1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkGlyph_DEFINED
9 #define SkGlyph_DEFINED
10 
11 #include "include/core/SkPath.h"
12 #include "include/core/SkTypes.h"
13 #include "include/private/SkChecksum.h"
14 #include "include/private/SkFixed.h"
15 #include "include/private/SkTo.h"
16 #include "include/private/SkVx.h"
17 #include "src/core/SkMask.h"
18 #include "src/core/SkMathPriv.h"
19 
20 class SkArenaAlloc;
21 class SkScalerContext;
22 
23 // A combination of SkGlyphID and sub-pixel position information.
24 struct SkPackedGlyphID {
25     static constexpr uint32_t kImpossibleID = ~0u;
26     enum {
27         // Lengths
28         kGlyphIDLen     = 16u,
29         kSubPixelPosLen = 2u,
30 
31         // Bit positions
32         kSubPixelX = 0u,
33         kGlyphID   = kSubPixelPosLen,
34         kSubPixelY = kGlyphIDLen + kSubPixelPosLen,
35         kEndData   = kGlyphIDLen + 2 * kSubPixelPosLen,
36 
37         // Masks
38         kGlyphIDMask     = (1u << kGlyphIDLen) - 1,
39         kSubPixelPosMask = (1u << kSubPixelPosLen) - 1,
40         kMaskAll         = (1u << kEndData) - 1,
41 
42         // Location of sub pixel info in a fixed pointer number.
43         kFixedPointBinaryPointPos = 16u,
44         kFixedPointSubPixelPosBits = kFixedPointBinaryPointPos - kSubPixelPosLen,
45     };
46 
47     static constexpr SkScalar kSubpixelRound = 1.f / (1u << (SkPackedGlyphID::kSubPixelPosLen + 1));
48 
49     static constexpr SkIPoint kXYFieldMask{kSubPixelPosMask << kSubPixelX,
50                                            kSubPixelPosMask << kSubPixelY};
51 
SkPackedGlyphIDSkPackedGlyphID52     constexpr explicit SkPackedGlyphID(SkGlyphID glyphID)
53             : fID{(uint32_t)glyphID << kGlyphID} { }
54 
SkPackedGlyphIDSkPackedGlyphID55     constexpr SkPackedGlyphID(SkGlyphID glyphID, SkFixed x, SkFixed y)
56             : fID {PackIDXY(glyphID, x, y)} { }
57 
SkPackedGlyphIDSkPackedGlyphID58     constexpr SkPackedGlyphID(SkGlyphID glyphID, uint32_t x, uint32_t y)
59             : fID {PackIDSubXSubY(glyphID, x, y)} { }
60 
SkPackedGlyphIDSkPackedGlyphID61     SkPackedGlyphID(SkGlyphID glyphID, SkPoint pt, SkIPoint mask)
62         : fID{PackIDSkPoint(glyphID, pt, mask)} { }
63 
SkPackedGlyphIDSkPackedGlyphID64     constexpr explicit SkPackedGlyphID(uint32_t v) : fID{v & kMaskAll} { }
SkPackedGlyphIDSkPackedGlyphID65     constexpr SkPackedGlyphID() : fID{kImpossibleID} {}
66 
67     bool operator==(const SkPackedGlyphID& that) const {
68         return fID == that.fID;
69     }
70     bool operator!=(const SkPackedGlyphID& that) const {
71         return !(*this == that);
72     }
73     bool operator<(SkPackedGlyphID that) const {
74         return this->fID < that.fID;
75     }
76 
glyphIDSkPackedGlyphID77     SkGlyphID glyphID() const {
78         return (fID >> kGlyphID) & kGlyphIDMask;
79     }
80 
valueSkPackedGlyphID81     uint32_t value() const {
82         return fID;
83     }
84 
getSubXFixedSkPackedGlyphID85     SkFixed getSubXFixed() const {
86         return this->subToFixed(kSubPixelX);
87     }
88 
getSubYFixedSkPackedGlyphID89     SkFixed getSubYFixed() const {
90         return this->subToFixed(kSubPixelY);
91     }
92 
hashSkPackedGlyphID93     uint32_t hash() const {
94         return SkChecksum::CheapMix(fID);
95     }
96 
dumpSkPackedGlyphID97     SkString dump() const {
98         SkString str;
99         str.appendf("glyphID: %d, x: %d, y:%d", glyphID(), getSubXFixed(), getSubYFixed());
100         return str;
101     }
102 
103 private:
PackIDSubXSubYSkPackedGlyphID104     static constexpr uint32_t PackIDSubXSubY(SkGlyphID glyphID, uint32_t x, uint32_t y) {
105         SkASSERT(x < (1u << kSubPixelPosLen));
106         SkASSERT(y < (1u << kSubPixelPosLen));
107 
108         return (x << kSubPixelX) | (y << kSubPixelY) | (glyphID << kGlyphID);
109     }
110 
111     // Assumptions: pt is properly rounded. mask is set for the x or y fields.
