1 /*
2  *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "rtc_base/virtual_socket_server.h"
12 
13 #include <errno.h>
14 #include <math.h>
15 
16 #include <map>
17 #include <memory>
18 #include <vector>
19 
20 #include "absl/algorithm/container.h"
21 #include "rtc_base/checks.h"
22 #include "rtc_base/deprecated/recursive_critical_section.h"
23 #include "rtc_base/fake_clock.h"
24 #include "rtc_base/logging.h"
25 #include "rtc_base/physical_socket_server.h"
26 #include "rtc_base/socket_address_pair.h"
27 #include "rtc_base/thread.h"
28 #include "rtc_base/time_utils.h"
29 
30 namespace rtc {
31 #if defined(WEBRTC_WIN)
32 const in_addr kInitialNextIPv4 = {{{0x01, 0, 0, 0}}};
33 #else
34 // This value is entirely arbitrary, hence the lack of concern about endianness.
35 const in_addr kInitialNextIPv4 = {0x01000000};
36 #endif
37 // Starts at ::2 so as to not cause confusion with ::1.
38 const in6_addr kInitialNextIPv6 = {
39     {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2}}};
40 
41 const uint16_t kFirstEphemeralPort = 49152;
42 const uint16_t kLastEphemeralPort = 65535;
43 const uint16_t kEphemeralPortCount =
44     kLastEphemeralPort - kFirstEphemeralPort + 1;
45 const uint32_t kDefaultNetworkCapacity = 64 * 1024;
46 const uint32_t kDefaultTcpBufferSize = 32 * 1024;
47 
48 const uint32_t UDP_HEADER_SIZE = 28;  // IP + UDP headers
49 const uint32_t TCP_HEADER_SIZE = 40;  // IP + TCP headers
50 const uint32_t TCP_MSS = 1400;        // Maximum segment size
51 
52 // Note: The current algorithm doesn't work for sample sizes smaller than this.
53 const int NUM_SAMPLES = 1000;
54 
55 enum {
56   MSG_ID_PACKET,
57   MSG_ID_ADDRESS_BOUND,
58   MSG_ID_CONNECT,
59   MSG_ID_DISCONNECT,
60   MSG_ID_SIGNALREADEVENT,
61 };
62 
63 // Packets are passed between sockets as messages.  We copy the data just like
64 // the kernel does.
65 class Packet : public MessageData {
66  public:
Packet(const char * data,size_t size,const SocketAddress & from)67   Packet(const char* data, size_t size, const SocketAddress& from)
68       : size_(size), consumed_(0), from_(from) {
69     RTC_DCHECK(nullptr != data);
70     data_ = new char[size_];
71     memcpy(data_, data, size_);
72   }
73 
~Packet()74   ~Packet() override { delete[] data_; }
75 
data() const76   const char* data() const { return data_ + consumed_; }
size() const77   size_t size() const { return size_ - consumed_; }
from() const78   const SocketAddress& from() const { return from_; }
79 
80   // Remove the first size bytes from the data.
Consume(size_t size)81   void Consume(size_t size) {
82     RTC_DCHECK(size + consumed_ < size_);
83     consumed_ += size;
84   }
85 
86  private:
87   char* data_;
88   size_t size_, consumed_;
89   SocketAddress from_;
90 };
91 
92 struct MessageAddress : public MessageData {
MessageAddressrtc::MessageAddress93   explicit MessageAddress(const SocketAddress& a) : addr(a) {}
94   SocketAddress addr;
95 };
96 
VirtualSocket(VirtualSocketServer * server,int family,int type,bool async)97 VirtualSocket::VirtualSocket(VirtualSocketServer* server,
98                              int family,
99                              int type,
100                              bool async)
101     : server_(server),
102       type_(type),
103       async_(async),
104       state_(CS_CLOSED),
105       error_(0),
106       listen_queue_(nullptr),
107       network_size_(0),
108       recv_buffer_size_(0),
109       bound_(false),
110       was_any_(false) {
111   RTC_DCHECK((type_ == SOCK_DGRAM) || (type_ == SOCK_STREAM));
112   RTC_DCHECK(async_ ||
113              (type_ != SOCK_STREAM));  // We only support async streams
114   server->SignalReadyToSend.connect(this,
115                                     &VirtualSocket::OnSocketServerReadyToSend);
116 }
117 
~VirtualSocket()118 VirtualSocket::~VirtualSocket() {
119   Close();
120 
121   for (RecvBuffer::iterator it = recv_buffer_.begin(); it != recv_buffer_.end();
122        ++it) {
123     delete *it;
124   }
125 }
126 
GetLocalAddress() const127 SocketAddress VirtualSocket::GetLocalAddress() const {
128   return local_addr_;
129 }
130 
GetRemoteAddress() const131 SocketAddress VirtualSocket::GetRemoteAddress() const {
132   return remote_addr_;
133 }
134 
SetLocalAddress(const SocketAddress & addr)135 void VirtualSocket::SetLocalAddress(const SocketAddress& addr) {
136   local_addr_ = addr;
137 }
138 
Bind(const SocketAddress & addr)139 int VirtualSocket::Bind(const SocketAddress& addr) {
140   if (!local_addr_.IsNil()) {
141     error_ = EINVAL;
142     return -1;
143   }
144   local_addr_ = addr;
145   int result = server_->Bind(this, &local_addr_);
146   if (result != 0) {
147     local_addr_.Clear();
148     error_ = EADDRINUSE;
149   } else {
150     bound_ = true;
151     was_any_ = addr.IsAnyIP();
152     // Post a message here such that test case could have chance to
153     // process the local address. (i.e. SetAlternativeLocalAddress).
154     server_->msg_queue_->Post(RTC_FROM_HERE, this, MSG_ID_ADDRESS_BOUND);
155   }
156   return result;
157 }
158 
Connect(const SocketAddress & addr)159 int VirtualSocket::Connect(const SocketAddress& addr) {
160   return InitiateConnect(addr, true);
161 }
162 
Close()163 int VirtualSocket::Close() {
164   if (!local_addr_.IsNil() && bound_) {
165     // Remove from the binding table.
166     server_->Unbind(local_addr_, this);
167     bound_ = false;
168   }
169 
170   if (SOCK_STREAM == type_) {
171     // Cancel pending sockets
172     if (listen_queue_) {
173       while (!listen_queue_->empty()) {
174         SocketAddress addr = listen_queue_->front();
175 
176         // Disconnect listening socket.
