1 //===- Loops.cpp - conversion from Linalg named and generic ops to loops --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "PassDetail.h"
10 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
11 #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h"
12 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
13 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
14 #include "mlir/Dialect/Linalg/Passes.h"
15 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
16 #include "mlir/Dialect/Linalg/Utils/Utils.h"
17 #include "mlir/Dialect/SCF/EDSC/Builders.h"
18 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
19 #include "mlir/IR/AffineExpr.h"
20 #include "mlir/IR/AffineMap.h"
21 #include "mlir/IR/BlockAndValueMapping.h"
22 #include "mlir/Support/LLVM.h"
23 #include "mlir/Transforms/DialectConversion.h"
24 #include "mlir/Transforms/FoldUtils.h"
25 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
26
27 #include "llvm/ADT/TypeSwitch.h"
28
29 using namespace mlir;
30 using namespace mlir::edsc;
31 using namespace mlir::edsc::intrinsics;
32 using namespace mlir::linalg;
33
34 using edsc::op::operator+;
35
makeCanonicalAffineApplies(OpBuilder & b,Location loc,AffineMap map,ArrayRef<Value> vals)36 static SmallVector<Value, 8> makeCanonicalAffineApplies(OpBuilder &b,
37 Location loc,
38 AffineMap map,
39 ArrayRef<Value> vals) {
40 if (map.isEmpty())
41 return {};
42
43 assert(map.getNumInputs() == vals.size());
44 SmallVector<Value, 8> res;
45 res.reserve(map.getNumResults());
46 auto dims = map.getNumDims();
47 for (auto e : map.getResults()) {
48 auto exprMap = AffineMap::get(dims, map.getNumSymbols(), e);
49 SmallVector<Value, 4> operands(vals.begin(), vals.end());
50 canonicalizeMapAndOperands(&exprMap, &operands);
51 res.push_back(affine_apply(exprMap, operands));
52 }
53 return res;
54 }
55
permuteIvs(ArrayRef<Value> ivs,Optional<AffineMap> permutation)56 static SmallVector<Value, 4> permuteIvs(ArrayRef<Value> ivs,
57 Optional<AffineMap> permutation) {
58 return permutation ? applyMapToValues(ScopedContext::getBuilderRef(),
59 ScopedContext::getLocation(),
60 permutation.getValue(), ivs)
61 : SmallVector<Value, 4>(ivs.begin(), ivs.end());
62 }
63
64 template <typename IndexedValueType, typename OpType>
inlineRegionAndEmitStore(OpType op,ArrayRef<Value> indexedValues,ArrayRef<SmallVector<Value,8>> indexing,ArrayRef<Value> outputBuffers)65 static void inlineRegionAndEmitStore(OpType op, ArrayRef<Value> indexedValues,
66 ArrayRef<SmallVector<Value, 8>> indexing,
67 ArrayRef<Value> outputBuffers) {
68 assert(op->getNumRegions() == 1 && "Expected single region op");
69 auto &b = ScopedContext::getBuilderRef();
70 auto &block = op->getRegion(0).front();
71 BlockAndValueMapping map;
72 map.map(block.getArguments(), indexedValues);
73 for (auto &op : block.without_terminator()) {
74 assert(op.getNumRegions() == 0 && "expected a non-nested region");
75 auto *newOp = b.clone(op, map);
76 map.map(op.getResults(), newOp->getResults());
77 }
78
79 Operation &terminator = block.back();
80 assert(isa<linalg::YieldOp>(terminator) &&
81 "expected a yield op in the end of the region");
82 for (unsigned i = 0, e = terminator.getNumOperands(); i < e; ++i) {
83 IndexedValueType O(outputBuffers[i]);
84 O(indexing[i]) = map.lookupOrDefault(terminator.getOperand(i));
85 }
86 }
87
88 // Returns a pair that contains input indices and output indices of a
89 // SingleInputPoolingOp `op`.
