1 // Copyright 2015, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #ifndef VIXL_AARCH64_INSTRUCTIONS_AARCH64_H_
28 #define VIXL_AARCH64_INSTRUCTIONS_AARCH64_H_
29 
30 #include "../globals-vixl.h"
31 #include "../utils-vixl.h"
32 
33 #include "constants-aarch64.h"
34 
35 namespace vixl {
36 namespace aarch64 {
37 // ISA constants. --------------------------------------------------------------
38 
39 typedef uint32_t Instr;
40 const unsigned kInstructionSize = 4;
41 const unsigned kInstructionSizeLog2 = 2;
42 const unsigned kLiteralEntrySize = 4;
43 const unsigned kLiteralEntrySizeLog2 = 2;
44 const unsigned kMaxLoadLiteralRange = 1 * MBytes;
45 
46 // This is the nominal page size (as used by the adrp instruction); the actual
47 // size of the memory pages allocated by the kernel is likely to differ.
48 const unsigned kPageSize = 4 * KBytes;
49 const unsigned kPageSizeLog2 = 12;
50 
51 const unsigned kBRegSize = 8;
52 const unsigned kBRegSizeLog2 = 3;
53 const unsigned kBRegSizeInBytes = kBRegSize / 8;
54 const unsigned kBRegSizeInBytesLog2 = kBRegSizeLog2 - 3;
55 const unsigned kHRegSize = 16;
56 const unsigned kHRegSizeLog2 = 4;
57 const unsigned kHRegSizeInBytes = kHRegSize / 8;
58 const unsigned kHRegSizeInBytesLog2 = kHRegSizeLog2 - 3;
59 const unsigned kWRegSize = 32;
60 const unsigned kWRegSizeLog2 = 5;
61 const unsigned kWRegSizeInBytes = kWRegSize / 8;
62 const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
63 const unsigned kXRegSize = 64;
64 const unsigned kXRegSizeLog2 = 6;
65 const unsigned kXRegSizeInBytes = kXRegSize / 8;
66 const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
67 const unsigned kSRegSize = 32;
68 const unsigned kSRegSizeLog2 = 5;
69 const unsigned kSRegSizeInBytes = kSRegSize / 8;
70 const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
71 const unsigned kDRegSize = 64;
72 const unsigned kDRegSizeLog2 = 6;
73 const unsigned kDRegSizeInBytes = kDRegSize / 8;
74 const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
75 const unsigned kQRegSize = 128;
76 const unsigned kQRegSizeLog2 = 7;
77 const unsigned kQRegSizeInBytes = kQRegSize / 8;
78 const unsigned kQRegSizeInBytesLog2 = kQRegSizeLog2 - 3;
79 const uint64_t kWRegMask = UINT64_C(0xffffffff);
80 const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff);
81 const uint64_t kHRegMask = UINT64_C(0xffff);
82 const uint64_t kSRegMask = UINT64_C(0xffffffff);
83 const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff);
84 const uint64_t kHSignMask = UINT64_C(0x8000);
85 const uint64_t kSSignMask = UINT64_C(0x80000000);
86 const uint64_t kDSignMask = UINT64_C(0x8000000000000000);
87 const uint64_t kWSignMask = UINT64_C(0x80000000);
88 const uint64_t kXSignMask = UINT64_C(0x8000000000000000);
89 const uint64_t kByteMask = UINT64_C(0xff);
90 const uint64_t kHalfWordMask = UINT64_C(0xffff);
91 const uint64_t kWordMask = UINT64_C(0xffffffff);
92 const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff);
93 const uint64_t kWMaxUInt = UINT64_C(0xffffffff);
94 const uint64_t kHMaxUInt = UINT64_C(0xffff);
95 // Define k*MinInt with "-k*MaxInt - 1", because the hexadecimal representation
96 // (e.g. "INT32_C(0x80000000)") has implementation-defined behaviour.
97 const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff);
98 const int64_t kXMinInt = -kXMaxInt - 1;
99 const int32_t kWMaxInt = INT32_C(0x7fffffff);
100 const int32_t kWMinInt = -kWMaxInt - 1;
101 const int16_t kHMaxInt = INT16_C(0x7fff);
102 const int16_t kHMinInt = -kHMaxInt - 1;
103 const unsigned kFpRegCode = 29;
104 const unsigned kLinkRegCode = 30;
105 const unsigned kSpRegCode = 31;
106 const unsigned kZeroRegCode = 31;
107 const unsigned kSPRegInternalCode = 63;
108 const unsigned kRegCodeMask = 0x1f;
109 
110 const unsigned kAtomicAccessGranule = 16;
111 
112 const unsigned kAddressTagOffset = 56;
113 const unsigned kAddressTagWidth = 8;
114 const uint64_t kAddressTagMask = ((UINT64_C(1) << kAddressTagWidth) - 1)
115                                  << kAddressTagOffset;
116 VIXL_STATIC_ASSERT(kAddressTagMask == UINT64_C(0xff00000000000000));
117 
118 const uint64_t kTTBRMask = UINT64_C(1) << 55;
119 
120 // We can't define a static kZRegSize because the size depends on the
121 // implementation. However, it is sometimes useful to know the minimum and
122 // maxmimum possible sizes.
123 const unsigned kZRegMinSize = 128;
124 const unsigned kZRegMinSizeLog2 = 7;
125 const unsigned kZRegMinSizeInBytes = kZRegMinSize / 8;
126 const unsigned kZRegMinSizeInBytesLog2 = kZRegMinSizeLog2 - 3;
127 const unsigned kZRegMaxSize = 2048;
128 const unsigned kZRegMaxSizeLog2 = 11;
129 const unsigned kZRegMaxSizeInBytes = kZRegMaxSize / 8;
130 const unsigned kZRegMaxSizeInBytesLog2 = kZRegMaxSizeLog2 - 3;
131 
132 // The P register size depends on the Z register size.