177         server_->Disconnect(server_->LookupBinding(addr));
178         listen_queue_->pop_front();
179       }
180       delete listen_queue_;
181       listen_queue_ = nullptr;
182     }
183     // Disconnect stream sockets
184     if (CS_CONNECTED == state_) {
185       // Disconnect remote socket, check if it is a child of a server socket.
186       VirtualSocket* socket =
187           server_->LookupConnection(local_addr_, remote_addr_);
188       if (!socket) {
189         // Not a server socket child, then see if it is bound.
190         // TODO(tbd): If this is indeed a server socket that has no
191         // children this will cause the server socket to be
192         // closed. This might lead to unexpected results, how to fix this?
193         socket = server_->LookupBinding(remote_addr_);
194       }
195       server_->Disconnect(socket);
196 
197       // Remove mapping for both directions.
198       server_->RemoveConnection(remote_addr_, local_addr_);
199       server_->RemoveConnection(local_addr_, remote_addr_);
200     }
201     // Cancel potential connects
202     MessageList msgs;
203     if (server_->msg_queue_) {
204       server_->msg_queue_->Clear(this, MSG_ID_CONNECT, &msgs);
205     }
206     for (MessageList::iterator it = msgs.begin(); it != msgs.end(); ++it) {
207       RTC_DCHECK(nullptr != it->pdata);
208       MessageAddress* data = static_cast<MessageAddress*>(it->pdata);
209 
210       // Lookup remote side.
211       VirtualSocket* socket =
212           server_->LookupConnection(local_addr_, data->addr);
213       if (socket) {
214         // Server socket, remote side is a socket retreived by
215         // accept. Accepted sockets are not bound so we will not
216         // find it by looking in the bindings table.
217         server_->Disconnect(socket);
218         server_->RemoveConnection(local_addr_, data->addr);
219       } else {
220         server_->Disconnect(server_->LookupBinding(data->addr));
221       }
222       delete data;
223     }
224     // Clear incoming packets and disconnect messages
225     if (server_->msg_queue_) {
226       server_->msg_queue_->Clear(this);
227     }
228   }
229 
230   state_ = CS_CLOSED;
231   local_addr_.Clear();
232   remote_addr_.Clear();
233   return 0;
234 }
235 
Send(const void * pv,size_t cb)236 int VirtualSocket::Send(const void* pv, size_t cb) {
237   if (CS_CONNECTED != state_) {
238     error_ = ENOTCONN;
239     return -1;
240   }
241   if (SOCK_DGRAM == type_) {
242     return SendUdp(pv, cb, remote_addr_);
243   } else {
244     return SendTcp(pv, cb);
245   }
246 }
247 
SendTo(const void * pv,size_t cb,const SocketAddress & addr)248 int VirtualSocket::SendTo(const void* pv,
249                           size_t cb,
250                           const SocketAddress& addr) {
251   if (SOCK_DGRAM == type_) {
252     return SendUdp(pv, cb, addr);
253   } else {
254     if (CS_CONNECTED != state_) {
255       error_ = ENOTCONN;
256       return -1;
257     }
258     return SendTcp(pv, cb);
259   }
260 }
261 
Recv(void * pv,size_t cb,int64_t * timestamp)262 int VirtualSocket::Recv(void* pv, size_t cb, int64_t* timestamp) {
263   SocketAddress addr;
264   return RecvFrom(pv, cb, &addr, timestamp);
265 }
266 
RecvFrom(void * pv,size_t cb,SocketAddress * paddr,int64_t * timestamp)267 int VirtualSocket::RecvFrom(void* pv,
268                             size_t cb,
269                             SocketAddress* paddr,
270                             int64_t* timestamp) {
271   if (timestamp) {
272     *timestamp = -1;
273   }
274   // If we don't have a packet, then either error or wait for one to arrive.
275   if (recv_buffer_.empty()) {
276     if (async_) {
277       error_ = EAGAIN;
278       return -1;
279     }
280     while (recv_buffer_.empty()) {
281       Message msg;
282       server_->msg_queue_->Get(&msg);
283       server_->msg_queue_->Dispatch(&msg);
284     }
285   }
286 
287   // Return the packet at the front of the queue.
288   Packet* packet = recv_buffer_.front();
289   size_t data_read = std::min(cb, packet->size());
290   memcpy(pv, packet->data(), data_read);
291   *paddr = packet->from();
292 
293   if (data_read < packet->size()) {
294     packet->Consume(data_read);
295   } else {
296     recv_buffer_.pop_front();
297     delete packet;
298   }
299 
300   // To behave like a real socket, SignalReadEvent should fire in the next
301   // message loop pass if there's still data buffered.
302   if (!recv_buffer_.empty()) {
303     // Clear the message so it doesn't end up posted multiple times.
304     server_->msg_queue_->Clear(this, MSG_ID_SIGNALREADEVENT);
305     server_->msg_queue_->Post(RTC_FROM_HERE, this, MSG_ID_SIGNALREADEVENT);
306   }
307 
308   if (SOCK_STREAM == type_) {
309     bool was_full = (recv_buffer_size_ == server_->recv_buffer_capacity_);
310     recv_buffer_size_ -= data_read;
311     if (was_full) {
312       VirtualSocket* sender = server_->LookupBinding(remote_addr_);
313       RTC_DCHECK(nullptr != sender);
314       server_->SendTcp(sender);
315     }
316   }
317 
318   return static_cast<int>(data_read);
319 }
320 
Listen(int backlog)321 int VirtualSocket::Listen(int backlog) {
322   RTC_DCHECK(SOCK_STREAM == type_);
323   RTC_DCHECK(CS_CLOSED == state_);
324   if (local_addr_.IsNil()) {
325     error_ = EINVAL;
326     return -1;
327   }
328   RTC_DCHECK(nullptr == listen_queue_);
329   listen_queue_ = new ListenQueue;
330   state_ = CS_CONNECTING;
331   return 0;
332 }
333 
Accept(SocketAddress * paddr)334 VirtualSocket* VirtualSocket::Accept(SocketAddress* paddr) {
335   if (nullptr == listen_queue_) {
336     error_ = EINVAL;
337     return nullptr;
338   }
339   while (!listen_queue_->empty()) {
340     VirtualSocket* socket = new VirtualSocket(server_, AF_INET, type_, async_);
341 
342     // Set the new local address to the same as this server socket.