90 struct InputAndOutputIndices {
91 SmallVector<Value, 8> inputs;
92 SmallVector<Value, 8> outputs;
93 };
94 template <typename SingleInputPoolingOp>
getInputAndOutputIndices(ArrayRef<Value> allIvs,SingleInputPoolingOp op)95 static InputAndOutputIndices getInputAndOutputIndices(ArrayRef<Value> allIvs,
96 SingleInputPoolingOp op) {
97 auto &b = ScopedContext::getBuilderRef();
98 auto loc = ScopedContext::getLocation();
99 auto mapsRange = op.indexing_maps().template getAsRange<AffineMapAttr>();
100 auto maps = llvm::to_vector<8>(
101 llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); }));
102 return InputAndOutputIndices{
103 makeCanonicalAffineApplies(b, loc, maps[0], allIvs),
104 makeCanonicalAffineApplies(b, loc, maps[2], allIvs)};
105 }
106
107 /// Emits the MLIR for the scalar part of the generic op by:
108 /// 1. Emitting load ops for each input and output view in order. This is
109 /// achieved by applying the appropriate input or output map to the
110 /// enclosing induction variables.
111 /// 2. Emitting a call to `op.fun()` that takes as arguments the scalars
112 /// from point 1. above.
113 /// 3. Emitting store ops to store the results of 2. to the output
114 /// views.
115 ///
116 /// An example output may resemble:
117 ///
118 /// ```
119 /// scf.for %i = %c0 to %0 step %c1 {
120 /// scf.for %j = %c0 to %1 step %c1 {
121 /// scf.for %k = %c0 to %4 step %c1 {
122 /// %11 = load %arg0[%i, %j] :
123 /// memref<?x?xf32, stride_specification>
124 /// %12 = load %arg1[%i, %j, %k] :
125 /// memref<?x?x?xf32, stride_specification>
126 /// %13 = load %arg2[%i, %k, %j] :
127 /// memref<?x?x?xf32, stride_specification>
128 /// %14:2 = call @foo(%11, %12, %13) : (f32, f32, f32) -> (f32, f32)
129 /// store %14#0, %arg1[%i, %j, %k] :
130 /// memref<?x?x?Xf32, stride_specification>
131 /// store %14#1, %arg2[%i, %k, %j] :
132 /// memref<?x?x?Xf32, stride_specification>
133 /// }
134 /// }
135 /// }
136 /// ```
137 template <typename IndexedValueType>
emitScalarImplementation(ArrayRef<Value> allIvs,LinalgOp linalgOp)138 static void emitScalarImplementation(ArrayRef<Value> allIvs,
139 LinalgOp linalgOp) {
140 assert(linalgOp.hasBufferSemantics() &&
141 "expected linalg op with buffer semantics");
142 auto &b = ScopedContext::getBuilderRef();
143 auto loc = ScopedContext::getLocation();
144 unsigned nInputs = linalgOp.getNumInputs();
145 unsigned nOutputs = linalgOp.getNumOutputs();
146 SmallVector<Value, 4> indexedValues;
147 indexedValues.reserve(nInputs + nOutputs);
148
149 auto allIvsPlusDims = SmallVector<Value, 4>(allIvs.begin(), allIvs.end());
150
151 // TODO: Avoid the loads if the corresponding argument of the
152 // region has no uses.
153 // 1.a. Emit load from input views.
154 for (unsigned i = 0; i < nInputs; ++i) {
155 auto indexing = makeCanonicalAffineApplies(
156 b, loc, linalgOp.getInputIndexingMap(i), allIvsPlusDims);
157 // Passing through IndexedValueType emits the proper load operation.
158 indexedValues.push_back(IndexedValueType(linalgOp.getInput(i))(indexing));
159 }
160 // 1.b. Emit load from output views.
161 for (unsigned i = 0; i < nOutputs; ++i) {
162 auto indexing = makeCanonicalAffineApplies(
163 b, loc, linalgOp.getOutputIndexingMap(i), allIvsPlusDims);
164 // Passing through IndexedValueType emits the proper load operation.
165 indexedValues.push_back(
166 IndexedValueType(linalgOp.getOutputBuffer(i))(indexing));
167 }
168
169 // TODO: When a region inliner exists, use it.
170 // 2. Inline region, currently only works for a single basic block.
171 // 3. Emit store.
