
123  * We simply remove the known equalities, compute a sample
124  * in the resulting bset, using the specified recurse function,
125  * and then transform the sample back to the original space.
126  */
sample_eq(__isl_take isl_basic_set * bset,__isl_give isl_vec * (* recurse)(__isl_take isl_basic_set *))127 static __isl_give isl_vec *sample_eq(__isl_take isl_basic_set *bset,
128 	__isl_give isl_vec *(*recurse)(__isl_take isl_basic_set *))
129 {
130 	struct isl_mat *T;
131 	struct isl_vec *sample;
132 
133 	if (!bset)
134 		return NULL;
135 
136 	bset = isl_basic_set_remove_equalities(bset, &T, NULL);
137 	sample = recurse(bset);
138 	if (!sample || sample->size == 0)
139 		isl_mat_free(T);
140 	else
141 		sample = isl_mat_vec_product(T, sample);
142 	return sample;
143 }
144 
145 /* Return a matrix containing the equalities of the tableau
146  * in constraint form.  The tableau is assumed to have
147  * an associated bset that has been kept up-to-date.
148  */
tab_equalities(struct isl_tab * tab)149 static struct isl_mat *tab_equalities(struct isl_tab *tab)
150 {
151 	int i, j;
152 	int n_eq;
153 	struct isl_mat *eq;
154 	struct isl_basic_set *bset;
155 
156 	if (!tab)
157 		return NULL;
158 
159 	bset = isl_tab_peek_bset(tab);
160 	isl_assert(tab->mat->ctx, bset, return NULL);
161 
162 	n_eq = tab->n_var - tab->n_col + tab->n_dead;
163 	if (tab->empty || n_eq == 0)
164 		return isl_mat_alloc(tab->mat->ctx, 0, tab->n_var);
165 	if (n_eq == tab->n_var)
166 		return isl_mat_identity(tab->mat->ctx, tab->n_var);
167 
168 	eq = isl_mat_alloc(tab->mat->ctx, n_eq, tab->n_var);
169 	if (!eq)
170 		return NULL;
171 	for (i = 0, j = 0; i < tab->n_con; ++i) {
172 		if (tab->con[i].is_row)
173 			continue;
174 		if (tab->con[i].index >= 0 && tab->con[i].index >= tab->n_dead)
175 			continue;
176 		if (i < bset->n_eq)
177 			isl_seq_cpy(eq->row[j], bset->eq[i] + 1, tab->n_var);
178 		else
179 			isl_seq_cpy(eq->row[j],
180 				    bset->ineq[i - bset->n_eq] + 1, tab->n_var);
181 		++j;
182 	}
183 	isl_assert(bset->ctx, j == n_eq, goto error);
184 	return eq;
185 error:
186 	isl_mat_free(eq);
187 	return NULL;
188 }
189 
190 /* Compute and return an initial basis for the bounded tableau "tab".
191  *
192  * If the tableau is either full-dimensional or zero-dimensional,
193  * the we simply return an identity matrix.
194  * Otherwise, we construct a basis whose first directions correspond
195  * to equalities.
196  */
initial_basis(struct isl_tab * tab)197 static struct isl_mat *initial_basis(struct isl_tab *tab)
198 {
199 	int n_eq;
200 	struct isl_mat *eq;
201 	struct isl_mat *Q;
202 
203 	tab->n_unbounded = 0;
204 	tab->n_zero = n_eq = tab->n_var - tab->n_col + tab->n_dead;
205 	if (tab->empty || n_eq == 0 || n_eq == tab->n_var)
206 		return isl_mat_identity(tab->mat->ctx, 1 + tab->n_var);
207 
208 	eq = tab_equalities(tab);
209 	eq = isl_mat_left_hermite(eq, 0, NULL, &Q);
210 	if (!eq)
211 		return NULL;
212 	isl_mat_free(eq);
213 
214 	Q = isl_mat_lin_to_aff(Q);
215 	return Q;
216 }
217 
218 /* Compute the minimum of the current ("level") basis row over "tab"
219  * and store the result in position "level" of "min".
220  *
221  * This function assumes that at least one more row and at least
222  * one more element in the constraint array are available in the tableau.
223  */
compute_min(isl_ctx * ctx,struct isl_tab * tab,__isl_keep isl_vec * min,int level)224 static enum isl_lp_result compute_min(isl_ctx *ctx, struct isl_tab *tab,
225 	__isl_keep isl_vec *min, int level)
226 {
227 	return isl_tab_min(tab, tab->basis->row[1 + level],
228 			    ctx->one, &min->el[level], NULL, 0);
229 }
230 
231 /* Compute the maximum of the current ("level") basis row over "tab"
232  * and store the result in position "level" of "max".
233  *
234  * This function assumes that at least one more row and at least
235  * one more element in the constraint array are available in the tableau.
236  */
compute_max(isl_ctx * ctx,struct isl_tab * tab,__isl_keep isl_vec * max,int level)237 static enum isl_lp_result compute_max(isl_ctx *ctx, struct isl_tab *tab,
238 	__isl_keep isl_vec *max, int level)
239 {
240 	enum isl_lp_result res;
241 	unsigned dim = tab->n_var;
242 
243 	isl_seq_neg(tab->basis->row[1 + level] + 1,
244 		    tab->basis->row[1 + level] + 1, dim);
245 	res = isl_tab_min(tab, tab->basis->row[1 + level],
246 		    ctx->one, &max->el[level], NULL, 0);
247 	isl_seq_neg(tab->basis->row[1 + level] + 1,
248 		    tab->basis->row[1 + level] + 1, dim);
249 	isl_int_neg(max->el[level], max->el[level]);
250 
251 	return res;
252 }
253 
254 /* Perform a greedy search for an integer point in the set represented
255  * by "tab", given that the minimal rational value (rounded up to the
256  * nearest integer) at "level" is smaller than the maximal rational
257  * value (rounded down to the nearest integer).
258  *
259  * Return 1 if we have found an integer point (if tab->n_unbounded > 0
260  * then we may have only found integer values for the bounded dimensions
261  * and it is the responsibility of the caller to extend this solution
262  * to the unbounded dimensions).