343     socket->SetLocalAddress(local_addr_);
344     // Sockets made from a socket that 'was Any' need to inherit that.
345     socket->set_was_any(was_any_);
346     SocketAddress remote_addr(listen_queue_->front());
347     int result = socket->InitiateConnect(remote_addr, false);
348     listen_queue_->pop_front();
349     if (result != 0) {
350       delete socket;
351       continue;
352     }
353     socket->CompleteConnect(remote_addr, false);
354     if (paddr) {
355       *paddr = remote_addr;
356     }
357     return socket;
358   }
359   error_ = EWOULDBLOCK;
360   return nullptr;
361 }
362 
GetError() const363 int VirtualSocket::GetError() const {
364   return error_;
365 }
366 
SetError(int error)367 void VirtualSocket::SetError(int error) {
368   error_ = error;
369 }
370 
GetState() const371 Socket::ConnState VirtualSocket::GetState() const {
372   return state_;
373 }
374 
GetOption(Option opt,int * value)375 int VirtualSocket::GetOption(Option opt, int* value) {
376   OptionsMap::const_iterator it = options_map_.find(opt);
377   if (it == options_map_.end()) {
378     return -1;
379   }
380   *value = it->second;
381   return 0;  // 0 is success to emulate getsockopt()
382 }
383 
SetOption(Option opt,int value)384 int VirtualSocket::SetOption(Option opt, int value) {
385   options_map_[opt] = value;
386   return 0;  // 0 is success to emulate setsockopt()
387 }
388 
OnMessage(Message * pmsg)389 void VirtualSocket::OnMessage(Message* pmsg) {
390   if (pmsg->message_id == MSG_ID_PACKET) {
391     RTC_DCHECK(nullptr != pmsg->pdata);
392     Packet* packet = static_cast<Packet*>(pmsg->pdata);
393 
394     recv_buffer_.push_back(packet);
395 
396     if (async_) {
397       SignalReadEvent(this);
398     }
399   } else if (pmsg->message_id == MSG_ID_CONNECT) {
400     RTC_DCHECK(nullptr != pmsg->pdata);
401     MessageAddress* data = static_cast<MessageAddress*>(pmsg->pdata);
402     if (listen_queue_ != nullptr) {
403       listen_queue_->push_back(data->addr);
404       if (async_) {
405         SignalReadEvent(this);
406       }
407     } else if ((SOCK_STREAM == type_) && (CS_CONNECTING == state_)) {
408       CompleteConnect(data->addr, true);
409     } else {
410       RTC_LOG(LS_VERBOSE) << "Socket at " << local_addr_.ToString()
411                           << " is not listening";
412       server_->Disconnect(server_->LookupBinding(data->addr));
413     }
414     delete data;
415   } else if (pmsg->message_id == MSG_ID_DISCONNECT) {
416     RTC_DCHECK(SOCK_STREAM == type_);
417     if (CS_CLOSED != state_) {
418       int error = (CS_CONNECTING == state_) ? ECONNREFUSED : 0;
419       state_ = CS_CLOSED;
420       remote_addr_.Clear();
421       if (async_) {
422         SignalCloseEvent(this, error);
423       }
424     }
425   } else if (pmsg->message_id == MSG_ID_ADDRESS_BOUND) {
426     SignalAddressReady(this, GetLocalAddress());
427   } else if (pmsg->message_id == MSG_ID_SIGNALREADEVENT) {
428     if (!recv_buffer_.empty()) {
429       SignalReadEvent(this);
430     }
431   } else {
432     RTC_NOTREACHED();
433   }
434 }
435 
InitiateConnect(const SocketAddress & addr,bool use_delay)436 int VirtualSocket::InitiateConnect(const SocketAddress& addr, bool use_delay) {
437   if (!remote_addr_.IsNil()) {
438     error_ = (CS_CONNECTED == state_) ? EISCONN : EINPROGRESS;
439     return -1;
440   }
441   if (local_addr_.IsNil()) {
442     // If there's no local address set, grab a random one in the correct AF.
443     int result = 0;
444     if (addr.ipaddr().family() == AF_INET) {
445       result = Bind(SocketAddress("0.0.0.0", 0));
446     } else if (addr.ipaddr().family() == AF_INET6) {
447       result = Bind(SocketAddress("::", 0));
448     }
449     if (result != 0) {
450       return result;
451     }
452   }
453   if (type_ == SOCK_DGRAM) {
454     remote_addr_ = addr;
455     state_ = CS_CONNECTED;
456   } else {
457     int result = server_->Connect(this, addr, use_delay);
458     if (result != 0) {
459       error_ = EHOSTUNREACH;
460       return -1;
461     }
462     state_ = CS_CONNECTING;
463   }
464   return 0;
465 }
466 
CompleteConnect(const SocketAddress & addr,bool notify)467 void VirtualSocket::CompleteConnect(const SocketAddress& addr, bool notify) {
468   RTC_DCHECK(CS_CONNECTING == state_);
469   remote_addr_ = addr;
470   state_ = CS_CONNECTED;
471   server_->AddConnection(remote_addr_, local_addr_, this);
472   if (async_ && notify) {
473     SignalConnectEvent(this);
474   }
475 }
476 
SendUdp(const void * pv,size_t cb,const SocketAddress & addr)477 int VirtualSocket::SendUdp(const void* pv,
478                            size_t cb,
479                            const SocketAddress& addr) {
480   // If we have not been assigned a local port, then get one.
481   if (local_addr_.IsNil()) {
482     local_addr_ = EmptySocketAddressWithFamily(addr.ipaddr().family());
483     int result = server_->Bind(this, &local_addr_);
484     if (result != 0) {
485       local_addr_.Clear();
486       error_ = EADDRINUSE;
487       return result;
488     }
489   }
490 
491   // Send the data in a message to the appropriate socket.