172 SmallVector<SmallVector<Value, 8>, 8> indexing;
173 SmallVector<Value, 8> outputBuffers;
174 for (unsigned i = 0; i < nOutputs; ++i) {
175 indexing.push_back(makeCanonicalAffineApplies(
176 b, loc, linalgOp.getOutputIndexingMap(i), allIvsPlusDims));
177 outputBuffers.push_back(linalgOp.getOutputBuffer(i));
178 }
179 inlineRegionAndEmitStore<IndexedValueType>(linalgOp, indexedValues, indexing,
180 outputBuffers);
181 }
182
183 template <typename IndexedValueType>
emitScalarImplementation(ArrayRef<Value> allIvs,CopyOp copyOp)184 static void emitScalarImplementation(ArrayRef<Value> allIvs, CopyOp copyOp) {
185 assert(copyOp.hasBufferSemantics() &&
186 "expected linalg op with buffer semantics");
187 auto nPar = copyOp.getNumParallelLoops();
188 assert(nPar == allIvs.size());
189 auto inputIvs =
190 permuteIvs(allIvs.take_front(nPar), copyOp.inputPermutation());
191 auto outputIvs =
192 permuteIvs(allIvs.take_front(nPar), copyOp.outputPermutation());
193 SmallVector<Value, 8> iivs(inputIvs.begin(), inputIvs.end());
194 SmallVector<Value, 8> oivs(outputIvs.begin(), outputIvs.end());
195 IndexedValueType O(copyOp.getOutputBuffer(0)), I(copyOp.getInput(0));
196 // Emit the proper scalar assignment, whether we are dealing with a 0-D or
197 // an n-D loop nest; with or without permutations.
198 // clang-format off
199 nPar > 0 ? O(oivs) = I(iivs) :
200 O() = I();
201 // clang-format on
202 }
203
204 template <typename IndexedValueType>
emitScalarImplementation(ArrayRef<Value> allIvs,FillOp fillOp)205 static void emitScalarImplementation(ArrayRef<Value> allIvs, FillOp fillOp) {
206 assert(fillOp.hasBufferSemantics() &&
207 "expected linalg op with buffer semantics");
208 auto nPar = fillOp.getNumParallelLoops();
209 assert(nPar == allIvs.size());
210 auto ivs = SmallVector<Value, 4>(allIvs.begin(), allIvs.begin() + nPar);
211 IndexedValueType O(fillOp.getOutputBuffer(0));
212 // Emit the proper scalar assignment, whether we are dealing with a 0-D or
213 // an n-D loop nest; with or without permutations.
214 nPar > 0 ? O(ivs) = fillOp.value() : O() = fillOp.value();
215 }
216
217 // Create a padded view into the given `input` tensor using the 'indices'
218 // to access the tensor. `skipPadding` lists the dimensions for which no padding
219 // is needed e.g. the non-spatial dimensions for convolutions.
220 template <typename IndexedValueType>
getPaddedInput(Value input,ArrayRef<Value> indices,ArrayRef<int> skipPadding,Value padValue)221 Value getPaddedInput(Value input, ArrayRef<Value> indices,
222 ArrayRef<int> skipPadding, Value padValue) {
223 // TODO: add a level of indirection to linalg.generic.
224
225 IndexedValueType indexedInput(input);
226
227 auto *context = ScopedContext::getContext();
228 Value zeroIndex = std_constant_index(0);
229 SmallVector<Value, 8> conds;
230 SmallVector<Value, 8> clampedImIdx;
231 for (auto iter : llvm::enumerate(indices)) {
232 int idx = iter.index();
233 auto dim = iter.value();
234 if (is_contained(skipPadding, idx)) {
235 clampedImIdx.push_back(dim);
236 continue;
237 }
238
239 using edsc::op::sge;
240 using edsc::op::slt;
241 using edsc::op::operator||;
242 Value leftOutOfBound = slt(dim, zeroIndex);
243 if (conds.empty())
244 conds.push_back(leftOutOfBound);
245 else
246 conds.push_back(conds.back() || leftOutOfBound);
247 Value rightBound = std_dim(input, idx);
248 conds.push_back(conds.back() || (sge(dim, rightBound)));
249
250 // When padding is involved, the indices will only be shifted to negative,
251 // so having a max op is enough.