263  * Return 0 if greedy search did not result in a solution.
264  * Return -1 if some error occurred.
265  *
266  * We assign a value half-way between the minimum and the maximum
267  * to the current dimension and check if the minimal value of the
268  * next dimension is still smaller than (or equal) to the maximal value.
269  * We continue this process until either
270  * - the minimal value (rounded up) is greater than the maximal value
271  *	(rounded down).  In this case, greedy search has failed.
272  * - we have exhausted all bounded dimensions, meaning that we have
273  *	found a solution.
274  * - the sample value of the tableau is integral.
275  * - some error has occurred.
276  */
greedy_search(isl_ctx * ctx,struct isl_tab * tab,__isl_keep isl_vec * min,__isl_keep isl_vec * max,int level)277 static int greedy_search(isl_ctx *ctx, struct isl_tab *tab,
278 	__isl_keep isl_vec *min, __isl_keep isl_vec *max, int level)
279 {
280 	struct isl_tab_undo *snap;
281 	enum isl_lp_result res;
282 
283 	snap = isl_tab_snap(tab);
284 
285 	do {
286 		isl_int_add(tab->basis->row[1 + level][0],
287 			    min->el[level], max->el[level]);
288 		isl_int_fdiv_q_ui(tab->basis->row[1 + level][0],
289 			    tab->basis->row[1 + level][0], 2);
290 		isl_int_neg(tab->basis->row[1 + level][0],
291 			    tab->basis->row[1 + level][0]);
292 		if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
293 			return -1;
294 		isl_int_set_si(tab->basis->row[1 + level][0], 0);
295 
296 		if (++level >= tab->n_var - tab->n_unbounded)
297 			return 1;
298 		if (isl_tab_sample_is_integer(tab))
299 			return 1;
300 
301 		res = compute_min(ctx, tab, min, level);
302 		if (res == isl_lp_error)
303 			return -1;
304 		if (res != isl_lp_ok)
305 			isl_die(ctx, isl_error_internal,
306 				"expecting bounded rational solution",
307 				return -1);
308 		res = compute_max(ctx, tab, max, level);
309 		if (res == isl_lp_error)
310 			return -1;
311 		if (res != isl_lp_ok)
312 			isl_die(ctx, isl_error_internal,
313 				"expecting bounded rational solution",
314 				return -1);
315 	} while (isl_int_le(min->el[level], max->el[level]));
316 
317 	if (isl_tab_rollback(tab, snap) < 0)
318 		return -1;
319 
320 	return 0;
321 }
322 
323 /* Given a tableau representing a set, find and return
324  * an integer point in the set, if there is any.
325  *
326  * We perform a depth first search
327  * for an integer point, by scanning all possible values in the range
328  * attained by a basis vector, where an initial basis may have been set
329  * by the calling function.  Otherwise an initial basis that exploits
330  * the equalities in the tableau is created.
331  * tab->n_zero is currently ignored and is clobbered by this function.
332  *
333  * The tableau is allowed to have unbounded direction, but then
334  * the calling function needs to set an initial basis, with the
335  * unbounded directions last and with tab->n_unbounded set
336  * to the number of unbounded directions.
337  * Furthermore, the calling functions needs to add shifted copies
338  * of all constraints involving unbounded directions to ensure
339  * that any feasible rational value in these directions can be rounded
340  * up to yield a feasible integer value.
341  * In particular, let B define the given basis x' = B x
342  * and let T be the inverse of B, i.e., X = T x'.
343  * Let a x + c >= 0 be a constraint of the set represented by the tableau,
344  * or a T x' + c >= 0 in terms of the given basis.  Assume that
345  * the bounded directions have an integer value, then we can safely
346  * round up the values for the unbounded directions if we make sure
347  * that x' not only satisfies the original constraint, but also
348  * the constraint "a T x' + c + s >= 0" with s the sum of all
349  * negative values in the last n_unbounded entries of "a T".
350  * The calling function therefore needs to add the constraint
351  * a x + c + s >= 0.  The current function then scans the first
352  * directions for an integer value and once those have been found,
353  * it can compute "T ceil(B x)" to yield an integer point in the set.
354  * Note that during the search, the first rows of B may be changed
355  * by a basis reduction, but the last n_unbounded rows of B remain
356  * unaltered and are also not mixed into the first rows.
357  *
358  * The search is implemented iteratively.  "level" identifies the current
359  * basis vector.  "init" is true if we want the first value at the current
360  * level and false if we want the next value.
361  *
362  * At the start of each level, we first check if we can find a solution
363  * using greedy search.  If not, we continue with the exhaustive search.
364  *
365  * The initial basis is the identity matrix.  If the range in some direction
366  * contains more than one integer value, we perform basis reduction based
367  * on the value of ctx->opt->gbr
368  *	- ISL_GBR_NEVER:	never perform basis reduction
369  *	- ISL_GBR_ONCE:		only perform basis reduction the first
370  *				time such a range is encountered
371  *	- ISL_GBR_ALWAYS:	always perform basis reduction when
372  *				such a range is encountered
373  *
374  * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
375  * reduction computation to return early.  That is, as soon as it
376  * finds a reasonable first direction.