492   return server_->SendUdp(this, static_cast<const char*>(pv), cb, addr);
493 }
494 
SendTcp(const void * pv,size_t cb)495 int VirtualSocket::SendTcp(const void* pv, size_t cb) {
496   size_t capacity = server_->send_buffer_capacity_ - send_buffer_.size();
497   if (0 == capacity) {
498     ready_to_send_ = false;
499     error_ = EWOULDBLOCK;
500     return -1;
501   }
502   size_t consumed = std::min(cb, capacity);
503   const char* cpv = static_cast<const char*>(pv);
504   send_buffer_.insert(send_buffer_.end(), cpv, cpv + consumed);
505   server_->SendTcp(this);
506   return static_cast<int>(consumed);
507 }
508 
OnSocketServerReadyToSend()509 void VirtualSocket::OnSocketServerReadyToSend() {
510   if (ready_to_send_) {
511     // This socket didn't encounter EWOULDBLOCK, so there's nothing to do.
512     return;
513   }
514   if (type_ == SOCK_DGRAM) {
515     ready_to_send_ = true;
516     SignalWriteEvent(this);
517   } else {
518     RTC_DCHECK(type_ == SOCK_STREAM);
519     // This will attempt to empty the full send buffer, and will fire
520     // SignalWriteEvent if successful.
521     server_->SendTcp(this);
522   }
523 }
524 
VirtualSocketServer()525 VirtualSocketServer::VirtualSocketServer() : VirtualSocketServer(nullptr) {}
526 
VirtualSocketServer(ThreadProcessingFakeClock * fake_clock)527 VirtualSocketServer::VirtualSocketServer(ThreadProcessingFakeClock* fake_clock)
528     : fake_clock_(fake_clock),
529       msg_queue_(nullptr),
530       stop_on_idle_(false),
531       next_ipv4_(kInitialNextIPv4),
532       next_ipv6_(kInitialNextIPv6),
533       next_port_(kFirstEphemeralPort),
534       bindings_(new AddressMap()),
535       connections_(new ConnectionMap()),
536       bandwidth_(0),
537       network_capacity_(kDefaultNetworkCapacity),
538       send_buffer_capacity_(kDefaultTcpBufferSize),
539       recv_buffer_capacity_(kDefaultTcpBufferSize),
540       delay_mean_(0),
541       delay_stddev_(0),
542       delay_samples_(NUM_SAMPLES),
543       drop_prob_(0.0) {
544   UpdateDelayDistribution();
545 }
546 
~VirtualSocketServer()547 VirtualSocketServer::~VirtualSocketServer() {
548   delete bindings_;
549   delete connections_;
550 }
551 
GetNextIP(int family)552 IPAddress VirtualSocketServer::GetNextIP(int family) {
553   if (family == AF_INET) {
554     IPAddress next_ip(next_ipv4_);
555     next_ipv4_.s_addr = HostToNetwork32(NetworkToHost32(next_ipv4_.s_addr) + 1);
556     return next_ip;
557   } else if (family == AF_INET6) {
558     IPAddress next_ip(next_ipv6_);
559     uint32_t* as_ints = reinterpret_cast<uint32_t*>(&next_ipv6_.s6_addr);
560     as_ints[3] += 1;
561     return next_ip;
562   }
563   return IPAddress();
564 }
565 
GetNextPort()566 uint16_t VirtualSocketServer::GetNextPort() {
567   uint16_t port = next_port_;
568   if (next_port_ < kLastEphemeralPort) {
569     ++next_port_;
570   } else {
571     next_port_ = kFirstEphemeralPort;
572   }
573   return port;
574 }
575 
SetSendingBlocked(bool blocked)576 void VirtualSocketServer::SetSendingBlocked(bool blocked) {
577   if (blocked == sending_blocked_) {
578     // Unchanged; nothing to do.
579     return;
580   }
581   sending_blocked_ = blocked;
582   if (!sending_blocked_) {
583     // Sending was blocked, but is now unblocked. This signal gives sockets a
584     // chance to fire SignalWriteEvent, and for TCP, send buffered data.
585     SignalReadyToSend();
586   }
587 }
588 
CreateSocket(int family,int type)589 Socket* VirtualSocketServer::CreateSocket(int family, int type) {
590   return CreateSocketInternal(family, type);
591 }
592 
CreateAsyncSocket(int family,int type)593 AsyncSocket* VirtualSocketServer::CreateAsyncSocket(int family, int type) {
594   return CreateSocketInternal(family, type);
595 }
596 
CreateSocketInternal(int family,int type)597 VirtualSocket* VirtualSocketServer::CreateSocketInternal(int family, int type) {
598   VirtualSocket* socket = new VirtualSocket(this, family, type, true);
599   SignalSocketCreated(socket);
600   return socket;
601 }
602 
SetMessageQueue(Thread * msg_queue)603 void VirtualSocketServer::SetMessageQueue(Thread* msg_queue) {
604   msg_queue_ = msg_queue;
605   if (msg_queue_) {
606     msg_queue_->SignalQueueDestroyed.connect(
607         this, &VirtualSocketServer::OnMessageQueueDestroyed);
608   }
609 }
610 
Wait(int cmsWait,bool process_io)611 bool VirtualSocketServer::Wait(int cmsWait, bool process_io) {
612   RTC_DCHECK(msg_queue_ == Thread::Current());
613   if (stop_on_idle_ && Thread::Current()->empty()) {
614     return false;
615   }
616   // Note: we don't need to do anything with |process_io| since we don't have
617   // any real I/O. Received packets come in the form of queued messages, so
618   // Thread will ensure WakeUp is called if another thread sends a
619   // packet.
620   wakeup_.Wait(cmsWait);
621   return true;
622 }
623 
WakeUp()624 void VirtualSocketServer::WakeUp() {
625   wakeup_.Set();
626 }
627 
SetAlternativeLocalAddress(const rtc::IPAddress & address,const rtc::IPAddress & alternative)628 void VirtualSocketServer::SetAlternativeLocalAddress(
629     const rtc::IPAddress& address,
630     const rtc::IPAddress& alternative) {
631   alternative_address_mapping_[address] = alternative;
632 }
633 
ProcessMessagesUntilIdle()634 bool VirtualSocketServer::ProcessMessagesUntilIdle() {
635   RTC_DCHECK(msg_queue_ == Thread::Current());
636   stop_on_idle_ = true;
637   while (!msg_queue_->empty()) {
638     if (fake_clock_) {
639       // If using a fake clock, advance it in millisecond increments until the
640       // queue is empty.