252 auto maxMap = AffineMap::get(/*dimCount=*/1, 0,
253 {getAffineDimExpr(/*position=*/0, context),
254 getAffineConstantExpr(0, context)},
255 context);
256 clampedImIdx.push_back(affine_max(dim.getType(), maxMap, ValueRange{dim}));
257 }
258
259 Value readInput = indexedInput(clampedImIdx);
260 return conds.empty() ? readInput
261 : (Value)std_select(conds.back(), padValue, readInput);
262 }
263
264 namespace {
265
266 /// The padding value for a given Op depends on the semantics of the Op.
267 /// The identity value for ConvOp and PoolingSumOp is 0, for PoolingMaxOp is
268 /// -inf or minInt and for PoolingMinOp is inf or maxInt.
269 template <typename OpType>
getPadValueAttr(Type type)270 Attribute getPadValueAttr(Type type) {
271 llvm_unreachable("Unexpected op type for getPadValueAttr");
272 return {};
273 }
274
275 template <>
getPadValueAttr(Type type)276 Attribute getPadValueAttr<PoolingMaxOp>(Type type) {
277 auto &b = ScopedContext::getBuilderRef();
278 if (auto floatType = type.dyn_cast<FloatType>()) {
279 return b.getFloatAttr(
280 floatType,
281 APFloat::getInf(floatType.getFloatSemantics(), /*Negative*/ true));
282 }
283 if (auto intType = type.dyn_cast<IntegerType>()) {
284 unsigned width = intType.getWidth();
285 // The select instruction used to lower the PoolingMin uses a signed
286 // comparison, use a signed constant irrespective of the signedness of the
287 // integer type.
288 return b.getIntegerAttr(intType, APInt::getSignedMinValue(width));
289 }
290 llvm_unreachable("Unsupported data type for PoolingMaxOp");
291 return {};
292 }
293
294 template <>
getPadValueAttr(Type type)295 Attribute getPadValueAttr<PoolingMinOp>(Type type) {
296 auto &b = ScopedContext::getBuilderRef();
297 if (auto floatType = type.dyn_cast<FloatType>()) {
298 return b.getFloatAttr(floatType,
299 APFloat::getInf(floatType.getFloatSemantics()));
300 }
301 if (auto intType = type.dyn_cast<IntegerType>()) {
302 unsigned width = intType.getWidth();
303 // The select instruction used to lower the PoolingMin uses a signed
304 // comparison, use a signed constant irrespective of the signedness of the
305 // integer type.
306 return b.getIntegerAttr(intType, APInt::getSignedMaxValue(width));
307 }
308 llvm_unreachable("Unsupported data type for PoolingMinOp");
309 return {};
310 }
311
312 template <>
getPadValueAttr(Type type)313 Attribute getPadValueAttr<PoolingSumOp>(Type type) {
314 auto &b = ScopedContext::getBuilderRef();
315 return b.getZeroAttr(type);
316 }
317
318 template <>
getPadValueAttr(Type type)319 Attribute getPadValueAttr<ConvOp>(Type type) {
320 auto &b = ScopedContext::getBuilderRef();
321 return b.getZeroAttr(type);
322 }
323
324 } // namespace
325
326 /// Returns true is `convOp` has a non-zero padding.
hasPadding(ConvOp convOp)327 static bool hasPadding(ConvOp convOp) {
328 for (unsigned i = 0, e = convOp.getNumSpatialDimensions(); i < e; ++i) {
329 if (convOp.getLowPad(i) > 0 || convOp.getHighPad(i) > 0)
330 return true;
331 }
332 return false;
333 }
334
335 template <typename IndexedValueType>
emitScalarImplementation(ArrayRef<Value> allIvs,ConvOp convOp)336 static void emitScalarImplementation(ArrayRef<Value> allIvs, ConvOp convOp) {
337 assert(convOp.hasBufferSemantics() &&
338 "expected linalg op with buffer semantics");
339 auto &b = ScopedContext::getBuilderRef();
340 auto loc = ScopedContext::getLocation();
341 auto mapsRange = convOp.indexing_maps().getAsRange<AffineMapAttr>();
342 auto maps = llvm::to_vector<8>(
343 llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); }));
344 SmallVector<Value, 8> fIdx(
345 makeCanonicalAffineApplies(b, loc, maps[0], allIvs));
346 SmallVector<Value, 8> imIdx(
347 makeCanonicalAffineApplies(b, loc, maps[1], allIvs));
348 SmallVector<Value, 8> oIdx(
349 makeCanonicalAffineApplies(b, loc, maps[2], allIvs));
350
351 IndexedValueType F(convOp.filter()), O(convOp.output());
352
353 // Emit scalar form. Padded conv involves an affine.max in the memory access
354 // which is not allowed by affine.load. Override to use an StdIndexedValue
355 // when there is non-zero padding.