112     //
113     // A sub-pixel field is a number on the interval [2^kSubPixel, 2^(kSubPixel + kSubPixelPosLen)).
114     // Where kSubPixel is either kSubPixelX or kSubPixelY. Given a number x on [0, 1) we can
115     // generate a sub-pixel field using:
116     //    sub-pixel-field = x * 2^(kSubPixel + kSubPixelPosLen)
117     //
118     // We can generate the integer sub-pixel field by &-ing the integer part of sub-filed with the
119     // sub-pixel field mask.
120     //    int-sub-pixel-field = int(sub-pixel-field) & (kSubPixelPosMask << kSubPixel)
121     //
122     // The last trick is to extend the range from [0, 1) to [0, 2). The extend range is
123     // necessary because the modulo 1 calculation (pt - floor(pt)) generates numbers on [-1, 1).
124     // This does not round (floor) properly when converting to integer. Adding one to the range
125     // causes truncation and floor to be the same. Coincidentally, masking to produce the field also
126     // removes the +1.
PackIDSkPointSkPackedGlyphID127     static uint32_t PackIDSkPoint(SkGlyphID glyphID, SkPoint pt, SkIPoint mask) {
128     #if 0
129         // TODO: why does this code not work on GCC 8.3 x86 Debug builds?
130         using namespace skvx;
131         using XY = Vec<2, float>;
132         using SubXY = Vec<2, int>;
133 
134         const XY magic = {1.f * (1u << (kSubPixelPosLen + kSubPixelX)),
135                           1.f * (1u << (kSubPixelPosLen + kSubPixelY))};
136         XY pos{pt.x(), pt.y()};
137         XY subPos = (pos - floor(pos)) + 1.0f;
138         SubXY sub = cast<int>(subPos * magic) & SubXY{mask.x(), mask.y()};
139     #else
140         const float magicX = 1.f * (1u << (kSubPixelPosLen + kSubPixelX)),
141                     magicY = 1.f * (1u << (kSubPixelPosLen + kSubPixelY));
142 
143         float x = pt.x(),
144               y = pt.y();
145         x = (x - floorf(x)) + 1.0f;
146         y = (y - floorf(y)) + 1.0f;
147         int sub[] = {
148             (int)(x * magicX) & mask.x(),
149             (int)(y * magicY) & mask.y(),
150         };
151     #endif
152 
153         SkASSERT(sub[0] / (1u << kSubPixelX) < (1u << kSubPixelPosLen));
154         SkASSERT(sub[1] / (1u << kSubPixelY) < (1u << kSubPixelPosLen));
155         return (glyphID << kGlyphID) | sub[0] | sub[1];
156     }
157 
PackIDXYSkPackedGlyphID158     static constexpr uint32_t PackIDXY(SkGlyphID glyphID, SkFixed x, SkFixed y) {
159         return PackIDSubXSubY(glyphID, FixedToSub(x), FixedToSub(y));
160     }
161 
FixedToSubSkPackedGlyphID162     static constexpr uint32_t FixedToSub(SkFixed n) {
163         return ((uint32_t)n >> kFixedPointSubPixelPosBits) & kSubPixelPosMask;
164     }
165 
subToFixedSkPackedGlyphID166     constexpr SkFixed subToFixed(uint32_t subPixelPosBit) const {
167         uint32_t subPixelPosition = (fID >> subPixelPosBit) & kSubPixelPosMask;
168         return subPixelPosition << kFixedPointSubPixelPosBits;
169     }
170 
171     uint32_t fID;
172 };
173 
174 class SkGlyphRect;
175 namespace skglyph {
176 SkGlyphRect rect_union(SkGlyphRect, SkGlyphRect);
177 SkGlyphRect rect_intersection(SkGlyphRect, SkGlyphRect);
178 }  // namespace skglyph
179 
180 // SkGlyphRect encodes rectangles with coordinates on [-32767, 32767]. It is specialized for
181 // rectangle union and intersection operations.