377  */
isl_tab_sample(struct isl_tab * tab)378 __isl_give isl_vec *isl_tab_sample(struct isl_tab *tab)
379 {
380 	unsigned dim;
381 	unsigned gbr;
382 	struct isl_ctx *ctx;
383 	struct isl_vec *sample;
384 	struct isl_vec *min;
385 	struct isl_vec *max;
386 	enum isl_lp_result res;
387 	int level;
388 	int init;
389 	int reduced;
390 	struct isl_tab_undo **snap;
391 
392 	if (!tab)
393 		return NULL;
394 	if (tab->empty)
395 		return isl_vec_alloc(tab->mat->ctx, 0);
396 
397 	if (!tab->basis)
398 		tab->basis = initial_basis(tab);
399 	if (!tab->basis)
400 		return NULL;
401 	isl_assert(tab->mat->ctx, tab->basis->n_row == tab->n_var + 1,
402 		    return NULL);
403 	isl_assert(tab->mat->ctx, tab->basis->n_col == tab->n_var + 1,
404 		    return NULL);
405 
406 	ctx = tab->mat->ctx;
407 	dim = tab->n_var;
408 	gbr = ctx->opt->gbr;
409 
410 	if (tab->n_unbounded == tab->n_var) {
411 		sample = isl_tab_get_sample_value(tab);
412 		sample = isl_mat_vec_product(isl_mat_copy(tab->basis), sample);
413 		sample = isl_vec_ceil(sample);
414 		sample = isl_mat_vec_inverse_product(isl_mat_copy(tab->basis),
415 							sample);
416 		return sample;
417 	}
418 
419 	if (isl_tab_extend_cons(tab, dim + 1) < 0)
420 		return NULL;
421 
422 	min = isl_vec_alloc(ctx, dim);
423 	max = isl_vec_alloc(ctx, dim);
424 	snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim);
425 
426 	if (!min || !max || !snap)
427 		goto error;
428 
429 	level = 0;
430 	init = 1;
431 	reduced = 0;
432 
433 	while (level >= 0) {
434 		if (init) {
435 			int choice;
436 
437 			res = compute_min(ctx, tab, min, level);
438 			if (res == isl_lp_error)
439 				goto error;
440 			if (res != isl_lp_ok)
441 				isl_die(ctx, isl_error_internal,
442 					"expecting bounded rational solution",
443 					goto error);
444 			if (isl_tab_sample_is_integer(tab))
445 				break;
446 			res = compute_max(ctx, tab, max, level);
447 			if (res == isl_lp_error)
448 				goto error;
449 			if (res != isl_lp_ok)
450 				isl_die(ctx, isl_error_internal,
451 					"expecting bounded rational solution",
452 					goto error);
453 			if (isl_tab_sample_is_integer(tab))
454 				break;
455 			choice = isl_int_lt(min->el[level], max->el[level]);
456 			if (choice) {
457 				int g;
458 				g = greedy_search(ctx, tab, min, max, level);
459 				if (g < 0)
460 					goto error;
461 				if (g)
462 					break;
463 			}
464 			if (!reduced && choice &&
465 			    ctx->opt->gbr != ISL_GBR_NEVER) {
466 				unsigned gbr_only_first;
467 				if (ctx->opt->gbr == ISL_GBR_ONCE)
468 					ctx->opt->gbr = ISL_GBR_NEVER;
469 				tab->n_zero = level;
470 				gbr_only_first = ctx->opt->gbr_only_first;
471 				ctx->opt->gbr_only_first =
472 					ctx->opt->gbr == ISL_GBR_ALWAYS;
473 				tab = isl_tab_compute_reduced_basis(tab);
474 				ctx->opt->gbr_only_first = gbr_only_first;
475 				if (!tab || !tab->basis)
476 					goto error;
477 				reduced = 1;
478 				continue;
479 			}
480 			reduced = 0;
481 			snap[level] = isl_tab_snap(tab);
482 		} else
483 			isl_int_add_ui(min->el[level], min->el[level], 1);
484 
485 		if (isl_int_gt(min->el[level], max->el[level])) {
486 			level--;
487 			init = 0;
488 			if (level >= 0)
489 				if (isl_tab_rollback(tab, snap[level]) < 0)
490 					goto error;
491 			continue;
492 		}
493 		isl_int_neg(tab->basis->row[1 + level][0], min->el[level]);
494 		if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
495 			goto error;
496 		isl_int_set_si(tab->basis->row[1 + level][0], 0);
497 		if (level + tab->n_unbounded < dim - 1) {
498 			++level;
499 			init = 1;
500 			continue;
501 		}
502 		break;
503 	}
504 
505 	if (level >= 0) {
506 		sample = isl_tab_get_sample_value(tab);
507 		if (!sample)
508 			goto error;
509 		if (tab->n_unbounded && !isl_int_is_one(sample->el[0])) {
510 			sample = isl_mat_vec_product(isl_mat_copy(tab->basis),
511 						     sample);
512 			sample = isl_vec_ceil(sample);
513 			sample = isl_mat_vec_inverse_product(
514 					isl_mat_copy(tab->basis), sample);
515 		}
516 	} else
517 		sample = isl_vec_alloc(ctx, 0);
518 
519 	ctx->opt->gbr = gbr;
520 	isl_vec_free(min);
521 	isl_vec_free(max);
522 	free(snap);
523 	return sample;
524 error:
525 	ctx->opt->gbr = gbr;
526 	isl_vec_free(min);
527 	isl_vec_free(max);
528 	free(snap);
529 	return NULL;
530 }
531 
532 static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_set *bset);
533 
534 /* Internal data for factored_sample.
535  * "sample" collects the sample and may get reset to a zero-length vector
536  * signaling the absence of a sample vector.
537  * "pos" is the position of the contribution of the next factor.
538  */
539 struct isl_factored_sample_data {
540 	isl_vec *sample;
541 	int pos;
542 };
543 
544 /* isl_factorizer_every_factor_basic_set callback that extends
545  * the sample in data->sample with the contribution
546  * of the factor "bset".
547  * If "bset" turns out to be empty, then the product is empty too and
548  * no further factors need to be considered.
549  */
factor_sample(__isl_keep isl_basic_set * bset,void * user)550 static isl_bool factor_sample(__isl_keep isl_basic_set *bset, void *user)
551 {
552 	struct isl_factored_sample_data *data = user;
553 	isl_vec *sample;
554 	isl_size n;
555 
556 	n = isl_basic_set_dim(bset, isl_dim_set);
557 	if (n < 0)
558 		return isl_bool_error;
559 
560 	sample = sample_bounded(isl_basic_set_copy(bset));
561 	if (!sample)
562 		return isl_bool_error;
563 	if (sample->size == 0) {
564 		isl_vec_free(data->sample);
565 		data->sample = sample;
566 		return isl_bool_false;
567 	}
568 	isl_seq_cpy(data->sample->el + data->pos, sample->el + 1, n);
569 	isl_vec_free(sample);
570 	data->pos += n;
571 
572 	return isl_bool_true;
573 }
574 
575 /* Compute a sample point of the given basic set, based on the given,
576  * non-trivial factorization.