133 const unsigned kZRegBitsPerPRegBit = kBitsPerByte;
134 const unsigned kZRegBitsPerPRegBitLog2 = 3;
135 const unsigned kPRegMinSize = kZRegMinSize / kZRegBitsPerPRegBit;
136 const unsigned kPRegMinSizeLog2 = kZRegMinSizeLog2 - 3;
137 const unsigned kPRegMinSizeInBytes = kPRegMinSize / 8;
138 const unsigned kPRegMinSizeInBytesLog2 = kPRegMinSizeLog2 - 3;
139 const unsigned kPRegMaxSize = kZRegMaxSize / kZRegBitsPerPRegBit;
140 const unsigned kPRegMaxSizeLog2 = kZRegMaxSizeLog2 - 3;
141 const unsigned kPRegMaxSizeInBytes = kPRegMaxSize / 8;
142 const unsigned kPRegMaxSizeInBytesLog2 = kPRegMaxSizeLog2 - 3;
143 
144 // Make these moved float constants backwards compatible
145 // with explicit vixl::aarch64:: namespace references.
146 using vixl::kDoubleMantissaBits;
147 using vixl::kDoubleExponentBits;
148 using vixl::kFloatMantissaBits;
149 using vixl::kFloatExponentBits;
150 using vixl::kFloat16MantissaBits;
151 using vixl::kFloat16ExponentBits;
152 
153 using vixl::kFP16PositiveInfinity;
154 using vixl::kFP16NegativeInfinity;
155 using vixl::kFP32PositiveInfinity;
156 using vixl::kFP32NegativeInfinity;
157 using vixl::kFP64PositiveInfinity;
158 using vixl::kFP64NegativeInfinity;
159 
160 using vixl::kFP16DefaultNaN;
161 using vixl::kFP32DefaultNaN;
162 using vixl::kFP64DefaultNaN;
163 
164 unsigned CalcLSDataSize(LoadStoreOp op);
165 unsigned CalcLSPairDataSize(LoadStorePairOp op);
166 
167 enum ImmBranchType {
168   UnknownBranchType = 0,
169   CondBranchType = 1,
170   UncondBranchType = 2,
171   CompareBranchType = 3,
172   TestBranchType = 4
173 };
174 
175 enum AddrMode { Offset, PreIndex, PostIndex };
176 
177 enum Reg31Mode { Reg31IsStackPointer, Reg31IsZeroRegister };
178 
179 enum VectorFormat {
180   kFormatUndefined = 0xffffffff,
181   kFormat8B = NEON_8B,
182   kFormat16B = NEON_16B,
183   kFormat4H = NEON_4H,
184   kFormat8H = NEON_8H,
185   kFormat2S = NEON_2S,
186   kFormat4S = NEON_4S,
187   kFormat1D = NEON_1D,
188   kFormat2D = NEON_2D,
189 
190   // Scalar formats. We add the scalar bit to distinguish between scalar and
191   // vector enumerations; the bit is always set in the encoding of scalar ops
192   // and always clear for vector ops. Although kFormatD and kFormat1D appear
193   // to be the same, their meaning is subtly different. The first is a scalar
194   // operation, the second a vector operation that only affects one lane.
195   kFormatB = NEON_B | NEONScalar,
196   kFormatH = NEON_H | NEONScalar,
197   kFormatS = NEON_S | NEONScalar,
198   kFormatD = NEON_D | NEONScalar,
199 
200   // An artificial value, used to distinguish from NEON format category.
201   kFormatSVE = 0x0000fffd,
202   // An artificial value. Q lane size isn't encoded in the usual size field.
203   kFormatSVEQ = 0x000f0000,
204   // Vector element width of SVE register with the unknown lane count since
205   // the vector length is implementation dependent.
206   kFormatVnB = SVE_B | kFormatSVE,
207   kFormatVnH = SVE_H | kFormatSVE,
208   kFormatVnS = SVE_S | kFormatSVE,
209   kFormatVnD = SVE_D | kFormatSVE,
210   kFormatVnQ = kFormatSVEQ | kFormatSVE,
211 
212   // An artificial value, used by simulator trace tests and a few oddball
213   // instructions (such as FMLAL).
214   kFormat2H = 0xfffffffe
215 };
216 
217 // Instructions. ---------------------------------------------------------------
218 
219 class Instruction {
220  public:
GetInstructionBits()221   Instr GetInstructionBits() const {
222     return *(reinterpret_cast<const Instr*>(this));
223   }
224   VIXL_DEPRECATED("GetInstructionBits", Instr InstructionBits() const) {
225     return GetInstructionBits();
226   }
227 
SetInstructionBits(Instr new_instr)228   void SetInstructionBits(Instr new_instr) {
229     *(reinterpret_cast<Instr*>(this)) = new_instr;
230   }
231 
ExtractBit(int pos)232   int ExtractBit(int pos) const { return (GetInstructionBits() >> pos) & 1; }
Bit(int pos)233   VIXL_DEPRECATED("ExtractBit", int Bit(int pos) const) {
234     return ExtractBit(pos);
235   }
236 
ExtractBits(int msb,int lsb)237   uint32_t ExtractBits(int msb, int lsb) const {
238     return ExtractUnsignedBitfield32(msb, lsb, GetInstructionBits());
239   }
240   VIXL_DEPRECATED("ExtractBits", uint32_t Bits(int msb, int lsb) const) {
241     return ExtractBits(msb, lsb);
242   }
243 
244   // Compress bit extraction operation from Hacker's Delight.