182 class SkGlyphRect {
183 public:
SkGlyphRect(int16_t left,int16_t top,int16_t right,int16_t bottom)184     SkGlyphRect(int16_t left, int16_t top, int16_t right, int16_t bottom)
185             : fRect{left, top, (int16_t)-right, (int16_t)-bottom} {
186         SkDEBUGCODE(const int32_t min = std::numeric_limits<int16_t>::min());
187         SkASSERT(left != min && top != min && right != min && bottom != min);
188     }
empty()189     bool empty() const {
190         return fRect[0] >= -fRect[2] || fRect[1] >= -fRect[3];
191     }
rect()192     SkRect rect() const {
193         return SkRect::MakeLTRB(fRect[0], fRect[1], -fRect[2], -fRect[3]);
194     }
iRect()195     SkIRect iRect() const {
196         return SkIRect::MakeLTRB(fRect[0], fRect[1], -fRect[2], -fRect[3]);
197     }
offset(int16_t x,int16_t y)198     SkGlyphRect offset(int16_t x, int16_t y) const {
199         return SkGlyphRect{fRect + Storage{x, y, SkTo<int16_t>(-x), SkTo<int16_t>(-y)}};
200     }
topLeft()201     skvx::Vec<2, int16_t> topLeft() const { return {fRect[0], fRect[1]}; }
202     friend SkGlyphRect skglyph::rect_union(SkGlyphRect, SkGlyphRect);
203     friend SkGlyphRect skglyph::rect_intersection(SkGlyphRect, SkGlyphRect);
204 
205 private:
206     using Storage = skvx::Vec<4, int16_t>;
SkGlyphRect(Storage rect)207     SkGlyphRect(Storage rect) : fRect{rect} { }
208     Storage fRect;
209 };
210 
211 namespace skglyph {
empty_rect()212 inline SkGlyphRect empty_rect() {
213     constexpr int16_t max = std::numeric_limits<int16_t>::max();
214     return {max,  max, -max, -max};
215 }
full_rect()216 inline SkGlyphRect full_rect() {
217     constexpr int16_t max = std::numeric_limits<int16_t>::max();
218     return {-max,  -max, max, max};
219 }
rect_union(SkGlyphRect a,SkGlyphRect b)220 inline SkGlyphRect rect_union(SkGlyphRect a, SkGlyphRect b) {
221     return skvx::min(a.fRect, b.fRect);
222 }
rect_intersection(SkGlyphRect a,SkGlyphRect b)223 inline SkGlyphRect rect_intersection(SkGlyphRect a, SkGlyphRect b) {
224     return skvx::max(a.fRect, b.fRect);
225 }
226 }  // namespace skglyph
227 
228 struct SkGlyphPrototype;
229 
230 class SkGlyph {
231 public:
232     // SkGlyph() is used for testing.