577  */
factored_sample(__isl_take isl_basic_set * bset,__isl_take isl_factorizer * f)578 static __isl_give isl_vec *factored_sample(__isl_take isl_basic_set *bset,
579 	__isl_take isl_factorizer *f)
580 {
581 	struct isl_factored_sample_data data = { NULL };
582 	isl_ctx *ctx;
583 	isl_size total;
584 	isl_bool every;
585 
586 	ctx = isl_basic_set_get_ctx(bset);
587 	total = isl_basic_set_dim(bset, isl_dim_all);
588 	if (!ctx || total < 0)
589 		goto error;
590 
591 	data.sample = isl_vec_alloc(ctx, 1 + total);
592 	if (!data.sample)
593 		goto error;
594 	isl_int_set_si(data.sample->el[0], 1);
595 	data.pos = 1;
596 
597 	every = isl_factorizer_every_factor_basic_set(f, &factor_sample, &data);
598 	if (every < 0) {
599 		data.sample = isl_vec_free(data.sample);
600 	} else if (every) {
601 		isl_morph *morph;
602 
603 		morph = isl_morph_inverse(isl_morph_copy(f->morph));
604 		data.sample = isl_morph_vec(morph, data.sample);
605 	}
606 
607 	isl_basic_set_free(bset);
608 	isl_factorizer_free(f);
609 	return data.sample;
610 error:
611 	isl_basic_set_free(bset);
612 	isl_factorizer_free(f);
613 	isl_vec_free(data.sample);
614 	return NULL;
615 }
616 
617 /* Given a basic set that is known to be bounded, find and return
618  * an integer point in the basic set, if there is any.
619  *
620  * After handling some trivial cases, we construct a tableau
621  * and then use isl_tab_sample to find a sample, passing it
622  * the identity matrix as initial basis.
623  */
sample_bounded(__isl_take isl_basic_set * bset)624 static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_set *bset)
625 {
626 	isl_size dim;
627 	struct isl_vec *sample;
628 	struct isl_tab *tab = NULL;
629 	isl_factorizer *f;
630 
631 	if (!bset)
632 		return NULL;
633 
634 	if (isl_basic_set_plain_is_empty(bset))
635 		return empty_sample(bset);
636 
637 	dim = isl_basic_set_dim(bset, isl_dim_all);
638 	if (dim < 0)
639 		bset = isl_basic_set_free(bset);
640 	if (dim == 0)
641 		return zero_sample(bset);
642 	if (dim == 1)
643 		return interval_sample(bset);
644 	if (bset->n_eq > 0)
645 		return sample_eq(bset, sample_bounded);
646 
647 	f = isl_basic_set_factorizer(bset);
648 	if (!f)
649 		goto error;
650 	if (f->n_group != 0)
651 		return factored_sample(bset, f);
652 	isl_factorizer_free(f);
653 
654 	tab = isl_tab_from_basic_set(bset, 1);
655 	if (tab && tab->empty) {
656 		isl_tab_free(tab);
657 		ISL_F_SET(bset, ISL_BASIC_SET_EMPTY);
658 		sample = isl_vec_alloc(isl_basic_set_get_ctx(bset), 0);
659 		isl_basic_set_free(bset);
660 		return sample;
661 	}
662 
663 	if (!ISL_F_ISSET(bset, ISL_BASIC_SET_NO_IMPLICIT))
664 		if (isl_tab_detect_implicit_equalities(tab) < 0)
665 			goto error;
666 
667 	sample = isl_tab_sample(tab);
668 	if (!sample)
669 		goto error;
670 
671 	if (sample->size > 0) {
672 		isl_vec_free(bset->sample);
673 		bset->sample = isl_vec_copy(sample);
674 	}
675 
676 	isl_basic_set_free(bset);
677 	isl_tab_free(tab);
678 	return sample;
679 error:
680 	isl_basic_set_free(bset);
681 	isl_tab_free(tab);
682 	return NULL;
683 }
684 
685 /* Given a basic set "bset" and a value "sample" for the first coordinates
686  * of bset, plug in these values and drop the corresponding coordinates.
687  *
688  * We do this by computing the preimage of the transformation
689  *
690  *	     [ 1 0 ]
691  *	x =  [ s 0 ] x'
692  *	     [ 0 I ]
693  *
694  * where [1 s] is the sample value and I is the identity matrix of the
695  * appropriate dimension.
696  */
plug_in(__isl_take isl_basic_set * bset,__isl_take isl_vec * sample)697 static __isl_give isl_basic_set *plug_in(__isl_take isl_basic_set *bset,
698 	__isl_take isl_vec *sample)
699 {
700 	int i;
701 	isl_size total;
702 	struct isl_mat *T;
703 
704 	total = isl_basic_set_dim(bset, isl_dim_all);
705 	if (total < 0 || !sample)
706 		goto error;
707 
708 	T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1));
709 	if (!T)
710 		goto error;
711 
712 	for (i = 0; i < sample->size; ++i) {
713 		isl_int_set(T->row[i][0], sample->el[i]);
714 		isl_seq_clr(T->row[i] + 1, T->n_col - 1);
715 	}
716 	for (i = 0; i < T->n_col - 1; ++i) {
717 		isl_seq_clr(T->row[sample->size + i], T->n_col);
718 		isl_int_set_si(T->row[sample->size + i][1 + i], 1);
719 	}
720 	isl_vec_free(sample);
721 
722 	bset = isl_basic_set_preimage(bset, T);
723 	return bset;
724 error:
725 	isl_basic_set_free(bset);
726 	isl_vec_free(sample);
727 	return NULL;
728 }
729 
730 /* Given a basic set "bset", return any (possibly non-integer) point
731  * in the basic set.