356 if (hasPadding(convOp)) {
357 Type type = convOp.input().getType().cast<MemRefType>().getElementType();
358 Value padValue = std_constant(type, getPadValueAttr<ConvOp>(type));
359 Value paddedInput = getPaddedInput<StdIndexedValue>(
360 convOp.input(), imIdx,
361 /* Only need to pad the window dimensions */
362 {0, static_cast<int>(imIdx.size()) - 1}, padValue);
363 O(oIdx) += F(fIdx) * paddedInput;
364 } else {
365 IndexedValueType I(convOp.input());
366 O(oIdx) += F(fIdx) * I(imIdx);
367 }
368 }
369
370 template <typename PoolingOp>
hasPadding(PoolingOp poolingOp)371 static bool hasPadding(PoolingOp poolingOp) {
372 for (unsigned i = 0, e = poolingOp.getNumWindowLoops(); i < e; ++i) {
373 if (poolingOp.getLowPad(i) > 0 || poolingOp.getHighPad(i) > 0)
374 return true;
375 }
376 return false;
377 }
378
379 template <typename IndexedValueType, typename PoolingOp>
getPoolingInput(PoolingOp op,ArrayRef<Value> inputIndices)380 static Value getPoolingInput(PoolingOp op, ArrayRef<Value> inputIndices) {
381 if (hasPadding(op)) {
382 Type type =
383 op.input().getType().template cast<MemRefType>().getElementType();
384 Value padValue = std_constant(type, getPadValueAttr<PoolingOp>(type));
385 return getPaddedInput<StdIndexedValue>(op.input(), inputIndices,
386 /*Pad every dimension*/ {},
387 padValue);
388 }
389 IndexedValueType input(op.input());
390 return input(inputIndices);
391 }
392
393 template <typename IndexedValueType, typename OpType>
emitPoolingMinMaxScalarImplementation(ArrayRef<Value> allIvs,OpType op)394 void emitPoolingMinMaxScalarImplementation(ArrayRef<Value> allIvs, OpType op) {
395 InputAndOutputIndices indices = getInputAndOutputIndices(allIvs, op);
396 // Emit scalar form.
397 IndexedValueType output(op.output());
398 Value lhs = output(indices.outputs);
399 Value rhs = getPoolingInput<IndexedValueType>(op, indices.inputs);
400 using edsc::op::sgt;
401 using edsc::op::slt;
402 Value value = std::is_same<OpType, PoolingMinOp>()
403 ? std_select(slt(lhs, rhs), lhs, rhs)
404 : std_select(sgt(lhs, rhs), lhs, rhs);
405 output(indices.outputs) = value;
406 }
407
408 template <typename IndexedValueType>
emitScalarImplementation(ArrayRef<Value> allIvs,PoolingMaxOp op)409 static void emitScalarImplementation(ArrayRef<Value> allIvs, PoolingMaxOp op) {
410 emitPoolingMinMaxScalarImplementation<IndexedValueType, PoolingMaxOp>(allIvs,
411 op);
412 }
413
414 template <typename IndexedValueType>
emitScalarImplementation(ArrayRef<Value> allIvs,PoolingMinOp op)415 static void emitScalarImplementation(ArrayRef<Value> allIvs, PoolingMinOp op) {
416 emitPoolingMinMaxScalarImplementation<IndexedValueType, PoolingMinOp>(allIvs,
417 op);
418 }
419
420 template <typename IndexedValueType>
emitScalarImplementation(ArrayRef<Value> allIvs,PoolingSumOp op)421 static void emitScalarImplementation(ArrayRef<Value> allIvs, PoolingSumOp op) {
422 auto indices = getInputAndOutputIndices(allIvs, op);
423 IndexedValueType output(op.output());
424
425 // Emit scalar form.