SkGlyph()233     constexpr SkGlyph() : SkGlyph{SkPackedGlyphID()} { }
SkGlyph(SkPackedGlyphID id)234     constexpr explicit SkGlyph(SkPackedGlyphID id) : fID{id} { }
235 
advanceVector()236     SkVector advanceVector() const { return SkVector{fAdvanceX, fAdvanceY}; }
advanceX()237     SkScalar advanceX() const { return fAdvanceX; }
advanceY()238     SkScalar advanceY() const { return fAdvanceY; }
239 
getGlyphID()240     SkGlyphID getGlyphID() const { return fID.glyphID(); }
getPackedID()241     SkPackedGlyphID getPackedID() const { return fID; }
getSubXFixed()242     SkFixed getSubXFixed() const { return fID.getSubXFixed(); }
getSubYFixed()243     SkFixed getSubYFixed() const { return fID.getSubYFixed(); }
244 
245     size_t rowBytes() const;
246     size_t rowBytesUsingFormat(SkMask::Format format) const;
247 
248     // Call this to set all of the metrics fields to 0 (e.g. if the scaler
249     // encounters an error measuring a glyph). Note: this does not alter the
250     // fImage, fPath, fID, fMaskFormat fields.
251     void zeroMetrics();
252 
253     SkMask mask() const;
254 
255     SkMask mask(SkPoint position) const;
256 
257     // Image
258     // If we haven't already tried to associate an image with this glyph
259     // (i.e. setImageHasBeenCalled() returns false), then use the
260     // SkScalerContext or const void* argument to set the image.
261     bool setImage(SkArenaAlloc* alloc, SkScalerContext* scalerContext);
262     bool setImage(SkArenaAlloc* alloc, const void* image);
263 
264     // Merge the from glyph into this glyph using alloc to allocate image data. Return the number
265     // of bytes allocated. Copy the width, height, top, left, format, and image into this glyph
266     // making a copy of the image using the alloc.
267     size_t setMetricsAndImage(SkArenaAlloc* alloc, const SkGlyph& from);
268 
269     // Returns true if the image has been set.
setImageHasBeenCalled()270     bool setImageHasBeenCalled() const {
271         return fImage != nullptr || this->isEmpty() || this->imageTooLarge();
272     }
273 
274     // Return a pointer to the path if the image exists, otherwise return nullptr.
image()275     const void* image() const { SkASSERT(this->setImageHasBeenCalled()); return fImage; }
276 
277     // Return the size of the image.
278     size_t imageSize() const;
279 
280     // Path
281     // If we haven't already tried to associate a path to this glyph
282     // (i.e. setPathHasBeenCalled() returns false), then use the
283     // SkScalerContext or SkPath argument to try to do so.  N.B. this
284     // may still result in no path being associated with this glyph,
285     // e.g. if you pass a null SkPath or the typeface is bitmap-only.
286     //
287     // This setPath() call is sticky... once you call it, the glyph
288     // stays in its state permanently, ignoring any future calls.
289     //
290     // Returns true if this is the first time you called setPath()
291     // and there actually is a path; call path() to get it.
292     bool setPath(SkArenaAlloc* alloc, SkScalerContext* scalerContext);
293     bool setPath(SkArenaAlloc* alloc, const SkPath* path);
294 
295     // Returns true if that path has been set.
setPathHasBeenCalled()296     bool setPathHasBeenCalled() const { return fPathData != nullptr; }
297 
298     // Return a pointer to the path if it exists, otherwise return nullptr. Only works if the
299     // path was previously set.
300     const SkPath* path() const;
301 
302     // Format
isColor()303     bool isColor() const { return fMaskFormat == SkMask::kARGB32_Format; }
maskFormat()304     SkMask::Format maskFormat() const { return fMaskFormat; }
305     size_t formatAlignment() const;
306 
307     // Bounds
maxDimension()308     int maxDimension() const { return std::max(fWidth, fHeight); }
iRect()309     SkIRect iRect() const { return SkIRect::MakeXYWH(fLeft, fTop, fWidth, fHeight); }
rect()310     SkRect rect()   const { return SkRect::MakeXYWH(fLeft, fTop, fWidth, fHeight);  }
glyphRect()311     SkGlyphRect glyphRect() const {
312         return {fLeft, fTop,
313                 SkTo<int16_t>(fLeft + fWidth), SkTo<int16_t>(fTop + fHeight)};
314     }
left()315     int left()   const { return fLeft;   }
top()316     int top()    const { return fTop;    }
width()317     int width()  const { return fWidth;  }
height()318     int height() const { return fHeight; }
isEmpty()319     bool isEmpty() const {
320         // fHeight == 0 -> fWidth == 0;
321         SkASSERT(fHeight != 0 || fWidth == 0);
322         return fWidth == 0;
323     }
imageTooLarge()324     bool imageTooLarge() const { return fWidth >= kMaxGlyphWidth; }
325 
326     // Make sure that the intercept information is on the glyph and return it, or return it if it
327     // already exists.