732  */
rational_sample(__isl_take isl_basic_set * bset)733 static __isl_give isl_vec *rational_sample(__isl_take isl_basic_set *bset)
734 {
735 	struct isl_tab *tab;
736 	struct isl_vec *sample;
737 
738 	if (!bset)
739 		return NULL;
740 
741 	tab = isl_tab_from_basic_set(bset, 0);
742 	sample = isl_tab_get_sample_value(tab);
743 	isl_tab_free(tab);
744 
745 	isl_basic_set_free(bset);
746 
747 	return sample;
748 }
749 
750 /* Given a linear cone "cone" and a rational point "vec",
751  * construct a polyhedron with shifted copies of the constraints in "cone",
752  * i.e., a polyhedron with "cone" as its recession cone, such that each
753  * point x in this polyhedron is such that the unit box positioned at x
754  * lies entirely inside the affine cone 'vec + cone'.
755  * Any rational point in this polyhedron may therefore be rounded up
756  * to yield an integer point that lies inside said affine cone.
757  *
758  * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
759  * point "vec" by v/d.
760  * Let b_i = <a_i, v>.  Then the affine cone 'vec + cone' is given
761  * by <a_i, x> - b/d >= 0.
762  * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
763  * We prefer this polyhedron over the actual affine cone because it doesn't
764  * require a scaling of the constraints.
765  * If each of the vertices of the unit cube positioned at x lies inside
766  * this polyhedron, then the whole unit cube at x lies inside the affine cone.
767  * We therefore impose that x' = x + \sum e_i, for any selection of unit
768  * vectors lies inside the polyhedron, i.e.,
769  *
770  *	<a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
771  *
772  * The most stringent of these constraints is the one that selects
773  * all negative a_i, so the polyhedron we are looking for has constraints
774  *
775  *	<a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
776  *
777  * Note that if cone were known to have only non-negative rays
778  * (which can be accomplished by a unimodular transformation),
779  * then we would only have to check the points x' = x + e_i
780  * and we only have to add the smallest negative a_i (if any)
781  * instead of the sum of all negative a_i.
782  */
shift_cone(__isl_take isl_basic_set * cone,__isl_take isl_vec * vec)783 static __isl_give isl_basic_set *shift_cone(__isl_take isl_basic_set *cone,
784 	__isl_take isl_vec *vec)
785 {
786 	int i, j, k;
787 	isl_size total;
788 
789 	struct isl_basic_set *shift = NULL;
790 
791 	total = isl_basic_set_dim(cone, isl_dim_all);
792 	if (total < 0 || !vec)
793 		goto error;
794 
795 	isl_assert(cone->ctx, cone->n_eq == 0, goto error);
796 
797 	shift = isl_basic_set_alloc_space(isl_basic_set_get_space(cone),
798 					0, 0, cone->n_ineq);
799 
800 	for (i = 0; i < cone->n_ineq; ++i) {
801 		k = isl_basic_set_alloc_inequality(shift);
802 		if (k < 0)
803 			goto error;
804 		isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total);
805 		isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total,
806 				      &shift->ineq[k][0]);
807 		isl_int_cdiv_q(shift->ineq[k][0],
808 			       shift->ineq[k][0], vec->el[0]);
809 		isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]);
810 		for (j = 0; j < total; ++j) {
811 			if (isl_int_is_nonneg(shift->ineq[k][1 + j]))
812 				continue;
813 			isl_int_add(shift->ineq[k][0],
814 				    shift->ineq[k][0], shift->ineq[k][1 + j]);
815 		}
816 	}
817 
818 	isl_basic_set_free(cone);
819 	isl_vec_free(vec);
820 
821 	return isl_basic_set_finalize(shift);
822 error:
823 	isl_basic_set_free(shift);
824 	isl_basic_set_free(cone);
825 	isl_vec_free(vec);
826 	return NULL;
827 }
828 
829 /* Given a rational point vec in a (transformed) basic set,
830  * such that cone is the recession cone of the original basic set,
831  * "round up" the rational point to an integer point.
832  *
833  * We first check if the rational point just happens to be integer.
834  * If not, we transform the cone in the same way as the basic set,
835  * pick a point x in this cone shifted to the rational point such that
836  * the whole unit cube at x is also inside this affine cone.
837  * Then we simply round up the coordinates of x and return the
838  * resulting integer point.
839  */
round_up_in_cone(__isl_take isl_vec * vec,__isl_take isl_basic_set * cone,__isl_take isl_mat * U)840 static __isl_give isl_vec *round_up_in_cone(__isl_take isl_vec *vec,
841 	__isl_take isl_basic_set *cone, __isl_take isl_mat *U)
842 {
843 	isl_size total;
844 
845 	if (!vec || !cone || !U)
846 		goto error;
847 
848 	isl_assert(vec->ctx, vec->size != 0, goto error);
849 	if (isl_int_is_one(vec->el[0])) {
850 		isl_mat_free(U);
851 		isl_basic_set_free(cone);
852 		return vec;
853 	}
854 
855 	total = isl_basic_set_dim(cone, isl_dim_all);
856 	if (total < 0)
857 		goto error;
858 	cone = isl_basic_set_preimage(cone, U);
859 	cone = isl_basic_set_remove_dims(cone, isl_dim_set,
860 					 0, total - (vec->size - 1));
861 
862 	cone = shift_cone(cone, vec);
863 
864 	vec = rational_sample(cone);
865 	vec = isl_vec_ceil(vec);
866 	return vec;
867 error:
868 	isl_mat_free(U);
869 	isl_vec_free(vec);
870 	isl_basic_set_free(cone);
871 	return NULL;
872 }
873 
874 /* Concatenate two integer vectors, i.e., two vectors with denominator
875  * (stored in element 0) equal to 1.