426 output(indices.outputs) +=
427 getPoolingInput<IndexedValueType>(op, indices.inputs);
428 }
429
430 /// Emits the MLIR for the scalar part of the indexed generic op by:
431 /// 1. Emitting load ops for each input and output view in order. This is
432 /// achieved by applying the appropriate input or output map to the
433 /// enclosing induction variables.
434 /// 2. Emitting a call to `op.fun()` that takes as arguments the induction
435 /// variables and the scalars from point 1. above.
436 /// 3. Emitting store ops to store the results of 2. to the output views.
437 ///
438 /// An example output may resemble:
439 ///
440 /// ```
441 /// scf.for %i = %c0 to %0 step %c1 {
442 /// scf.for %j = %c0 to %1 step %c1 {
443 /// scf.for %k = %c0 to %4 step %c1 {
444 /// %11 = load %arg0[%i, %j] :
445 /// memref<?x?xf32, stride_specification>
446 /// %12 = load %arg1[%i, %j, %k] :
447 /// memref<?x?x?xf32, stride_specification>
448 /// %13 = load %arg2[%i, %k, %j] :
449 /// memref<?x?x?xf32, stride_specification>
450 /// %14:2 = call @foo(%i, %j, %k, %11, %12, %13) :
451 /// (index, index, index, f32, f32, f32) -> (f32, f32)
452 /// store %14#0, %arg1[%i, %j, %k] :
453 /// memref<?x?x?Xf32, stride_specification>
454 /// store %14#1, %arg2[%i, %k, %j] :
455 /// memref<?x?x?Xf32, stride_specification>
456 /// }
457 /// }
458 /// }
459 /// ```
460 template <typename IndexedValueType>
emitScalarImplementation(ArrayRef<Value> allIvs,IndexedGenericOp indexedGenericOp)461 static void emitScalarImplementation(ArrayRef<Value> allIvs,
462 IndexedGenericOp indexedGenericOp) {
463 assert(indexedGenericOp.hasBufferSemantics() &&
464 "expected linalg op with buffer semantics");
465 auto &b = ScopedContext::getBuilderRef();
466 auto loc = ScopedContext::getLocation();
467 unsigned nInputs = indexedGenericOp.getNumInputs();
468 unsigned nOutputs = indexedGenericOp.getNumOutputs();
469 unsigned nLoops = allIvs.size();
470 SmallVector<Value, 4> indexedValues;
471 indexedValues.reserve(nLoops + nInputs + nOutputs);
472 for (unsigned i = 0; i < nLoops; ++i)
473 indexedValues.push_back(allIvs[i]);
474
475 // TODO: Avoid the loads if the corresponding argument of the
476 // region has no uses.
477 // 1.a. Emit load from input views.
478 for (unsigned i = 0; i < nInputs; ++i) {
479 auto indexing = makeCanonicalAffineApplies(
480 b, loc, indexedGenericOp.getInputIndexingMap(i), allIvs);
481 // Pass input i through IndexedValueType emits the proper load operation.
482 indexedValues.push_back(
483 IndexedValueType(indexedGenericOp.getInput(i))(indexing));
484 }
485 // 1.b. Emit load from output views.
486 for (unsigned i = 0; i < nOutputs; ++i) {
487 auto indexing = makeCanonicalAffineApplies(
488 b, loc, indexedGenericOp.getOutputIndexingMap(i), allIvs);
489 // Pass output i through IndexedValueType emits the proper load operation.
490 indexedValues.push_back(
491 IndexedValueType(indexedGenericOp.getOutputBuffer(i))(indexing));
492 }
493
494 // TODO: When a region inliner exists, use it.
495 // 2. Inline region, currently only works for a single basic block.
496 // 3. Emit store.
