1 // Copyright 2020 The Pigweed Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
4 // use this file except in compliance with the License. You may obtain a copy of
5 // the License at
6 //
7 //     https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
11 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
12 // License for the specific language governing permissions and limitations under
13 // the License.
14 #pragma once
15 
16 #include <stddef.h>
17 #include <stdint.h>
18 
19 #include "pw_preprocessor/compiler.h"
20 
21 #ifdef __cplusplus
22 extern "C" {
23 #endif
24 
25 // Expose a subset of the varint API for use in C code.
26 
27 typedef enum {
28   PW_VARINT_ZERO_TERMINATED_LEAST_SIGNIFICANT = 0b00,
29   PW_VARINT_ZERO_TERMINATED_MOST_SIGNIFICANT = 0b01,
30   PW_VARINT_ONE_TERMINATED_LEAST_SIGNIFICANT = 0b10,
31   PW_VARINT_ONE_TERMINATED_MOST_SIGNIFICANT = 0b11,
32 } pw_varint_Format;
33 
34 size_t pw_varint_EncodeCustom(uint64_t integer,
35                               void* output,
36                               size_t output_size,
37                               pw_varint_Format format);
38 size_t pw_varint_DecodeCustom(const void* input,
39                               size_t input_size,
40                               uint64_t* output,
41                               pw_varint_Format format);
42 
pw_varint_Encode(uint64_t integer,void * output,size_t output_size)43 static inline size_t pw_varint_Encode(uint64_t integer,
44                                       void* output,
45                                       size_t output_size) {
46   return pw_varint_EncodeCustom(
47       integer, output, output_size, PW_VARINT_ZERO_TERMINATED_MOST_SIGNIFICANT);
48 }
49 
50 size_t pw_varint_ZigZagEncode(int64_t integer,
51                               void* output,
52                               size_t output_size);
53 
pw_varint_Decode(const void * input,size_t input_size,uint64_t * output)54 static inline size_t pw_varint_Decode(const void* input,
55                                       size_t input_size,
56                                       uint64_t* output) {
57   return pw_varint_DecodeCustom(
58       input, input_size, output, PW_VARINT_ZERO_TERMINATED_MOST_SIGNIFICANT);
59 }
60 
61 size_t pw_varint_ZigZagDecode(const void* input,
62                               size_t input_size,
63                               int64_t* output);
64 
65 // Returns the size of an when encoded as a varint.
66 size_t pw_varint_EncodedSize(uint64_t integer);
67 size_t pw_varint_ZigZagEncodedSize(int64_t integer);
68 
69 #ifdef __cplusplus
70 
71 }  // extern "C"
72 
73 #include <span>
74 #include <type_traits>
75 
76 #include "pw_polyfill/language_feature_macros.h"
77 
78 namespace pw {
79 namespace varint {
80 
81 // The maximum number of bytes occupied by an encoded varint.
82 PW_INLINE_VARIABLE constexpr size_t kMaxVarint32SizeBytes = 5;
83 PW_INLINE_VARIABLE constexpr size_t kMaxVarint64SizeBytes = 10;
84 
85 // ZigZag encodes a signed integer. This maps small negative numbers to small,
86 // unsigned positive numbers, which improves their density for LEB128 encoding.
87 //
88 // ZigZag encoding works by moving the sign bit from the most-significant bit to
89 // the least-significant bit. For the signed k-bit integer n, the formula is
90 //
91 //   (n << 1) ^ (n >> (k - 1))
92 //
93 // See the following for a description of ZigZag encoding:
94 //   https://developers.google.com/protocol-buffers/docs/encoding#types
95 template <typename T>
ZigZagEncode(T n)96 constexpr std::make_unsigned_t<T> ZigZagEncode(T n) {
97   static_assert(std::is_signed<T>(), "Zig-zag encoding is for signed integers");
98   using U = std::make_unsigned_t<T>;
99   return (static_cast<U>(n) << 1) ^ static_cast<U>(n >> (sizeof(T) * 8 - 1));
100 }
101 
102 // ZigZag decodes a signed integer.
103 // The calculation is done modulo std::numeric_limits<T>::max()+1, so the
104 // unsigned integer overflows are intentional.
105 template <typename T>
ZigZagDecode(T n)106 constexpr std::make_signed_t<T> ZigZagDecode(T n)
107     PW_NO_SANITIZE("unsigned-integer-overflow") {
108   static_assert(std::is_unsigned<T>(),
109                 "Zig-zag decoding is for unsigned integers");
110   return static_cast<std::make_signed_t<T>>((n >> 1) ^ (~(n & 1) + 1));
111 }
112 
113 // Encodes a uint64_t with Little-Endian Base 128 (LEB128) encoding.
EncodeLittleEndianBase128(uint64_t integer,const std::span<std::byte> & output)114 inline size_t EncodeLittleEndianBase128(uint64_t integer,
115                                         const std::span<std::byte>& output) {
116   return pw_varint_Encode(integer, output.data(), output.size());
117 }
118 
119 // Encodes the provided integer using a variable-length encoding and returns the
120 // number of bytes written.