245   // https://github.com/hcs0/Hackers-Delight/blob/master/compress.c.txt
Compress(uint32_t mask)246   uint32_t Compress(uint32_t mask) const {
247     uint32_t mk, mp, mv, t;
248     uint32_t x = GetInstructionBits() & mask;  // Clear irrelevant bits.
249     mk = ~mask << 1;                           // We will count 0's to right.
250     for (int i = 0; i < 5; i++) {
251       mp = mk ^ (mk << 1);  // Parallel suffix.
252       mp = mp ^ (mp << 2);
253       mp = mp ^ (mp << 4);
254       mp = mp ^ (mp << 8);
255       mp = mp ^ (mp << 16);
256       mv = mp & mask;                         // Bits to move.
257       mask = (mask ^ mv) | (mv >> (1 << i));  // Compress mask.
258       t = x & mv;
259       x = (x ^ t) | (t >> (1 << i));  // Compress x.
260       mk = mk & ~mp;
261     }
262     return x;
263   }
264 
265   template <uint32_t M>
ExtractBits()266   uint32_t ExtractBits() const {
267     return Compress(M);
268   }
269 
270   template <uint32_t M, uint32_t V>
IsMaskedValue()271   uint32_t IsMaskedValue() const {
272     return (Mask(M) == V) ? 1 : 0;
273   }
274 
ExtractSignedBits(int msb,int lsb)275   int32_t ExtractSignedBits(int msb, int lsb) const {
276     int32_t bits = *(reinterpret_cast<const int32_t*>(this));
277     return ExtractSignedBitfield32(msb, lsb, bits);
278   }
279   VIXL_DEPRECATED("ExtractSignedBits",
280                   int32_t SignedBits(int msb, int lsb) const) {
281     return ExtractSignedBits(msb, lsb);
282   }
283 
Mask(uint32_t mask)284   Instr Mask(uint32_t mask) const {
285     VIXL_ASSERT(mask != 0);
286     return GetInstructionBits() & mask;
287   }
288 
289 #define DEFINE_GETTER(Name, HighBit, LowBit, Func)                  \
290   int32_t Get##Name() const { return this->Func(HighBit, LowBit); } \
291   VIXL_DEPRECATED("Get" #Name, int32_t Name() const) { return Get##Name(); }
INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)292   INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
293 #undef DEFINE_GETTER
294 
295   template <int msb, int lsb>
296   int32_t GetRx() const {
297     // We don't have any register fields wider than five bits, so the result
298     // will always fit into an int32_t.
299     VIXL_ASSERT((msb - lsb + 1) <= 5);
300     return this->ExtractBits(msb, lsb);
301   }
302 
GetSVEVectorFormat()303   VectorFormat GetSVEVectorFormat() const {
304     switch (Mask(SVESizeFieldMask)) {
305       case SVE_B:
306         return kFormatVnB;
307       case SVE_H:
308         return kFormatVnH;
309       case SVE_S:
310         return kFormatVnS;
311       case SVE_D:
312         return kFormatVnD;
313     }
314     VIXL_UNREACHABLE();
315     return kFormatUndefined;
316   }
317 
318   // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
319   // formed from ImmPCRelLo and ImmPCRelHi.
GetImmPCRel()320   int GetImmPCRel() const {
321     uint32_t hi = static_cast<uint32_t>(GetImmPCRelHi());
322     uint32_t lo = GetImmPCRelLo();
323     uint32_t offset = (hi << ImmPCRelLo_width) | lo;
324     int width = ImmPCRelLo_width + ImmPCRelHi_width;
325     return ExtractSignedBitfield32(width - 1, 0, offset);
326   }
ImmPCRel()327   VIXL_DEPRECATED("GetImmPCRel", int ImmPCRel() const) { return GetImmPCRel(); }
328 
329   // ImmLSPAC is a compound field (not present in INSTRUCTION_FIELDS_LIST),
330   // formed from ImmLSPACLo and ImmLSPACHi.
GetImmLSPAC()331   int GetImmLSPAC() const {
332     uint32_t hi = static_cast<uint32_t>(GetImmLSPACHi());
333     uint32_t lo = GetImmLSPACLo();
334     uint32_t offset = (hi << ImmLSPACLo_width) | lo;
335     int width = ImmLSPACLo_width + ImmLSPACHi_width;
336     return ExtractSignedBitfield32(width - 1, 0, offset) << 3;
337   }
338 
339   uint64_t GetImmLogical() const;
340   VIXL_DEPRECATED("GetImmLogical", uint64_t ImmLogical() const) {
341     return GetImmLogical();
342   }
343   uint64_t GetSVEImmLogical() const;
344   int GetSVEBitwiseImmLaneSizeInBytesLog2() const;
345   uint64_t DecodeImmBitMask(int32_t n,
346                             int32_t imm_s,
347                             int32_t imm_r,
348                             int32_t size) const;
349 
350   std::pair<int, int> GetSVEPermuteIndexAndLaneSizeLog2() const;
351 
352   std::pair<int, int> GetSVEImmShiftAndLaneSizeLog2(bool is_predicated) const;
353 
354   int GetSVEMsizeFromDtype(bool is_signed, int dtype_h_lsb = 23) const;
355 
356   int GetSVEEsizeFromDtype(bool is_signed, int dtype_l_lsb = 21) const;
357 
358   unsigned GetImmNEONabcdefgh() const;
ImmNEONabcdefgh()359   VIXL_DEPRECATED("GetImmNEONabcdefgh", unsigned ImmNEONabcdefgh() const) {
360     return GetImmNEONabcdefgh();
361   }
362 
363   Float16 GetImmFP16() const;
364 
365   float GetImmFP32() const;
ImmFP32()366   VIXL_DEPRECATED("GetImmFP32", float ImmFP32() const) { return GetImmFP32(); }
367 
368   double GetImmFP64() const;
ImmFP64()369   VIXL_DEPRECATED("GetImmFP64", double ImmFP64() const) { return GetImmFP64(); }
370 
371   Float16 GetImmNEONFP16() const;
372 