876  */
vec_concat(__isl_take isl_vec * vec1,__isl_take isl_vec * vec2)877 static __isl_give isl_vec *vec_concat(__isl_take isl_vec *vec1,
878 	__isl_take isl_vec *vec2)
879 {
880 	struct isl_vec *vec;
881 
882 	if (!vec1 || !vec2)
883 		goto error;
884 	isl_assert(vec1->ctx, vec1->size > 0, goto error);
885 	isl_assert(vec2->ctx, vec2->size > 0, goto error);
886 	isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error);
887 	isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error);
888 
889 	vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1);
890 	if (!vec)
891 		goto error;
892 
893 	isl_seq_cpy(vec->el, vec1->el, vec1->size);
894 	isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1);
895 
896 	isl_vec_free(vec1);
897 	isl_vec_free(vec2);
898 
899 	return vec;
900 error:
901 	isl_vec_free(vec1);
902 	isl_vec_free(vec2);
903 	return NULL;
904 }
905 
906 /* Give a basic set "bset" with recession cone "cone", compute and
907  * return an integer point in bset, if any.
908  *
909  * If the recession cone is full-dimensional, then we know that
910  * bset contains an infinite number of integer points and it is
911  * fairly easy to pick one of them.
912  * If the recession cone is not full-dimensional, then we first
913  * transform bset such that the bounded directions appear as
914  * the first dimensions of the transformed basic set.
915  * We do this by using a unimodular transformation that transforms
916  * the equalities in the recession cone to equalities on the first
917  * dimensions.
918  *
919  * The transformed set is then projected onto its bounded dimensions.
920  * Note that to compute this projection, we can simply drop all constraints
921  * involving any of the unbounded dimensions since these constraints
922  * cannot be combined to produce a constraint on the bounded dimensions.
923  * To see this, assume that there is such a combination of constraints
924  * that produces a constraint on the bounded dimensions.  This means
925  * that some combination of the unbounded dimensions has both an upper
926  * bound and a lower bound in terms of the bounded dimensions, but then
927  * this combination would be a bounded direction too and would have been
928  * transformed into a bounded dimensions.
929  *
930  * We then compute a sample value in the bounded dimensions.
931  * If no such value can be found, then the original set did not contain
932  * any integer points and we are done.
933  * Otherwise, we plug in the value we found in the bounded dimensions,
934  * project out these bounded dimensions and end up with a set with
935  * a full-dimensional recession cone.
936  * A sample point in this set is computed by "rounding up" any
937  * rational point in the set.
938  *
939  * The sample points in the bounded and unbounded dimensions are
940  * then combined into a single sample point and transformed back
941  * to the original space.
942  */
isl_basic_set_sample_with_cone(__isl_take isl_basic_set * bset,__isl_take isl_basic_set * cone)943 __isl_give isl_vec *isl_basic_set_sample_with_cone(
944 	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone)
945 {
946 	isl_size total;
947 	unsigned cone_dim;
948 	struct isl_mat *M, *U;
949 	struct isl_vec *sample;
950 	struct isl_vec *cone_sample;
951 	struct isl_ctx *ctx;
952 	struct isl_basic_set *bounded;
953 
954 	total = isl_basic_set_dim(cone, isl_dim_all);
955 	if (!bset || total < 0)
956 		goto error;
957 
958 	ctx = isl_basic_set_get_ctx(bset);
959 	cone_dim = total - cone->n_eq;
960 
961 	M = isl_mat_sub_alloc6(ctx, cone->eq, 0, cone->n_eq, 1, total);
962 	M = isl_mat_left_hermite(M, 0, &U, NULL);
963 	if (!M)
964 		goto error;
965 	isl_mat_free(M);
966 
967 	U = isl_mat_lin_to_aff(U);
968 	bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
969 
970 	bounded = isl_basic_set_copy(bset);
971 	bounded = isl_basic_set_drop_constraints_involving(bounded,
972 						   total - cone_dim, cone_dim);
973 	bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim);
974 	sample = sample_bounded(bounded);
975 	if (!sample || sample->size == 0) {
976 		isl_basic_set_free(bset);
977 		isl_basic_set_free(cone);
978 		isl_mat_free(U);
979 		return sample;
980 	}
981 	bset = plug_in(bset, isl_vec_copy(sample));
982 	cone_sample = rational_sample(bset);
983 	cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U));
984 	sample = vec_concat(sample, cone_sample);
985 	sample = isl_mat_vec_product(U, sample);
986 	return sample;
987 error:
988 	isl_basic_set_free(cone);
989 	isl_basic_set_free(bset);
990 	return NULL;
991 }
992 
vec_sum_of_neg(__isl_keep isl_vec * v,isl_int * s)993 static void vec_sum_of_neg(__isl_keep isl_vec *v, isl_int *s)
994 {
995 	int i;
996 
997 	isl_int_set_si(*s, 0);
998 
999 	for (i = 0; i < v->size; ++i)
1000 		if (isl_int_is_neg(v->el[i]))
1001 			isl_int_add(*s, *s, v->el[i]);
1002 }
1003 
1004 /* Given a tableau "tab", a tableau "tab_cone" that corresponds
1005  * to the recession cone and the inverse of a new basis U = inv(B),
1006  * with the unbounded directions in B last,
1007  * add constraints to "tab" that ensure any rational value
1008  * in the unbounded directions can be rounded up to an integer value.
1009  *
1010  * The new basis is given by x' = B x, i.e., x = U x'.
1011  * For any rational value of the last tab->n_unbounded coordinates
1012  * in the update tableau, the value that is obtained by rounding
1013  * up this value should be contained in the original tableau.
1014  * For any constraint "a x + c >= 0", we therefore need to add
1015  * a constraint "a x + c + s >= 0", with s the sum of all negative
1016  * entries in the last elements of "a U".
1017  *
1018  * Since we are not interested in the first entries of any of the "a U",
1019  * we first drop the columns of U that correpond to bounded directions.