641       fake_clock_->AdvanceTime(webrtc::TimeDelta::Millis(1));
642     } else {
643       // Otherwise, run a normal message loop.
644       Message msg;
645       if (msg_queue_->Get(&msg, Thread::kForever)) {
646         msg_queue_->Dispatch(&msg);
647       }
648     }
649   }
650   stop_on_idle_ = false;
651   return !msg_queue_->IsQuitting();
652 }
653 
SetNextPortForTesting(uint16_t port)654 void VirtualSocketServer::SetNextPortForTesting(uint16_t port) {
655   next_port_ = port;
656 }
657 
CloseTcpConnections(const SocketAddress & addr_local,const SocketAddress & addr_remote)658 bool VirtualSocketServer::CloseTcpConnections(
659     const SocketAddress& addr_local,
660     const SocketAddress& addr_remote) {
661   VirtualSocket* socket = LookupConnection(addr_local, addr_remote);
662   if (!socket) {
663     return false;
664   }
665   // Signal the close event on the local connection first.
666   socket->SignalCloseEvent(socket, 0);
667 
668   // Trigger the remote connection's close event.
669   socket->Close();
670 
671   return true;
672 }
673 
Bind(VirtualSocket * socket,const SocketAddress & addr)674 int VirtualSocketServer::Bind(VirtualSocket* socket,
675                               const SocketAddress& addr) {
676   RTC_DCHECK(nullptr != socket);
677   // Address must be completely specified at this point
678   RTC_DCHECK(!IPIsUnspec(addr.ipaddr()));
679   RTC_DCHECK(addr.port() != 0);
680 
681   // Normalize the address (turns v6-mapped addresses into v4-addresses).
682   SocketAddress normalized(addr.ipaddr().Normalized(), addr.port());
683 
684   AddressMap::value_type entry(normalized, socket);
685   return bindings_->insert(entry).second ? 0 : -1;
686 }
687 
Bind(VirtualSocket * socket,SocketAddress * addr)688 int VirtualSocketServer::Bind(VirtualSocket* socket, SocketAddress* addr) {
689   RTC_DCHECK(nullptr != socket);
690 
691   // Normalize the IP.
692   if (!IPIsUnspec(addr->ipaddr())) {
693     addr->SetIP(addr->ipaddr().Normalized());
694   } else {
695     RTC_NOTREACHED();
696   }
697 
698   // If the IP appears in |alternative_address_mapping_|, meaning the test has
699   // configured sockets bound to this IP to actually use another IP, replace
700   // the IP here.
701   auto alternative = alternative_address_mapping_.find(addr->ipaddr());
702   if (alternative != alternative_address_mapping_.end()) {
703     addr->SetIP(alternative->second);
704   }
705 
706   // Assign a port if not assigned.
707   if (addr->port() == 0) {
708     for (int i = 0; i < kEphemeralPortCount; ++i) {
709       addr->SetPort(GetNextPort());
710       if (bindings_->find(*addr) == bindings_->end()) {
711         break;
712       }
713     }
714   }
715 
716   return Bind(socket, *addr);
717 }
718 
LookupBinding(const SocketAddress & addr)719 VirtualSocket* VirtualSocketServer::LookupBinding(const SocketAddress& addr) {
720   SocketAddress normalized(addr.ipaddr().Normalized(), addr.port());
721   AddressMap::iterator it = bindings_->find(normalized);
722   if (it != bindings_->end()) {
723     return it->second;
724   }
725 
726   IPAddress default_ip = GetDefaultRoute(addr.ipaddr().family());
727   if (!IPIsUnspec(default_ip) && addr.ipaddr() == default_ip) {
728     // If we can't find a binding for the packet which is sent to the interface
729     // corresponding to the default route, it should match a binding with the
730     // correct port to the any address.
731     SocketAddress sock_addr =
732         EmptySocketAddressWithFamily(addr.ipaddr().family());
733     sock_addr.SetPort(addr.port());
734     return LookupBinding(sock_addr);
735   }
736 
737   return nullptr;
738 }
739 
Unbind(const SocketAddress & addr,VirtualSocket * socket)740 int VirtualSocketServer::Unbind(const SocketAddress& addr,
741                                 VirtualSocket* socket) {
742   SocketAddress normalized(addr.ipaddr().Normalized(), addr.port());
743   RTC_DCHECK((*bindings_)[normalized] == socket);
744   bindings_->erase(bindings_->find(normalized));
745   return 0;
746 }
747 
AddConnection(const SocketAddress & local,const SocketAddress & remote,VirtualSocket * remote_socket)748 void VirtualSocketServer::AddConnection(const SocketAddress& local,
749                                         const SocketAddress& remote,
750                                         VirtualSocket* remote_socket) {
751   // Add this socket pair to our routing table. This will allow
752   // multiple clients to connect to the same server address.
753   SocketAddress local_normalized(local.ipaddr().Normalized(), local.port());
754   SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port());
755   SocketAddressPair address_pair(local_normalized, remote_normalized);
756   connections_->insert(std::pair<SocketAddressPair, VirtualSocket*>(
757       address_pair, remote_socket));
758 }
759 
LookupConnection(const SocketAddress & local,const SocketAddress & remote)760 VirtualSocket* VirtualSocketServer::LookupConnection(
761     const SocketAddress& local,
762     const SocketAddress& remote) {
763   SocketAddress local_normalized(local.ipaddr().Normalized(), local.port());
764   SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port());
765   SocketAddressPair address_pair(local_normalized, remote_normalized);
766   ConnectionMap::iterator it = connections_->find(address_pair);
767   return (connections_->end() != it) ? it->second : nullptr;
768 }
769 
RemoveConnection(const SocketAddress & local,const SocketAddress & remote)770 void VirtualSocketServer::RemoveConnection(const SocketAddress& local,
771                                            const SocketAddress& remote) {
772   SocketAddress local_normalized(local.ipaddr().Normalized(), local.port());
773   SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port());
774   SocketAddressPair address_pair(local_normalized, remote_normalized);
775   connections_->erase(address_pair);
776 }
777 
Random()778 static double Random() {
779   return static_cast<double>(rand()) / RAND_MAX;
780 }
781 
Connect(VirtualSocket * socket,const SocketAddress & remote_addr,bool use_delay)782 int VirtualSocketServer::Connect(VirtualSocket* socket,
783                                  const SocketAddress& remote_addr,
784                                  bool use_delay) {
785   uint32_t delay = use_delay ? GetTransitDelay(socket) : 0;
786   VirtualSocket* remote = LookupBinding(remote_addr);
787   if (!CanInteractWith(socket, remote)) {
788     RTC_LOG(LS_INFO) << "Address family mismatch between "
789                      << socket->GetLocalAddress().ToString() << " and "
790                      << remote_addr.ToString();
791     return -1;
792   }
793   if (remote != nullptr) {
794     SocketAddress addr = socket->GetLocalAddress();
795     msg_queue_->PostDelayed(RTC_FROM_HERE, delay, remote, MSG_ID_CONNECT,
796                             new MessageAddress(addr));
797   } else {
798     RTC_LOG(LS_INFO) << "No one listening at " << remote_addr.ToString();
799     msg_queue_->PostDelayed(RTC_FROM_HERE, delay, socket, MSG_ID_DISCONNECT);
800   }
801   return 0;
802 }
803 
Disconnect(VirtualSocket * socket)804 bool VirtualSocketServer::Disconnect(VirtualSocket* socket) {
805   if (socket) {
806     // If we simulate packets being delayed, we should simulate the
807     // equivalent of a FIN being delayed as well.