373   float GetImmNEONFP32() const;
ImmNEONFP32()374   VIXL_DEPRECATED("GetImmNEONFP32", float ImmNEONFP32() const) {
375     return GetImmNEONFP32();
376   }
377 
378   double GetImmNEONFP64() const;
ImmNEONFP64()379   VIXL_DEPRECATED("GetImmNEONFP64", double ImmNEONFP64() const) {
380     return GetImmNEONFP64();
381   }
382 
GetSVEImmFP16()383   Float16 GetSVEImmFP16() const { return Imm8ToFloat16(ExtractBits(12, 5)); }
384 
GetSVEImmFP32()385   float GetSVEImmFP32() const { return Imm8ToFP32(ExtractBits(12, 5)); }
386 
GetSVEImmFP64()387   double GetSVEImmFP64() const { return Imm8ToFP64(ExtractBits(12, 5)); }
388 
389   static Float16 Imm8ToFloat16(uint32_t imm8);
390   static float Imm8ToFP32(uint32_t imm8);
391   static double Imm8ToFP64(uint32_t imm8);
392 
GetSizeLS()393   unsigned GetSizeLS() const {
394     return CalcLSDataSize(static_cast<LoadStoreOp>(Mask(LoadStoreMask)));
395   }
SizeLS()396   VIXL_DEPRECATED("GetSizeLS", unsigned SizeLS() const) { return GetSizeLS(); }
397 
GetSizeLSPair()398   unsigned GetSizeLSPair() const {
399     return CalcLSPairDataSize(
400         static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
401   }
SizeLSPair()402   VIXL_DEPRECATED("GetSizeLSPair", unsigned SizeLSPair() const) {
403     return GetSizeLSPair();
404   }
405 
GetNEONLSIndex(int access_size_shift)406   int GetNEONLSIndex(int access_size_shift) const {
407     int64_t q = GetNEONQ();
408     int64_t s = GetNEONS();
409     int64_t size = GetNEONLSSize();
410     int64_t index = (q << 3) | (s << 2) | size;
411     return static_cast<int>(index >> access_size_shift);
412   }
413   VIXL_DEPRECATED("GetNEONLSIndex",
NEONLSIndex(int access_size_shift)414                   int NEONLSIndex(int access_size_shift) const) {
415     return GetNEONLSIndex(access_size_shift);
416   }
417 
418   // Helpers.
IsCondBranchImm()419   bool IsCondBranchImm() const {
420     return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
421   }
422 
IsUncondBranchImm()423   bool IsUncondBranchImm() const {
424     return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
425   }
426 
IsCompareBranch()427   bool IsCompareBranch() const {
428     return Mask(CompareBranchFMask) == CompareBranchFixed;
429   }
430 
IsTestBranch()431   bool IsTestBranch() const { return Mask(TestBranchFMask) == TestBranchFixed; }
432 
IsImmBranch()433   bool IsImmBranch() const { return GetBranchType() != UnknownBranchType; }
434 
IsPCRelAddressing()435   bool IsPCRelAddressing() const {
436     return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
437   }
438 
IsLogicalImmediate()439   bool IsLogicalImmediate() const {
440     return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
441   }
442 
IsAddSubImmediate()443   bool IsAddSubImmediate() const {
444     return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
445   }
446 
IsAddSubExtended()447   bool IsAddSubExtended() const {
448     return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
449   }
450 
IsLoadOrStore()451   bool IsLoadOrStore() const {
452     return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
453   }
454 
455   // True if `this` is valid immediately after the provided movprfx instruction.
456   bool CanTakeSVEMovprfx(Instruction const* movprfx) const;
457 
458   bool IsLoad() const;
459   bool IsStore() const;
460 
IsLoadLiteral()461   bool IsLoadLiteral() const {
462     // This includes PRFM_lit.
463     return Mask(LoadLiteralFMask) == LoadLiteralFixed;
464   }
465 
IsMovn()466   bool IsMovn() const {
467     return (Mask(MoveWideImmediateMask) == MOVN_x) ||
468            (Mask(MoveWideImmediateMask) == MOVN_w);
469   }
470 
IsException()471   bool IsException() const { return Mask(ExceptionFMask) == ExceptionFixed; }
472 
IsPAuth()473   bool IsPAuth() const { return Mask(SystemPAuthFMask) == SystemPAuthFixed; }
474 
IsBti()475   bool IsBti() const {
476     if (Mask(SystemHintFMask) == SystemHintFixed) {
477       int imm_hint = GetImmHint();
478       switch (imm_hint) {
479         case BTI:
480         case BTI_c:
481         case BTI_j:
482         case BTI_jc:
483           return true;
484       }
485     }
486     return false;
487   }
488 
489   static int GetImmBranchRangeBitwidth(ImmBranchType branch_type);
490   VIXL_DEPRECATED(
491       "GetImmBranchRangeBitwidth",
ImmBranchRangeBitwidth(ImmBranchType branch_type)492       static int ImmBranchRangeBitwidth(ImmBranchType branch_type)) {
493     return GetImmBranchRangeBitwidth(branch_type);
494   }
495 
496   static int32_t GetImmBranchForwardRange(ImmBranchType branch_type);
497   VIXL_DEPRECATED(
498       "GetImmBranchForwardRange",
499       static int32_t ImmBranchForwardRange(ImmBranchType branch_type)) {
500     return GetImmBranchForwardRange(branch_type);
501   }
502 
503   static bool IsValidImmPCOffset(ImmBranchType branch_type, int64_t offset);
504 
505   // Indicate whether Rd can be the stack pointer or the zero register. This
506   // does not check that the instruction actually has an Rd field.