1020  */
tab_shift_cone(struct isl_tab * tab,struct isl_tab * tab_cone,struct isl_mat * U)1021 static int tab_shift_cone(struct isl_tab *tab,
1022 	struct isl_tab *tab_cone, struct isl_mat *U)
1023 {
1024 	int i;
1025 	isl_int v;
1026 	struct isl_basic_set *bset = NULL;
1027 
1028 	if (tab && tab->n_unbounded == 0) {
1029 		isl_mat_free(U);
1030 		return 0;
1031 	}
1032 	isl_int_init(v);
1033 	if (!tab || !tab_cone || !U)
1034 		goto error;
1035 	bset = isl_tab_peek_bset(tab_cone);
1036 	U = isl_mat_drop_cols(U, 0, tab->n_var - tab->n_unbounded);
1037 	for (i = 0; i < bset->n_ineq; ++i) {
1038 		int ok;
1039 		struct isl_vec *row = NULL;
1040 		if (isl_tab_is_equality(tab_cone, tab_cone->n_eq + i))
1041 			continue;
1042 		row = isl_vec_alloc(bset->ctx, tab_cone->n_var);
1043 		if (!row)
1044 			goto error;
1045 		isl_seq_cpy(row->el, bset->ineq[i] + 1, tab_cone->n_var);
1046 		row = isl_vec_mat_product(row, isl_mat_copy(U));
1047 		if (!row)
1048 			goto error;
1049 		vec_sum_of_neg(row, &v);
1050 		isl_vec_free(row);
1051 		if (isl_int_is_zero(v))
1052 			continue;
1053 		if (isl_tab_extend_cons(tab, 1) < 0)
1054 			goto error;
1055 		isl_int_add(bset->ineq[i][0], bset->ineq[i][0], v);
1056 		ok = isl_tab_add_ineq(tab, bset->ineq[i]) >= 0;
1057 		isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], v);
1058 		if (!ok)
1059 			goto error;
1060 	}
1061 
1062 	isl_mat_free(U);
1063 	isl_int_clear(v);
1064 	return 0;
1065 error:
1066 	isl_mat_free(U);
1067 	isl_int_clear(v);
1068 	return -1;
1069 }
1070 
1071 /* Compute and return an initial basis for the possibly
1072  * unbounded tableau "tab".  "tab_cone" is a tableau
1073  * for the corresponding recession cone.
1074  * Additionally, add constraints to "tab" that ensure
1075  * that any rational value for the unbounded directions
1076  * can be rounded up to an integer value.
1077  *
1078  * If the tableau is bounded, i.e., if the recession cone
1079  * is zero-dimensional, then we just use inital_basis.
1080  * Otherwise, we construct a basis whose first directions
1081  * correspond to equalities, followed by bounded directions,
1082  * i.e., equalities in the recession cone.
1083  * The remaining directions are then unbounded.
1084  */
isl_tab_set_initial_basis_with_cone(struct isl_tab * tab,struct isl_tab * tab_cone)1085 int isl_tab_set_initial_basis_with_cone(struct isl_tab *tab,
1086 	struct isl_tab *tab_cone)
1087 {
1088 	struct isl_mat *eq;
1089 	struct isl_mat *cone_eq;
1090 	struct isl_mat *U, *Q;
1091 
1092 	if (!tab || !tab_cone)
1093 		return -1;
1094 
1095 	if (tab_cone->n_col == tab_cone->n_dead) {
1096 		tab->basis = initial_basis(tab);
1097 		return tab->basis ? 0 : -1;
1098 	}
1099 
1100 	eq = tab_equalities(tab);
1101 	if (!eq)
1102 		return -1;
1103 	tab->n_zero = eq->n_row;
1104 	cone_eq = tab_equalities(tab_cone);
1105 	eq = isl_mat_concat(eq, cone_eq);
1106 	if (!eq)
1107 		return -1;
1108 	tab->n_unbounded = tab->n_var - (eq->n_row - tab->n_zero);
1109 	eq = isl_mat_left_hermite(eq, 0, &U, &Q);
1110 	if (!eq)
1111 		return -1;
1112 	isl_mat_free(eq);
1113 	tab->basis = isl_mat_lin_to_aff(Q);
1114 	if (tab_shift_cone(tab, tab_cone, U) < 0)
1115 		return -1;
1116 	if (!tab->basis)
1117 		return -1;
1118 	return 0;
1119 }
1120 
1121 /* Compute and return a sample point in bset using generalized basis
1122  * reduction.  We first check if the input set has a non-trivial
1123  * recession cone.  If so, we perform some extra preprocessing in
1124  * sample_with_cone.  Otherwise, we directly perform generalized basis
1125  * reduction.
1126  */
gbr_sample(__isl_take isl_basic_set * bset)1127 static __isl_give isl_vec *gbr_sample(__isl_take isl_basic_set *bset)
1128 {
1129 	isl_size dim;
1130 	struct isl_basic_set *cone;
1131 
1132 	dim = isl_basic_set_dim(bset, isl_dim_all);
1133 	if (dim < 0)
1134 		goto error;
1135 
1136 	cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
1137 	if (!cone)
1138 		goto error;
1139 
1140 	if (cone->n_eq < dim)
1141 		return isl_basic_set_sample_with_cone(bset, cone);
1142 
1143 	isl_basic_set_free(cone);
1144 	return sample_bounded(bset);
1145 error:
1146 	isl_basic_set_free(bset);
1147 	return NULL;
1148 }
1149 
basic_set_sample(__isl_take isl_basic_set * bset,int bounded)1150 static __isl_give isl_vec *basic_set_sample(__isl_take isl_basic_set *bset,
1151 	int bounded)
1152 {
1153 	struct isl_ctx *ctx;
1154 	isl_size dim;
1155 	if (!bset)
1156 		return NULL;
1157 
1158 	ctx = bset->ctx;
1159 	if (isl_basic_set_plain_is_empty(bset))
1160 		return empty_sample(bset);
1161 
1162 	dim = isl_basic_set_dim(bset, isl_dim_set);
1163 	if (dim < 0 ||
1164 	    isl_basic_set_check_no_params(bset) < 0 ||
1165 	    isl_basic_set_check_no_locals(bset) < 0)
1166 		goto error;
1167 
1168 	if (bset->sample && bset->sample->size == 1 + dim) {
1169 		int contains = isl_basic_set_contains(bset, bset->sample);
1170 		if (contains < 0)
1171 			goto error;
1172 		if (contains) {
1173 			struct isl_vec *sample = isl_vec_copy(bset->sample);
1174 			isl_basic_set_free(bset);
1175 			return sample;
1176 		}
1177 	}
1178 	isl_vec_free(bset->sample);
1179 	bset->sample = NULL;
1180 
1181 	if (bset->n_eq > 0)
1182 		return sample_eq(bset, bounded ? isl_basic_set_sample_bounded
1183 					       : isl_basic_set_sample_vec);
1184 	if (dim == 0)
1185 		return zero_sample(bset);
1186 	if (dim == 1)
1187 		return interval_sample(bset);
1188 
1189 	return bounded ? sample_bounded(bset) : gbr_sample(bset);
1190 error:
1191 	isl_basic_set_free(bset);
1192 	return NULL;
1193 }
1194 
isl_basic_set_sample_vec(__isl_take isl_basic_set * bset)1195 __isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset)
1196 {
1197 	return basic_set_sample(bset, 0);
1198 }
1199 
1200 /* Compute an integer sample in "bset", where the caller guarantees
1201  * that "bset" is bounded.