121 //
122 // The encoding is the same as used in protocol buffers. Signed integers are
123 // ZigZag encoded to remove leading 1s from small negative numbers, then the
124 // resulting number is encoded as Little Endian Base 128 (LEB128). Unsigned
125 // integers are encoded directly as LEB128.
126 //
127 // Returns the number of bytes written or 0 if the result didn't fit in the
128 // encoding buffer.
129 template <typename T>
Encode(T integer,const std::span<std::byte> & output)130 size_t Encode(T integer, const std::span<std::byte>& output) {
131   if (std::is_signed<T>()) {
132     return pw_varint_ZigZagEncode(integer, output.data(), output.size());
133   } else {
134     return pw_varint_Encode(integer, output.data(), output.size());
135   }
136 }
137 
138 // Decodes a varint-encoded value. If reading into a signed integer, the value
139 // is ZigZag decoded.
140 //
141 // Returns the number of bytes read from the input if successful. Returns zero
142 // if the result does not fit in a int64_t / uint64_t or if the input is
143 // exhausted before the number terminates. Reads a maximum of 10 bytes.
144 //
145 // The following example decodes multiple varints from a buffer:
146 //
147 //   while (!data.empty()) {
148 //     int64_t value;
149 //     size_t bytes = Decode(data, &value);
150 //
151 //     if (bytes == 0u) {
152 //       return Status::DataLoss();
153 //     }
154 //     results.push_back(value);
155 //     data = data.subspan(bytes)
156 //   }
157 //
Decode(const std::span<const std::byte> & input,int64_t * value)158 inline size_t Decode(const std::span<const std::byte>& input, int64_t* value) {
159   return pw_varint_ZigZagDecode(input.data(), input.size(), value);
160 }
161 
Decode(const std::span<const std::byte> & input,uint64_t * value)162 inline size_t Decode(const std::span<const std::byte>& input, uint64_t* value) {
163   return pw_varint_Decode(input.data(), input.size(), value);
164 }
165 
166 enum class Format {
167   kZeroTerminatedLeastSignificant = PW_VARINT_ZERO_TERMINATED_LEAST_SIGNIFICANT,
168   kZeroTerminatedMostSignificant = PW_VARINT_ZERO_TERMINATED_MOST_SIGNIFICANT,
169   kOneTerminatedLeastSignificant = PW_VARINT_ONE_TERMINATED_LEAST_SIGNIFICANT,
170   kOneTerminatedMostSignificant = PW_VARINT_ONE_TERMINATED_MOST_SIGNIFICANT,
171 };
172 
173 // Encodes a varint in a custom format.
Encode(uint64_t value,std::span<std::byte> output,Format format)174 inline size_t Encode(uint64_t value,
175                      std::span<std::byte> output,
176                      Format format) {
177   return pw_varint_EncodeCustom(value,
178                                 output.data(),
179                                 output.size(),
180                                 static_cast<pw_varint_Format>(format));
181 }
182 
183 // Decodes a varint from a custom format.
Decode(std::span<const std::byte> input,uint64_t * value,Format format)184 inline size_t Decode(std::span<const std::byte> input,
185                      uint64_t* value,
186                      Format format) {
187   return pw_varint_DecodeCustom(
188       input.data(), input.size(), value, static_cast<pw_varint_Format>(format));
189 }
190 
191 // Returns a size of an integer when encoded as a varint.
EncodedSize(uint64_t integer)192 constexpr size_t EncodedSize(uint64_t integer) {
193   return integer == 0 ? 1 : (64 - __builtin_clzll(integer) + 6) / 7;
194 }
195 
196 // Returns a size of an signed integer when ZigZag encoded as a varint.
ZigZagEncodedSize(int64_t integer)197 constexpr size_t ZigZagEncodedSize(int64_t integer) {
198   return EncodedSize(ZigZagEncode(integer));
199 }
200 
201 // Returns the maximum integer value that can be encoded in a varint of the
202 // specified number of bytes.
203 //
204 // These values are also listed in the table below. Zigzag encoding cuts these
205 // in half, as positive and negative integers are alternated.
206 //
207 //   Bytes          Max value
208 //     1                          127
209 //     2                       16,383
210 //     3                    2,097,151
211 //     4                  268,435,455
212 //     5               34,359,738,367 -- needed for max uint32 value
213 //     6            4,398,046,511,103
214 //     7          562,949,953,421,311
215 //     8       72,057,594,037,927,935
216 //     9    9,223,372,036,854,775,807
217 //     10            uint64 max value
218 //
MaxValueInBytes(size_t bytes)219 constexpr uint64_t MaxValueInBytes(size_t bytes) {
220   return bytes >= kMaxVarint64SizeBytes ? std::numeric_limits<uint64_t>::max()
221                                         : (uint64_t(1) << (7 * bytes)) - 1;
222 }
223 
224 }  // namespace varint
225 }  // namespace pw
226 
227 #endif  // __cplusplus
228