GetRdMode()507   Reg31Mode GetRdMode() const {
508     // The following instructions use sp or wsp as Rd:
509     //  Add/sub (immediate) when not setting the flags.
510     //  Add/sub (extended) when not setting the flags.
511     //  Logical (immediate) when not setting the flags.
512     // Otherwise, r31 is the zero register.
513     if (IsAddSubImmediate() || IsAddSubExtended()) {
514       if (Mask(AddSubSetFlagsBit)) {
515         return Reg31IsZeroRegister;
516       } else {
517         return Reg31IsStackPointer;
518       }
519     }
520     if (IsLogicalImmediate()) {
521       // Of the logical (immediate) instructions, only ANDS (and its aliases)
522       // can set the flags. The others can all write into sp.
523       // Note that some logical operations are not available to
524       // immediate-operand instructions, so we have to combine two masks here.
525       if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
526         return Reg31IsZeroRegister;
527       } else {
528         return Reg31IsStackPointer;
529       }
530     }
531     return Reg31IsZeroRegister;
532   }
533   VIXL_DEPRECATED("GetRdMode", Reg31Mode RdMode() const) { return GetRdMode(); }
534 
535   // Indicate whether Rn can be the stack pointer or the zero register. This
536   // does not check that the instruction actually has an Rn field.
GetRnMode()537   Reg31Mode GetRnMode() const {
538     // The following instructions use sp or wsp as Rn:
539     //  All loads and stores.
540     //  Add/sub (immediate).
541     //  Add/sub (extended).
542     // Otherwise, r31 is the zero register.
543     if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
544       return Reg31IsStackPointer;
545     }
546     return Reg31IsZeroRegister;
547   }
548   VIXL_DEPRECATED("GetRnMode", Reg31Mode RnMode() const) { return GetRnMode(); }
549 
GetBranchType()550   ImmBranchType GetBranchType() const {
551     if (IsCondBranchImm()) {
552       return CondBranchType;
553     } else if (IsUncondBranchImm()) {
554       return UncondBranchType;
555     } else if (IsCompareBranch()) {
556       return CompareBranchType;
557     } else if (IsTestBranch()) {
558       return TestBranchType;
559     } else {
560       return UnknownBranchType;
561     }
562   }
563   VIXL_DEPRECATED("GetBranchType", ImmBranchType BranchType() const) {
564     return GetBranchType();
565   }
566 
567   // Find the target of this instruction. 'this' may be a branch or a
568   // PC-relative addressing instruction.
569   const Instruction* GetImmPCOffsetTarget() const;
570   VIXL_DEPRECATED("GetImmPCOffsetTarget",
571                   const Instruction* ImmPCOffsetTarget() const) {
572     return GetImmPCOffsetTarget();
573   }
574 
575   // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
576   // a PC-relative addressing instruction.
577   void SetImmPCOffsetTarget(const Instruction* target);
578   // Patch a literal load instruction to load from 'source'.
579   void SetImmLLiteral(const Instruction* source);
580 
581   // The range of a load literal instruction, expressed as 'instr +- range'.
582   // The range is actually the 'positive' range; the branch instruction can
583   // target [instr - range - kInstructionSize, instr + range].
584   static const int kLoadLiteralImmBitwidth = 19;
585   static const int kLoadLiteralRange =
586       (1 << kLoadLiteralImmBitwidth) / 2 - kInstructionSize;
587 
588   // Calculate the address of a literal referred to by a load-literal
589   // instruction, and return it as the specified type.
590   //
591   // The literal itself is safely mutable only if the backing buffer is safely
592   // mutable.
593   template <typename T>
GetLiteralAddress()594   T GetLiteralAddress() const {
595     uint64_t base_raw = reinterpret_cast<uint64_t>(this);
596     int64_t offset = GetImmLLiteral() * static_cast<int>(kLiteralEntrySize);
597     uint64_t address_raw = base_raw + offset;
598 
599     // Cast the address using a C-style cast. A reinterpret_cast would be
600     // appropriate, but it can't cast one integral type to another.
601     T address = (T)(address_raw);
602 
603     // Assert that the address can be represented by the specified type.
604     VIXL_ASSERT((uint64_t)(address) == address_raw);
605 
606     return address;
607   }
608   template <typename T>
609   VIXL_DEPRECATED("GetLiteralAddress", T LiteralAddress() const) {
610     return GetLiteralAddress<T>();
611   }
612 
GetLiteral32()613   uint32_t GetLiteral32() const {
614     uint32_t literal;
615     memcpy(&literal, GetLiteralAddress<const void*>(), sizeof(literal));
616     return literal;
617   }
618   VIXL_DEPRECATED("GetLiteral32", uint32_t Literal32() const) {
619     return GetLiteral32();
620   }
621 
GetLiteral64()622   uint64_t GetLiteral64() const {
623     uint64_t literal;
624     memcpy(&literal, GetLiteralAddress<const void*>(), sizeof(literal));
625     return literal;
626   }
627   VIXL_DEPRECATED("GetLiteral64", uint64_t Literal64() const) {
628     return GetLiteral64();
629   }
630 
GetLiteralFP32()631   float GetLiteralFP32() const { return RawbitsToFloat(GetLiteral32()); }
LiteralFP32()632   VIXL_DEPRECATED("GetLiteralFP32", float LiteralFP32() const) {
633     return GetLiteralFP32();
634   }
635 
GetLiteralFP64()636   double GetLiteralFP64() const { return RawbitsToDouble(GetLiteral64()); }
LiteralFP64()637   VIXL_DEPRECATED("GetLiteralFP64", double LiteralFP64() const) {
638     return GetLiteralFP64();
639   }
640 
GetNextInstruction()641   Instruction* GetNextInstruction() { return this + kInstructionSize; }
GetNextInstruction()642   const Instruction* GetNextInstruction() const {
643     return this + kInstructionSize;
644   }
645   VIXL_DEPRECATED("GetNextInstruction",
646                   const Instruction* NextInstruction() const) {
647     return GetNextInstruction();
648   }
649 
GetInstructionAtOffset(int64_t offset)650   const Instruction* GetInstructionAtOffset(int64_t offset) const {
651     VIXL_ASSERT(IsWordAligned(this + offset));
652     return this + offset;
653   }
654   VIXL_DEPRECATED("GetInstructionAtOffset",
655                   const Instruction* InstructionAtOffset(int64_t offset)
656                       const) {
657     return GetInstructionAtOffset(offset);
658   }
659 
660   template <typename T>
Cast(T src)661   static Instruction* Cast(T src) {
662     return reinterpret_cast<Instruction*>(src);
663   }
664 
665   template <typename T>
CastConst(T src)666   static const Instruction* CastConst(T src) {
667     return reinterpret_cast<const Instruction*>(src);
668   }
669 
670  private:
671   int GetImmBranch() const;
672 
673   void SetPCRelImmTarget(const Instruction* target);
674   void SetBranchImmTarget(const Instruction* target);
675 };
676 
677 
678 // Functions for handling NEON and SVE vector format information.