497 SmallVector<SmallVector<Value, 8>, 8> indexing;
498 SmallVector<Value, 8> outputBuffers;
499 for (unsigned i = 0; i < nOutputs; ++i) {
500 indexing.push_back(makeCanonicalAffineApplies(
501 b, loc, indexedGenericOp.getOutputIndexingMap(i), allIvs));
502 outputBuffers.push_back(indexedGenericOp.getOutputBuffer(i));
503 }
504 inlineRegionAndEmitStore<IndexedValueType>(indexedGenericOp, indexedValues,
505 indexing, outputBuffers);
506 }
507
508 template <typename LoopTy>
linalgOpToLoopsImpl(Operation * op,OpBuilder & builder)509 static Optional<LinalgLoops> linalgOpToLoopsImpl(Operation *op,
510 OpBuilder &builder) {
511 using IndexedValueTy = typename GenerateLoopNest<LoopTy>::IndexedValueTy;
512
513 ScopedContext scope(builder, op->getLoc());
514
515 // The flattened loopToOperandRangesMaps is expected to be an invertible
516 // permutation map (which is asserted in the inverse calculation).
517 auto linalgOp = cast<LinalgOp>(op);
518 assert(linalgOp.hasBufferSemantics() &&
519 "expected linalg op with buffer semantics");
520 auto loopRanges = linalgOp.createLoopRanges(builder, op->getLoc());
521 SmallVector<Value, 4> allIvs;
522 GenerateLoopNest<LoopTy>::doit(
523 loopRanges, /*iterInitArgs*/ {}, linalgOp.iterator_types().getValue(),
524 [&](ValueRange ivs, ValueRange iterArgs) -> scf::ValueVector {
525 assert(iterArgs.empty() && "unexpected iterArgs");
526 allIvs.append(ivs.begin(), ivs.end());
527 llvm::TypeSwitch<Operation *>(op)
528 .Case<CopyOp, FillOp, ConvOp, PoolingMaxOp, PoolingMinOp,
529 PoolingSumOp, IndexedGenericOp, LinalgOp>([&](auto op) {
530 emitScalarImplementation<IndexedValueTy>(allIvs, op);
531 })
532 .Default([&](Operation *op) { assert(false && "unexpected op"); });
533 return scf::ValueVector{};
534 });
535 // Number of loop ops might be different from the number of ivs since some
536 // loops like affine.parallel and scf.parallel have multiple ivs.
537 llvm::SetVector<Operation *> loopSet;
538 for (Value iv : allIvs) {
539 if (!iv)
540 return {};
541 // The induction variable is a block argument of the entry block of the
542 // loop operation.
543 BlockArgument ivVal = iv.dyn_cast<BlockArgument>();
544 if (!ivVal)
545 return {};
546 loopSet.insert(ivVal.getOwner()->getParentOp());
547 }
548 LinalgLoops loops(loopSet.begin(), loopSet.end());
549 return loops;
550 }
551
552 namespace {
553 template <typename LoopType>
554 class LinalgRewritePattern : public RewritePattern {
555 public:
LinalgRewritePattern()556 LinalgRewritePattern() : RewritePattern(/*benefit=*/1, MatchAnyOpTypeTag()) {}
557
matchAndRewrite(Operation * op,PatternRewriter & rewriter) const558 LogicalResult matchAndRewrite(Operation *op,
559 PatternRewriter &rewriter) const override {
560 if (!isa<LinalgOp>(op))
561 return failure();
562 if (!linalgOpToLoopsImpl<LoopType>(op, rewriter))
563 return failure();
564 rewriter.eraseOp(op);
565 return success();
566 }
567 };
568
569 struct FoldAffineOp;
570 } // namespace
571
572 template <typename LoopType>
lowerLinalgToLoopsImpl(FuncOp funcOp,MLIRContext * context)573 static void lowerLinalgToLoopsImpl(FuncOp funcOp, MLIRContext *context) {
574 OwningRewritePatternList patterns;
575 patterns.insert<LinalgRewritePattern<LoopType>>();
576 DimOp::getCanonicalizationPatterns(patterns, context);
577 AffineApplyOp::getCanonicalizationPatterns(patterns, context);
578 patterns.insert<FoldAffineOp>(context);
579 // Just apply the patterns greedily.