808     uint32_t delay = GetTransitDelay(socket);
809     // Remove the mapping.
810     msg_queue_->PostDelayed(RTC_FROM_HERE, delay, socket, MSG_ID_DISCONNECT);
811     return true;
812   }
813   return false;
814 }
815 
SendUdp(VirtualSocket * socket,const char * data,size_t data_size,const SocketAddress & remote_addr)816 int VirtualSocketServer::SendUdp(VirtualSocket* socket,
817                                  const char* data,
818                                  size_t data_size,
819                                  const SocketAddress& remote_addr) {
820   ++sent_packets_;
821   if (sending_blocked_) {
822     CritScope cs(&socket->crit_);
823     socket->ready_to_send_ = false;
824     socket->error_ = EWOULDBLOCK;
825     return -1;
826   }
827 
828   // See if we want to drop this packet.
829   if (Random() < drop_prob_) {
830     RTC_LOG(LS_VERBOSE) << "Dropping packet: bad luck";
831     return static_cast<int>(data_size);
832   }
833 
834   VirtualSocket* recipient = LookupBinding(remote_addr);
835   if (!recipient) {
836     // Make a fake recipient for address family checking.
837     std::unique_ptr<VirtualSocket> dummy_socket(
838         CreateSocketInternal(AF_INET, SOCK_DGRAM));
839     dummy_socket->SetLocalAddress(remote_addr);
840     if (!CanInteractWith(socket, dummy_socket.get())) {
841       RTC_LOG(LS_VERBOSE) << "Incompatible address families: "
842                           << socket->GetLocalAddress().ToString() << " and "
843                           << remote_addr.ToString();
844       return -1;
845     }
846     RTC_LOG(LS_VERBOSE) << "No one listening at " << remote_addr.ToString();
847     return static_cast<int>(data_size);
848   }
849 
850   if (!CanInteractWith(socket, recipient)) {
851     RTC_LOG(LS_VERBOSE) << "Incompatible address families: "
852                         << socket->GetLocalAddress().ToString() << " and "
853                         << remote_addr.ToString();
854     return -1;
855   }
856 
857   {
858     CritScope cs(&socket->crit_);
859 
860     int64_t cur_time = TimeMillis();
861     PurgeNetworkPackets(socket, cur_time);
862 
863     // Determine whether we have enough bandwidth to accept this packet.  To do
864     // this, we need to update the send queue.  Once we know it's current size,
865     // we know whether we can fit this packet.
866     //
867     // NOTE: There are better algorithms for maintaining such a queue (such as
868     // "Derivative Random Drop"); however, this algorithm is a more accurate
869     // simulation of what a normal network would do.
870 
871     size_t packet_size = data_size + UDP_HEADER_SIZE;
872     if (socket->network_size_ + packet_size > network_capacity_) {
873       RTC_LOG(LS_VERBOSE) << "Dropping packet: network capacity exceeded";
874       return static_cast<int>(data_size);
875     }
876 
877     AddPacketToNetwork(socket, recipient, cur_time, data, data_size,
878                        UDP_HEADER_SIZE, false);
879 
880     return static_cast<int>(data_size);
881   }
882 }
883 
SendTcp(VirtualSocket * socket)884 void VirtualSocketServer::SendTcp(VirtualSocket* socket) {
885   ++sent_packets_;
886   if (sending_blocked_) {
887     // Eventually the socket's buffer will fill and VirtualSocket::SendTcp will
888     // set EWOULDBLOCK.
889     return;
890   }
891 
892   // TCP can't send more data than will fill up the receiver's buffer.
893   // We track the data that is in the buffer plus data in flight using the
894   // recipient's recv_buffer_size_.  Anything beyond that must be stored in the
895   // sender's buffer.  We will trigger the buffered data to be sent when data
896   // is read from the recv_buffer.
897 
898   // Lookup the local/remote pair in the connections table.
899   VirtualSocket* recipient =
900       LookupConnection(socket->local_addr_, socket->remote_addr_);
901   if (!recipient) {
902     RTC_LOG(LS_VERBOSE) << "Sending data to no one.";
903     return;
904   }
905 
906   CritScope cs(&socket->crit_);
907 
908   int64_t cur_time = TimeMillis();
909   PurgeNetworkPackets(socket, cur_time);
910 
911   while (true) {
912     size_t available = recv_buffer_capacity_ - recipient->recv_buffer_size_;
913     size_t max_data_size =
914         std::min<size_t>(available, TCP_MSS - TCP_HEADER_SIZE);
915     size_t data_size = std::min(socket->send_buffer_.size(), max_data_size);
916     if (0 == data_size)
917       break;
918 
919     AddPacketToNetwork(socket, recipient, cur_time, &socket->send_buffer_[0],
920                        data_size, TCP_HEADER_SIZE, true);
921     recipient->recv_buffer_size_ += data_size;
922 
923     size_t new_buffer_size = socket->send_buffer_.size() - data_size;
924     // Avoid undefined access beyond the last element of the vector.
925     // This only happens when new_buffer_size is 0.