679 
680 const int kMaxLanesPerVector = 16;
681 
682 VectorFormat VectorFormatHalfWidth(VectorFormat vform);
683 VectorFormat VectorFormatDoubleWidth(VectorFormat vform);
684 VectorFormat VectorFormatDoubleLanes(VectorFormat vform);
685 VectorFormat VectorFormatHalfLanes(VectorFormat vform);
686 VectorFormat ScalarFormatFromLaneSize(int lane_size_in_bits);
687 VectorFormat VectorFormatHalfWidthDoubleLanes(VectorFormat vform);
688 VectorFormat VectorFormatFillQ(VectorFormat vform);
689 VectorFormat ScalarFormatFromFormat(VectorFormat vform);
690 VectorFormat SVEFormatFromLaneSizeInBits(int lane_size_in_bits);
691 VectorFormat SVEFormatFromLaneSizeInBytes(int lane_size_in_bytes);
692 VectorFormat SVEFormatFromLaneSizeInBytesLog2(int lane_size_in_bytes_log_2);
693 unsigned RegisterSizeInBitsFromFormat(VectorFormat vform);
694 unsigned RegisterSizeInBytesFromFormat(VectorFormat vform);
695 bool IsSVEFormat(VectorFormat vform);
696 // TODO: Make the return types of these functions consistent.
697 unsigned LaneSizeInBitsFromFormat(VectorFormat vform);
698 int LaneSizeInBytesFromFormat(VectorFormat vform);
699 int LaneSizeInBytesLog2FromFormat(VectorFormat vform);
700 int LaneCountFromFormat(VectorFormat vform);
701 int MaxLaneCountFromFormat(VectorFormat vform);
702 bool IsVectorFormat(VectorFormat vform);
703 int64_t MaxIntFromFormat(VectorFormat vform);
704 int64_t MinIntFromFormat(VectorFormat vform);
705 uint64_t MaxUintFromFormat(VectorFormat vform);
706 
707 
708 // clang-format off
709 enum NEONFormat {
710   NF_UNDEF = 0,
711   NF_8B    = 1,
712   NF_16B   = 2,
713   NF_4H    = 3,
714   NF_8H    = 4,
715   NF_2S    = 5,
716   NF_4S    = 6,
717   NF_1D    = 7,
718   NF_2D    = 8,
719   NF_B     = 9,
720   NF_H     = 10,
721   NF_S     = 11,
722   NF_D     = 12
723 };
724 // clang-format on
725 
726 static const unsigned kNEONFormatMaxBits = 6;
727 
728 struct NEONFormatMap {
729   // The bit positions in the instruction to consider.
730   uint8_t bits[kNEONFormatMaxBits];
731 
732   // Mapping from concatenated bits to format.
733   NEONFormat map[1 << kNEONFormatMaxBits];
734 };
735 
736 class NEONFormatDecoder {
737  public:
738   enum SubstitutionMode { kPlaceholder, kFormat };
739 
740   // Construct a format decoder with increasingly specific format maps for each
741   // subsitution. If no format map is specified, the default is the integer
742   // format map.
NEONFormatDecoder(const Instruction * instr)743   explicit NEONFormatDecoder(const Instruction* instr) {
744     instrbits_ = instr->GetInstructionBits();
745     SetFormatMaps(IntegerFormatMap());
746   }
NEONFormatDecoder(const Instruction * instr,const NEONFormatMap * format)747   NEONFormatDecoder(const Instruction* instr, const NEONFormatMap* format) {
748     instrbits_ = instr->GetInstructionBits();
749     SetFormatMaps(format);
750   }
NEONFormatDecoder(const Instruction * instr,const NEONFormatMap * format0,const NEONFormatMap * format1)751   NEONFormatDecoder(const Instruction* instr,
752                     const NEONFormatMap* format0,
753                     const NEONFormatMap* format1) {
754     instrbits_ = instr->GetInstructionBits();
755     SetFormatMaps(format0, format1);
756   }
NEONFormatDecoder(const Instruction * instr,const NEONFormatMap * format0,const NEONFormatMap * format1,const NEONFormatMap * format2)757   NEONFormatDecoder(const Instruction* instr,
758                     const NEONFormatMap* format0,
759                     const NEONFormatMap* format1,
760                     const NEONFormatMap* format2) {
761     instrbits_ = instr->GetInstructionBits();
762     SetFormatMaps(format0, format1, format2);
763   }
764 
765   // Set the format mapping for all or individual substitutions.
