1 /*
2  * Copyright (C) 2021 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.graphics.cts.utils;
18 
19 /**
20  * Copied from frameworks/base/core to support SystemPalette CTS test
21  *
22  * The frame, or viewing conditions, where a color was seen. Used, along with a color, to create a
23  * color appearance model representing the color.
24  *
25  * <p>To convert a traditional color to a color appearance model, it requires knowing what
26  * conditions the color was observed in. Our perception of color depends on, for example, the tone
27  * of the light illuminating the color, how bright that light was, etc.
28  *
29  * <p>This class is modelled separately from the color appearance model itself because there are a
30  * number of calculations during the color => CAM conversion process that depend only on the viewing
31  * conditions. Caching those calculations in a Frame instance saves a significant amount of time.
32  */
33 public final class Frame {
34     // Standard viewing conditions assumed in RGB specification - Stokes, Anderson, Chandrasekar,
35     // Motta - A Standard Default Color Space for the Internet: sRGB, 1996.
36     //
37     // White point = D65
38     // Luminance of adapting field: 200 / Pi / 5, units are cd/m^2.
39     //   sRGB ambient illuminance = 64 lux (per sRGB spec). However, the spec notes this is
40     //     artificially low and based on monitors in 1990s. Use 200, the sRGB spec says this is the
41     //     real average, and a survey of lux values on Wikipedia confirms this is a comfortable
42     //     default: somewhere between a very dark overcast day and office lighting.
43     //   Per CAM16 introduction paper (Li et al, 2017) Ew = pi * lw, and La = lw * Yb/Yw
44     //   Ew = ambient environment luminance, in lux.
45     //   Yb/Yw is taken to be midgray, ~20% relative luminance (XYZ Y 18.4, CIELAB L* 50).
46     //   Therefore La = (Ew / pi) * .184
47     //   La = 200 / pi * .184
48     // Image surround to 10 degrees = ~20% relative luminance = CIELAB L* 50
49     //
50     // Not from sRGB standard:
51     // Surround = average, 2.0.
52     // Discounting illuminant = false, doesn't occur for self-luminous displays
53     public static final Frame DEFAULT =
54             Frame.make(
55                     CamUtils.WHITE_POINT_D65,
56                     (float) (200.0f / Math.PI * CamUtils.yFromLstar(50.0f) / 100.f), 50.0f, 2.0f,
57                     false);
58 
59     private final float mAw;
60     private final float mNbb;
61     private final float mNcb;
62     private final float mC;
63     private final float mNc;
64     private final float mN;
65     private final float[] mRgbD;
66     private final float mFl;
67     private final float mFlRoot;
68     private final float mZ;
69 
getAw()70     float getAw() {
71         return mAw;
72     }
73 
getN()74     float getN() {
75         return mN;
76     }
77 
getNbb()78     float getNbb() {
79         return mNbb;
80     }
81 
getNcb()82     float getNcb() {
83         return mNcb;
84     }
85 
getC()86     float getC() {
87         return mC;
88     }
89 
getNc()90     float getNc() {
91         return mNc;
92     }
93 
getRgbD()94     float[] getRgbD() {
95         return mRgbD;
96     }
97 
getFl()98     float getFl() {
99         return mFl;
100     }
101 
getFlRoot()102     float getFlRoot() {
103         return mFlRoot;
104     }
105 
getZ()106     float getZ() {
107         return mZ;
108     }
109 
Frame(float n, float aw, float nbb, float ncb, float c, float nc, float[] rgbD, float fl, float fLRoot, float z)110     private Frame(float n, float aw, float nbb, float ncb, float c, float nc, float[] rgbD,
111             float fl, float fLRoot, float z) {
112         mN = n;
113         mAw = aw;
114         mNbb = nbb;
115         mNcb = ncb;
116         mC = c;
117         mNc = nc;
118         mRgbD = rgbD;
119         mFl = fl;
120         mFlRoot = fLRoot;
121         mZ = z;
122     }
123 
124     /** Create a custom frame. */