328     // * bounds - either end of the gap for the character.
329     // * scale, xPos - information about how wide the gap is.
330     // * array - accumulated gaps for many characters if not null.
331     // * count - the number of gaps.
332     void ensureIntercepts(const SkScalar bounds[2], SkScalar scale, SkScalar xPos,
333                           SkScalar* array, int* count, SkArenaAlloc* alloc);
334 
335 private:
336     // There are two sides to an SkGlyph, the scaler side (things that create glyph data) have
337     // access to all the fields. Scalers are assumed to maintain all the SkGlyph invariants. The
338     // consumer side has a tighter interface.
339     friend class RandomScalerContext;
340     friend class RemoteStrike;
341     friend class SkScalerContext;
342     friend class SkScalerContextProxy;
343     friend class SkScalerContext_Empty;
344     friend class SkScalerContext_FreeType;
345     friend class SkScalerContext_FreeType_Base;
346     friend class SkScalerContext_DW;
347     friend class SkScalerContext_GDI;
348     friend class SkScalerContext_Mac;
349     friend class SkStrikeClientImpl;
350     friend class SkTestScalerContext;
351     friend class SkTestSVGScalerContext;
352     friend class SkUserScalerContext;
353     friend class TestSVGTypeface;
354     friend class TestTypeface;
355 
356     static constexpr uint16_t kMaxGlyphWidth = 1u << 13u;
357 
358     // Support horizontal and vertical skipping strike-through / underlines.
359     // The caller walks the linked list looking for a match. For a horizontal underline,
360     // the fBounds contains the top and bottom of the underline. The fInterval pair contains the
361     // beginning and end of of the intersection of the bounds and the glyph's path.
362     // If interval[0] >= interval[1], no intersection was found.
363     struct Intercept {
364         Intercept* fNext;
365         SkScalar   fBounds[2];    // for horz underlines, the boundaries in Y
366         SkScalar   fInterval[2];  // the outside intersections of the axis and the glyph
367     };
368 
369     struct PathData {
370         Intercept* fIntercept{nullptr};
371         SkPath     fPath;
372         bool       fHasPath{false};
373     };
374 
375     size_t allocImage(SkArenaAlloc* alloc);
376 
377     // path == nullptr indicates that there is no path.
378     void installPath(SkArenaAlloc* alloc, const SkPath* path);
379 
380     // The width and height of the glyph mask.
381     uint16_t  fWidth  = 0,
382               fHeight = 0;
383 
384     // The offset from the glyphs origin on the baseline to the top left of the glyph mask.
385     int16_t   fTop  = 0,
386               fLeft = 0;
387 
388     // fImage must remain null if the glyph is empty or if width > kMaxGlyphWidth.
389     void*     fImage    = nullptr;
390 
391     // Path data has tricky state. If the glyph isEmpty, then fPathData should always be nullptr,
392     // else if fPathData is not null, then a path has been requested. The fPath field of fPathData
393     // may still be null after the request meaning that there is no path for this glyph.
394     PathData* fPathData = nullptr;
395 
396     // The advance for this glyph.
397     float     fAdvanceX = 0,
398               fAdvanceY = 0;
399 
400     SkMask::Format fMaskFormat{SkMask::kBW_Format};
401 
402     // Used by the DirectWrite scaler to track state.
403     int8_t    fForceBW = 0;
404 
405     SkPackedGlyphID fID;
406 };
407 
408 #endif
409