766   void SetFormatMaps(const NEONFormatMap* format0,
767                      const NEONFormatMap* format1 = NULL,
768                      const NEONFormatMap* format2 = NULL) {
769     VIXL_ASSERT(format0 != NULL);
770     formats_[0] = format0;
771     formats_[1] = (format1 == NULL) ? formats_[0] : format1;
772     formats_[2] = (format2 == NULL) ? formats_[1] : format2;
773   }
SetFormatMap(unsigned index,const NEONFormatMap * format)774   void SetFormatMap(unsigned index, const NEONFormatMap* format) {
775     VIXL_ASSERT(index <= ArrayLength(formats_));
776     VIXL_ASSERT(format != NULL);
777     formats_[index] = format;
778   }
779 
780   // Substitute %s in the input string with the placeholder string for each
781   // register, ie. "'B", "'H", etc.
SubstitutePlaceholders(const char * string)782   const char* SubstitutePlaceholders(const char* string) {
783     return Substitute(string, kPlaceholder, kPlaceholder, kPlaceholder);
784   }
785 
786   // Substitute %s in the input string with a new string based on the
787   // substitution mode.
788   const char* Substitute(const char* string,
789                          SubstitutionMode mode0 = kFormat,
790                          SubstitutionMode mode1 = kFormat,
791                          SubstitutionMode mode2 = kFormat) {
792     snprintf(form_buffer_,
793              sizeof(form_buffer_),
794              string,
795              GetSubstitute(0, mode0),
796              GetSubstitute(1, mode1),
797              GetSubstitute(2, mode2));
798     return form_buffer_;
799   }
800 
801   // Append a "2" to a mnemonic string based of the state of the Q bit.
Mnemonic(const char * mnemonic)802   const char* Mnemonic(const char* mnemonic) {
803     if ((instrbits_ & NEON_Q) != 0) {
804       snprintf(mne_buffer_, sizeof(mne_buffer_), "%s2", mnemonic);
805       return mne_buffer_;
806     }
807     return mnemonic;
808   }
809 
810   VectorFormat GetVectorFormat(int format_index = 0) {
811     return GetVectorFormat(formats_[format_index]);
812   }
813 
GetVectorFormat(const NEONFormatMap * format_map)814   VectorFormat GetVectorFormat(const NEONFormatMap* format_map) {
815     static const VectorFormat vform[] = {kFormatUndefined,
816                                          kFormat8B,
817                                          kFormat16B,
818                                          kFormat4H,
819                                          kFormat8H,
820                                          kFormat2S,
821                                          kFormat4S,
822                                          kFormat1D,
823                                          kFormat2D,
824                                          kFormatB,
825                                          kFormatH,
826                                          kFormatS,
827                                          kFormatD};
828     VIXL_ASSERT(GetNEONFormat(format_map) < ArrayLength(vform));
829     return vform[GetNEONFormat(format_map)];
830   }
831 
832   // Built in mappings for common cases.
833 
834   // The integer format map uses three bits (Q, size<1:0>) to encode the
835   // "standard" set of NEON integer vector formats.
IntegerFormatMap()836   static const NEONFormatMap* IntegerFormatMap() {
837     static const NEONFormatMap map =
838         {{23, 22, 30},
839          {NF_8B, NF_16B, NF_4H, NF_8H, NF_2S, NF_4S, NF_UNDEF, NF_2D}};
840     return &map;
841   }
842 
843   // The long integer format map uses two bits (size<1:0>) to encode the
844   // long set of NEON integer vector formats. These are used in narrow, wide
845   // and long operations.
LongIntegerFormatMap()846   static const NEONFormatMap* LongIntegerFormatMap() {
847     static const NEONFormatMap map = {{23, 22}, {NF_8H, NF_4S, NF_2D}};
848     return &map;
849   }
850 
851   // The FP format map uses two bits (Q, size<0>) to encode the NEON FP vector
852   // formats: NF_2S, NF_4S, NF_2D.
FPFormatMap()853   static const NEONFormatMap* FPFormatMap() {
854     // The FP format map assumes two bits (Q, size<0>) are used to encode the
855     // NEON FP vector formats: NF_2S, NF_4S, NF_2D.
856     static const NEONFormatMap map = {{22, 30},
857                                       {NF_2S, NF_4S, NF_UNDEF, NF_2D}};
858     return &map;
859   }
860 
861   // The FP16 format map uses one bit (Q) to encode the NEON vector format:
862   // NF_4H, NF_8H.
FP16FormatMap()863   static const NEONFormatMap* FP16FormatMap() {
864     static const NEONFormatMap map = {{30}, {NF_4H, NF_8H}};
865     return &map;
866   }
867 
868   // The load/store format map uses three bits (Q, 11, 10) to encode the
869   // set of NEON vector formats.
LoadStoreFormatMap()870   static const NEONFormatMap* LoadStoreFormatMap() {
871     static const NEONFormatMap map =
872         {{11, 10, 30},
873          {NF_8B, NF_16B, NF_4H, NF_8H, NF_2S, NF_4S, NF_1D, NF_2D}};
874     return &map;
875   }
876 
877   // The logical format map uses one bit (Q) to encode the NEON vector format:
878   // NF_8B, NF_16B.
LogicalFormatMap()879   static const NEONFormatMap* LogicalFormatMap() {
880     static const NEONFormatMap map = {{30}, {NF_8B, NF_16B}};
881     return &map;
882   }
883 
884   // The triangular format map uses between two and five bits to encode the NEON
885   // vector format:
886   // xxx10->8B, xxx11->16B, xx100->4H, xx101->8H
887   // x1000->2S, x1001->4S,  10001->2D, all others undefined.