make(float[] whitepoint, float adaptingLuminance, float backgroundLstar, float surround, boolean discountingIlluminant)125     public static Frame make(float[] whitepoint, float adaptingLuminance,
126             float backgroundLstar, float surround, boolean discountingIlluminant) {
127         // Transform white point XYZ to 'cone'/'rgb' responses
128         float[][] matrix = CamUtils.XYZ_TO_CAM16RGB;
129         float[] xyz = whitepoint;
130         float rW = (xyz[0] * matrix[0][0]) + (xyz[1] * matrix[0][1]) + (xyz[2] * matrix[0][2]);
131         float gW = (xyz[0] * matrix[1][0]) + (xyz[1] * matrix[1][1]) + (xyz[2] * matrix[1][2]);
132         float bW = (xyz[0] * matrix[2][0]) + (xyz[1] * matrix[2][1]) + (xyz[2] * matrix[2][2]);
133 
134         // Scale input surround, domain (0, 2), to CAM16 surround, domain (0.8, 1.0)
135         float f = 0.8f + (surround / 10.0f);
136         // "Exponential non-linearity"
137         float c = (f >= 0.9) ? MathUtils.lerp(0.59f, 0.69f, ((f - 0.9f) * 10.0f)) : MathUtils.lerp(
138                 0.525f, 0.59f, ((f - 0.8f) * 10.0f));
139         // Calculate degree of adaptation to illuminant
140         float d = discountingIlluminant ? 1.0f : f * (1.0f - ((1.0f / 3.6f) * (float) Math.exp(
141                 (-adaptingLuminance - 42.0f) / 92.0f)));
142         // Per Li et al, if D is greater than 1 or less than 0, set it to 1 or 0.
143         d = (d > 1.0) ? 1.0f : (d < 0.0) ? 0.0f : d;
144         // Chromatic induction factor
145         float nc = f;
146 
147         // Cone responses to the whitepoint, adjusted for illuminant discounting.
148         //
149         // Why use 100.0 instead of the white point's relative luminance?
150         //
151         // Some papers and implementations, for both CAM02 and CAM16, use the Y
152         // value of the reference white instead of 100. Fairchild's Color Appearance
153         // Models (3rd edition) notes that this is in error: it was included in the
154         // CIE 2004a report on CIECAM02, but, later parts of the conversion process
155         // account for scaling of appearance relative to the white point relative
156         // luminance. This part should simply use 100 as luminance.
157         float[] rgbD = new float[]{d * (100.0f / rW) + 1.0f - d, d * (100.0f / gW) + 1.0f - d,
158                 d * (100.0f / bW) + 1.0f - d, };
159         // Luminance-level adaptation factor
160         float k = 1.0f / (5.0f * adaptingLuminance + 1.0f);
161         float k4 = k * k * k * k;
162         float k4F = 1.0f - k4;
163         float fl = (k4 * adaptingLuminance) + (0.1f * k4F * k4F * (float) Math.cbrt(
164                 5.0 * adaptingLuminance));
165 
166         // Intermediate factor, ratio of background relative luminance to white relative luminance
167         float n = CamUtils.yFromLstar(backgroundLstar) / whitepoint[1];
168 
169         // Base exponential nonlinearity
170         // note Schlomer 2018 has a typo and uses 1.58, the correct factor is 1.48
171         float z = 1.48f + (float) Math.sqrt(n);
172 
173         // Luminance-level induction factors
174         float nbb = 0.725f / (float) Math.pow(n, 0.2);
175         float ncb = nbb;
176 
177         // Discounted cone responses to the white point, adjusted for post-chromatic
178         // adaptation perceptual nonlinearities.
179         float[] rgbAFactors = new float[]{(float) Math.pow(fl * rgbD[0] * rW / 100.0, 0.42),
180                 (float) Math.pow(fl * rgbD[1] * gW / 100.0, 0.42), (float) Math.pow(
181                 fl * rgbD[2] * bW / 100.0, 0.42)};
182 
183         float[] rgbA = new float[]{(400.0f * rgbAFactors[0]) / (rgbAFactors[0] + 27.13f),
184                 (400.0f * rgbAFactors[1]) / (rgbAFactors[1] + 27.13f),
185                 (400.0f * rgbAFactors[2]) / (rgbAFactors[2] + 27.13f), };
186 
187         float aw = ((2.0f * rgbA[0]) + rgbA[1] + (0.05f * rgbA[2])) * nbb;
188 
189         return new Frame(n, aw, nbb, ncb, c, nc, rgbD, fl, (float) Math.pow(fl, 0.25), z);
190     }
191 }
192