1202  */
isl_basic_set_sample_bounded(__isl_take isl_basic_set * bset)1203 __isl_give isl_vec *isl_basic_set_sample_bounded(__isl_take isl_basic_set *bset)
1204 {
1205 	return basic_set_sample(bset, 1);
1206 }
1207 
isl_basic_set_from_vec(__isl_take isl_vec * vec)1208 __isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec)
1209 {
1210 	int i;
1211 	int k;
1212 	struct isl_basic_set *bset = NULL;
1213 	struct isl_ctx *ctx;
1214 	isl_size dim;
1215 
1216 	if (!vec)
1217 		return NULL;
1218 	ctx = vec->ctx;
1219 	isl_assert(ctx, vec->size != 0, goto error);
1220 
1221 	bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
1222 	dim = isl_basic_set_dim(bset, isl_dim_set);
1223 	if (dim < 0)
1224 		goto error;
1225 	for (i = dim - 1; i >= 0; --i) {
1226 		k = isl_basic_set_alloc_equality(bset);
1227 		if (k < 0)
1228 			goto error;
1229 		isl_seq_clr(bset->eq[k], 1 + dim);
1230 		isl_int_neg(bset->eq[k][0], vec->el[1 + i]);
1231 		isl_int_set(bset->eq[k][1 + i], vec->el[0]);
1232 	}
1233 	bset->sample = vec;
1234 
1235 	return bset;
1236 error:
1237 	isl_basic_set_free(bset);
1238 	isl_vec_free(vec);
1239 	return NULL;
1240 }
1241 
isl_basic_map_sample(__isl_take isl_basic_map * bmap)1242 __isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap)
1243 {
1244 	struct isl_basic_set *bset;
1245 	struct isl_vec *sample_vec;
1246 
1247 	bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
1248 	sample_vec = isl_basic_set_sample_vec(bset);
1249 	if (!sample_vec)
1250 		goto error;
1251 	if (sample_vec->size == 0) {
1252 		isl_vec_free(sample_vec);
1253 		return isl_basic_map_set_to_empty(bmap);
1254 	}
1255 	isl_vec_free(bmap->sample);
1256 	bmap->sample = isl_vec_copy(sample_vec);
1257 	bset = isl_basic_set_from_vec(sample_vec);
1258 	return isl_basic_map_overlying_set(bset, bmap);
1259 error:
1260 	isl_basic_map_free(bmap);
1261 	return NULL;
1262 }
1263 
isl_basic_set_sample(__isl_take isl_basic_set * bset)1264 __isl_give isl_basic_set *isl_basic_set_sample(__isl_take isl_basic_set *bset)
1265 {
1266 	return isl_basic_map_sample(bset);
1267 }
1268 
isl_map_sample(__isl_take isl_map * map)1269 __isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map)
1270 {
1271 	int i;
1272 	isl_basic_map *sample = NULL;
1273 
1274 	if (!map)
1275 		goto error;
1276 
1277 	for (i = 0; i < map->n; ++i) {
1278 		sample = isl_basic_map_sample(isl_basic_map_copy(map->p[i]));
1279 		if (!sample)
1280 			goto error;
1281 		if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY))
1282 			break;
1283 		isl_basic_map_free(sample);
1284 	}
1285 	if (i == map->n)
1286 		sample = isl_basic_map_empty(isl_map_get_space(map));
1287 	isl_map_free(map);
1288 	return sample;
1289 error:
1290 	isl_map_free(map);
1291 	return NULL;
1292 }
1293 
isl_set_sample(__isl_take isl_set * set)1294 __isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set)
1295 {
1296 	return bset_from_bmap(isl_map_sample(set_to_map(set)));
1297 }
1298 
isl_basic_set_sample_point(__isl_take isl_basic_set * bset)1299 __isl_give isl_point *isl_basic_set_sample_point(__isl_take isl_basic_set *bset)
1300 {
1301 	isl_vec *vec;
1302 	isl_space *space;
1303 
1304 	space = isl_basic_set_get_space(bset);
1305 	bset = isl_basic_set_underlying_set(bset);
1306 	vec = isl_basic_set_sample_vec(bset);
1307 
1308 	return isl_point_alloc(space, vec);
1309 }
1310 
isl_set_sample_point(__isl_take isl_set * set)1311 __isl_give isl_point *isl_set_sample_point(__isl_take isl_set *set)
1312 {
1313 	int i;
1314 	isl_point *pnt;
1315 
1316 	if (!set)
1317 		return NULL;
1318 
1319 	for (i = 0; i < set->n; ++i) {
1320 		pnt = isl_basic_set_sample_point(isl_basic_set_copy(set->p[i]));
1321 		if (!pnt)
1322 			goto error;
1323 		if (!isl_point_is_void(pnt))
1324 			break;
1325 		isl_point_free(pnt);
1326 	}
1327 	if (i == set->n)
1328 		pnt = isl_point_void(isl_set_get_space(set));
1329 
1330 	isl_set_free(set);
1331 	return pnt;
1332 error:
1333 	isl_set_free(set);
1334 	return NULL;
1335 }
1336