926     if (data_size < socket->send_buffer_.size()) {
927       // memmove is required for potentially overlapping source/destination.
928       memmove(&socket->send_buffer_[0], &socket->send_buffer_[data_size],
929               new_buffer_size);
930     }
931     socket->send_buffer_.resize(new_buffer_size);
932   }
933 
934   if (!socket->ready_to_send_ &&
935       (socket->send_buffer_.size() < send_buffer_capacity_)) {
936     socket->ready_to_send_ = true;
937     socket->SignalWriteEvent(socket);
938   }
939 }
940 
AddPacketToNetwork(VirtualSocket * sender,VirtualSocket * recipient,int64_t cur_time,const char * data,size_t data_size,size_t header_size,bool ordered)941 void VirtualSocketServer::AddPacketToNetwork(VirtualSocket* sender,
942                                              VirtualSocket* recipient,
943                                              int64_t cur_time,
944                                              const char* data,
945                                              size_t data_size,
946                                              size_t header_size,
947                                              bool ordered) {
948   VirtualSocket::NetworkEntry entry;
949   entry.size = data_size + header_size;
950 
951   sender->network_size_ += entry.size;
952   uint32_t send_delay = SendDelay(static_cast<uint32_t>(sender->network_size_));
953   entry.done_time = cur_time + send_delay;
954   sender->network_.push_back(entry);
955 
956   // Find the delay for crossing the many virtual hops of the network.
957   uint32_t transit_delay = GetTransitDelay(sender);
958 
959   // When the incoming packet is from a binding of the any address, translate it
960   // to the default route here such that the recipient will see the default
961   // route.
962   SocketAddress sender_addr = sender->local_addr_;
963   IPAddress default_ip = GetDefaultRoute(sender_addr.ipaddr().family());
964   if (sender_addr.IsAnyIP() && !IPIsUnspec(default_ip)) {
965     sender_addr.SetIP(default_ip);
966   }
967 
968   // Post the packet as a message to be delivered (on our own thread)
969   Packet* p = new Packet(data, data_size, sender_addr);
970 
971   int64_t ts = TimeAfter(send_delay + transit_delay);
972   if (ordered) {
973     // Ensure that new packets arrive after previous ones
974     ts = std::max(ts, sender->last_delivery_time_);
975     // A socket should not have both ordered and unordered delivery, so its last
976     // delivery time only needs to be updated when it has ordered delivery.
977     sender->last_delivery_time_ = ts;
978   }
979   msg_queue_->PostAt(RTC_FROM_HERE, ts, recipient, MSG_ID_PACKET, p);
980 }
981 
PurgeNetworkPackets(VirtualSocket * socket,int64_t cur_time)982 void VirtualSocketServer::PurgeNetworkPackets(VirtualSocket* socket,
983                                               int64_t cur_time) {
984   while (!socket->network_.empty() &&
985          (socket->network_.front().done_time <= cur_time)) {
986     RTC_DCHECK(socket->network_size_ >= socket->network_.front().size);
987     socket->network_size_ -= socket->network_.front().size;
988     socket->network_.pop_front();
989   }
990 }
991 
SendDelay(uint32_t size)992 uint32_t VirtualSocketServer::SendDelay(uint32_t size) {
993   if (bandwidth_ == 0)
994     return 0;
995   else
996     return 1000 * size / bandwidth_;
997 }
998 
999 #if 0
1000 void PrintFunction(std::vector<std::pair<double, double> >* f) {
1001   return;
1002   double sum = 0;
1003   for (uint32_t i = 0; i < f->size(); ++i) {
1004     std::cout << (*f)[i].first << '\t' << (*f)[i].second << std::endl;
1005     sum += (*f)[i].second;
1006   }
1007   if (!f->empty()) {
1008     const double mean = sum / f->size();
1009     double sum_sq_dev = 0;
1010     for (uint32_t i = 0; i < f->size(); ++i) {
1011       double dev = (*f)[i].second - mean;
1012       sum_sq_dev += dev * dev;
1013     }
1014     std::cout << "Mean = " << mean << " StdDev = "
1015               << sqrt(sum_sq_dev / f->size()) << std::endl;
1016   }
1017 }
1018 #endif  // <unused>
1019 
UpdateDelayDistribution()1020 void VirtualSocketServer::UpdateDelayDistribution() {
1021   Function* dist =
1022       CreateDistribution(delay_mean_, delay_stddev_, delay_samples_);
1023   // We take a lock just to make sure we don't leak memory.
1024   {
1025     CritScope cs(&delay_crit_);
1026     delay_dist_.reset(dist);
1027   }
1028 }
1029 
1030 static double PI = 4 * atan(1.0);
1031 
Normal(double x,double mean,double stddev)1032 static double Normal(double x, double mean, double stddev) {
1033   double a = (x - mean) * (x - mean) / (2 * stddev * stddev);
1034   return exp(-a) / (stddev * sqrt(2 * PI));
1035 }
1036 
1037 #if 0  // static unused gives a warning
1038 static double Pareto(double x, double min, double k) {
1039   if (x < min)
1040     return 0;
1041   else
1042     return k * std::pow(min, k) / std::pow(x, k+1);
1043 }
1044 #endif
1045 
CreateDistribution(uint32_t mean,uint32_t stddev,uint32_t samples)1046 VirtualSocketServer::Function* VirtualSocketServer::CreateDistribution(
1047     uint32_t mean,
1048     uint32_t stddev,
1049     uint32_t samples) {
1050   Function* f = new Function();
1051 
1052   if (0 == stddev) {
1053     f->push_back(Point(mean, 1.0));
1054   } else {
1055     double start = 0;
1056     if (mean >= 4 * static_cast<double>(stddev))
1057       start = mean - 4 * static_cast<double>(stddev);
1058     double end = mean + 4 * static_cast<double>(stddev);
1059 
1060     for (uint32_t i = 0; i < samples; i++) {
1061       double x = start + (end - start) * i / (samples - 1);
1062       double y = Normal(x, mean, stddev);
1063       f->push_back(Point(x, y));
1064     }
1065   }
1066   return Resample(Invert(Accumulate(f)), 0, 1, samples);
1067 }
1068 
GetTransitDelay(Socket * socket)1069 uint32_t VirtualSocketServer::GetTransitDelay(Socket* socket) {
1070   // Use the delay based on the address if it is set.