TriangularFormatMap()888   static const NEONFormatMap* TriangularFormatMap() {
889     static const NEONFormatMap map =
890         {{19, 18, 17, 16, 30},
891          {NF_UNDEF, NF_UNDEF, NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B,
892           NF_2S,    NF_4S,    NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B,
893           NF_UNDEF, NF_2D,    NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B,
894           NF_2S,    NF_4S,    NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B}};
895     return &map;
896   }
897 
898   // The scalar format map uses two bits (size<1:0>) to encode the NEON scalar
899   // formats: NF_B, NF_H, NF_S, NF_D.
ScalarFormatMap()900   static const NEONFormatMap* ScalarFormatMap() {
901     static const NEONFormatMap map = {{23, 22}, {NF_B, NF_H, NF_S, NF_D}};
902     return &map;
903   }
904 
905   // The long scalar format map uses two bits (size<1:0>) to encode the longer
906   // NEON scalar formats: NF_H, NF_S, NF_D.
LongScalarFormatMap()907   static const NEONFormatMap* LongScalarFormatMap() {
908     static const NEONFormatMap map = {{23, 22}, {NF_H, NF_S, NF_D}};
909     return &map;
910   }
911 
912   // The FP scalar format map assumes one bit (size<0>) is used to encode the
913   // NEON FP scalar formats: NF_S, NF_D.
FPScalarFormatMap()914   static const NEONFormatMap* FPScalarFormatMap() {
915     static const NEONFormatMap map = {{22}, {NF_S, NF_D}};
916     return &map;
917   }
918 
919   // The FP scalar pairwise format map assumes two bits (U, size<0>) are used to
920   // encode the NEON FP scalar formats: NF_H, NF_S, NF_D.
FPScalarPairwiseFormatMap()921   static const NEONFormatMap* FPScalarPairwiseFormatMap() {
922     static const NEONFormatMap map = {{29, 22}, {NF_H, NF_UNDEF, NF_S, NF_D}};
923     return &map;
924   }
925 
926   // The triangular scalar format map uses between one and four bits to encode
927   // the NEON FP scalar formats:
928   // xxx1->B, xx10->H, x100->S, 1000->D, all others undefined.
TriangularScalarFormatMap()929   static const NEONFormatMap* TriangularScalarFormatMap() {
930     static const NEONFormatMap map = {{19, 18, 17, 16},
931                                       {NF_UNDEF,
932                                        NF_B,
933                                        NF_H,
934                                        NF_B,
935                                        NF_S,
936                                        NF_B,
937                                        NF_H,
938                                        NF_B,
939                                        NF_D,
940                                        NF_B,
941                                        NF_H,
942                                        NF_B,
943                                        NF_S,
944                                        NF_B,
945                                        NF_H,
946                                        NF_B}};
947     return &map;
948   }
949 
950  private:
951   // Get a pointer to a string that represents the format or placeholder for
952   // the specified substitution index, based on the format map and instruction.
GetSubstitute(int index,SubstitutionMode mode)953   const char* GetSubstitute(int index, SubstitutionMode mode) {
954     if (mode == kFormat) {
955       return NEONFormatAsString(GetNEONFormat(formats_[index]));
956     }
957     VIXL_ASSERT(mode == kPlaceholder);
958     return NEONFormatAsPlaceholder(GetNEONFormat(formats_[index]));
959   }
960 
961   // Get the NEONFormat enumerated value for bits obtained from the
962   // instruction based on the specified format mapping.
GetNEONFormat(const NEONFormatMap * format_map)963   NEONFormat GetNEONFormat(const NEONFormatMap* format_map) {
964     return format_map->map[PickBits(format_map->bits)];
965   }
966 
967   // Convert a NEONFormat into a string.
NEONFormatAsString(NEONFormat format)968   static const char* NEONFormatAsString(NEONFormat format) {
969     // clang-format off
970     static const char* formats[] = {
971       "undefined",
972       "8b", "16b", "4h", "8h", "2s", "4s", "1d", "2d",
973       "b", "h", "s", "d"
974     };
975     // clang-format on
976     VIXL_ASSERT(format < ArrayLength(formats));
977     return formats[format];
978   }
979 
980   // Convert a NEONFormat into a register placeholder string.
NEONFormatAsPlaceholder(NEONFormat format)981   static const char* NEONFormatAsPlaceholder(NEONFormat format) {
982     VIXL_ASSERT((format == NF_B) || (format == NF_H) || (format == NF_S) ||
983                 (format == NF_D) || (format == NF_UNDEF));
984     // clang-format off
985     static const char* formats[] = {
986       "undefined",
987       "undefined", "undefined", "undefined", "undefined",
988       "undefined", "undefined", "undefined", "undefined",
989       "'B", "'H", "'S", "'D"
990     };
991     // clang-format on
992     return formats[format];
993   }
994 
995   // Select bits from instrbits_ defined by the bits array, concatenate them,
996   // and return the value.
PickBits(const uint8_t bits[])997   uint8_t PickBits(const uint8_t bits[]) {
998     uint8_t result = 0;
999     for (unsigned b = 0; b < kNEONFormatMaxBits; b++) {
1000       if (bits[b] == 0) break;
1001       result <<= 1;
1002       result |= ((instrbits_ & (1 << bits[b])) == 0) ? 0 : 1;
1003     }
1004     return result;
1005   }
1006 
1007   Instr instrbits_;
1008   const NEONFormatMap* formats_[3];
1009   char form_buffer_[64];
1010   char mne_buffer_[16];
1011 };
1012 }  // namespace aarch64
1013 }  // namespace vixl
1014 
1015 #endif  // VIXL_AARCH64_INSTRUCTIONS_AARCH64_H_
1016