1071   auto iter = delay_by_ip_.find(socket->GetLocalAddress().ipaddr());
1072   if (iter != delay_by_ip_.end()) {
1073     return static_cast<uint32_t>(iter->second);
1074   }
1075   // Otherwise, use the delay from the distribution distribution.
1076   size_t index = rand() % delay_dist_->size();
1077   double delay = (*delay_dist_)[index].second;
1078   // RTC_LOG_F(LS_INFO) << "random[" << index << "] = " << delay;
1079   return static_cast<uint32_t>(delay);
1080 }
1081 
1082 struct FunctionDomainCmp {
operator ()rtc::FunctionDomainCmp1083   bool operator()(const VirtualSocketServer::Point& p1,
1084                   const VirtualSocketServer::Point& p2) {
1085     return p1.first < p2.first;
1086   }
operator ()rtc::FunctionDomainCmp1087   bool operator()(double v1, const VirtualSocketServer::Point& p2) {
1088     return v1 < p2.first;
1089   }
operator ()rtc::FunctionDomainCmp1090   bool operator()(const VirtualSocketServer::Point& p1, double v2) {
1091     return p1.first < v2;
1092   }
1093 };
1094 
Accumulate(Function * f)1095 VirtualSocketServer::Function* VirtualSocketServer::Accumulate(Function* f) {
1096   RTC_DCHECK(f->size() >= 1);
1097   double v = 0;
1098   for (Function::size_type i = 0; i < f->size() - 1; ++i) {
1099     double dx = (*f)[i + 1].first - (*f)[i].first;
1100     double avgy = ((*f)[i + 1].second + (*f)[i].second) / 2;
1101     (*f)[i].second = v;
1102     v = v + dx * avgy;
1103   }
1104   (*f)[f->size() - 1].second = v;
1105   return f;
1106 }
1107 
Invert(Function * f)1108 VirtualSocketServer::Function* VirtualSocketServer::Invert(Function* f) {
1109   for (Function::size_type i = 0; i < f->size(); ++i)
1110     std::swap((*f)[i].first, (*f)[i].second);
1111 
1112   absl::c_sort(*f, FunctionDomainCmp());
1113   return f;
1114 }
1115 
Resample(Function * f,double x1,double x2,uint32_t samples)1116 VirtualSocketServer::Function* VirtualSocketServer::Resample(Function* f,
1117                                                              double x1,
1118                                                              double x2,
1119                                                              uint32_t samples) {
1120   Function* g = new Function();
1121 
1122   for (size_t i = 0; i < samples; i++) {
1123     double x = x1 + (x2 - x1) * i / (samples - 1);
1124     double y = Evaluate(f, x);
1125     g->push_back(Point(x, y));
1126   }
1127 
1128   delete f;
1129   return g;
1130 }
1131 
Evaluate(Function * f,double x)1132 double VirtualSocketServer::Evaluate(Function* f, double x) {
1133   Function::iterator iter = absl::c_lower_bound(*f, x, FunctionDomainCmp());
1134   if (iter == f->begin()) {
1135     return (*f)[0].second;
1136   } else if (iter == f->end()) {
1137     RTC_DCHECK(f->size() >= 1);
1138     return (*f)[f->size() - 1].second;
1139   } else if (iter->first == x) {
1140     return iter->second;
1141   } else {
1142     double x1 = (iter - 1)->first;
1143     double y1 = (iter - 1)->second;
1144     double x2 = iter->first;
1145     double y2 = iter->second;
1146     return y1 + (y2 - y1) * (x - x1) / (x2 - x1);
1147   }
1148 }
1149 
CanInteractWith(VirtualSocket * local,VirtualSocket * remote)1150 bool VirtualSocketServer::CanInteractWith(VirtualSocket* local,
1151                                           VirtualSocket* remote) {
1152   if (!local || !remote) {
1153     return false;
1154   }
1155   IPAddress local_ip = local->GetLocalAddress().ipaddr();
1156   IPAddress remote_ip = remote->GetLocalAddress().ipaddr();
1157   IPAddress local_normalized = local_ip.Normalized();
1158   IPAddress remote_normalized = remote_ip.Normalized();
1159   // Check if the addresses are the same family after Normalization (turns
1160   // mapped IPv6 address into IPv4 addresses).
1161   // This will stop unmapped V6 addresses from talking to mapped V6 addresses.
1162   if (local_normalized.family() == remote_normalized.family()) {
1163     return true;
1164   }
1165 
1166   // If ip1 is IPv4 and ip2 is :: and ip2 is not IPV6_V6ONLY.
1167   int remote_v6_only = 0;
1168   remote->GetOption(Socket::OPT_IPV6_V6ONLY, &remote_v6_only);
1169   if (local_ip.family() == AF_INET && !remote_v6_only && IPIsAny(remote_ip)) {
1170     return true;
1171   }
1172   // Same check, backwards.
1173   int local_v6_only = 0;
1174   local->GetOption(Socket::OPT_IPV6_V6ONLY, &local_v6_only);
1175   if (remote_ip.family() == AF_INET && !local_v6_only && IPIsAny(local_ip)) {
1176     return true;
1177   }
1178 
1179   // Check to see if either socket was explicitly bound to IPv6-any.
1180   // These sockets can talk with anyone.
1181   if (local_ip.family() == AF_INET6 && local->was_any()) {
1182     return true;
1183   }
1184   if (remote_ip.family() == AF_INET6 && remote->was_any()) {
1185     return true;
1186   }
1187 
1188   return false;
1189 }
1190 
GetDefaultRoute(int family)1191 IPAddress VirtualSocketServer::GetDefaultRoute(int family) {
1192   if (family == AF_INET) {
1193     return default_route_v4_;
1194   }
1195   if (family == AF_INET6) {
1196     return default_route_v6_;
1197   }
1198   return IPAddress();
1199 }
SetDefaultRoute(const IPAddress & from_addr)1200 void VirtualSocketServer::SetDefaultRoute(const IPAddress& from_addr) {
1201   RTC_DCHECK(!IPIsAny(from_addr));
1202   if (from_addr.family() == AF_INET) {
1203     default_route_v4_ = from_addr;
1204   } else if (from_addr.family() == AF_INET6) {
1205     default_route_v6_ = from_addr;
1206   }
1207 }
1208 
1209 }  // namespace rtc
1210