580 applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
581 }
582
583 namespace {
584 /// Local folding pattern for AffineApplyOp that we can apply greedily.
585 /// This replaces AffineApplyOp by the proper value in cases where the
586 /// associated map is trivial.
587 /// A trivial map here is defined as a map with a single result and either:
588 /// 1. Zero operand + returns a single AffineConstantExpr
589 /// 2. One operand + returns a single AffineDimExpr
590 /// 3. One operand + returns a single AffineSymbolExpr
591 //
592 /// In the first case, the AffineApplyOp is replaced by a new constant. In the
593 /// other cases, it is replaced by its unique operand.
594 struct FoldAffineOp : public RewritePattern {
FoldAffineOp__anon5e16a64f0811::FoldAffineOp595 FoldAffineOp(MLIRContext *context)
596 : RewritePattern(AffineApplyOp::getOperationName(), 0, context) {}
597
matchAndRewrite__anon5e16a64f0811::FoldAffineOp598 LogicalResult matchAndRewrite(Operation *op,
599 PatternRewriter &rewriter) const override {
600 AffineApplyOp affineApplyOp = cast<AffineApplyOp>(op);
601 auto map = affineApplyOp.getAffineMap();
602 if (map.getNumResults() != 1 || map.getNumInputs() > 1)
603 return failure();
604
605 AffineExpr expr = map.getResult(0);
606 if (map.getNumInputs() == 0) {
607 if (auto val = expr.dyn_cast<AffineConstantExpr>()) {
608 rewriter.replaceOpWithNewOp<ConstantIndexOp>(op, val.getValue());
609 return success();
610 }
611 return failure();
612 }
613 if (expr.dyn_cast<AffineDimExpr>() || expr.dyn_cast<AffineSymbolExpr>()) {
614 rewriter.replaceOp(op, op->getOperand(0));
615 return success();
616 }
617 return failure();
618 }
619 };
620
621 struct LowerToAffineLoops
622 : public LinalgLowerToAffineLoopsBase<LowerToAffineLoops> {
runOnFunction__anon5e16a64f0811::LowerToAffineLoops623 void runOnFunction() override {
624 lowerLinalgToLoopsImpl<AffineForOp>(getFunction(), &getContext());
625 }
626 };
627
628 struct LowerToLoops : public LinalgLowerToLoopsBase<LowerToLoops> {
runOnFunction__anon5e16a64f0811::LowerToLoops629 void runOnFunction() override {
630 lowerLinalgToLoopsImpl<scf::ForOp>(getFunction(), &getContext());
631 }
632 };
633
634 struct LowerToParallelLoops
635 : public LinalgLowerToParallelLoopsBase<LowerToParallelLoops> {
runOnFunction__anon5e16a64f0811::LowerToParallelLoops636 void runOnFunction() override {
637 lowerLinalgToLoopsImpl<scf::ParallelOp>(getFunction(), &getContext());
638 }
639 };
640 } // namespace
641
createConvertLinalgToLoopsPass()642 std::unique_ptr<OperationPass<FuncOp>> mlir::createConvertLinalgToLoopsPass() {
643 return std::make_unique<LowerToLoops>();
644 }
645
646 std::unique_ptr<OperationPass<FuncOp>>
createConvertLinalgToParallelLoopsPass()647 mlir::createConvertLinalgToParallelLoopsPass() {
648 return std::make_unique<LowerToParallelLoops>();
649 }
650
651 std::unique_ptr<OperationPass<FuncOp>>
createConvertLinalgToAffineLoopsPass()652 mlir::createConvertLinalgToAffineLoopsPass() {
653 return std::make_unique<LowerToAffineLoops>();
654 }
655
656 /// Emits a loop nest with the proper body for `op`.
657 template <typename LoopTy>
linalgLowerOpToLoops(OpBuilder & builder,Operation * op)658 Optional<LinalgLoops> mlir::linalg::linalgLowerOpToLoops(OpBuilder &builder,
659 Operation *op) {
660 return linalgOpToLoopsImpl<LoopTy>(op, builder);
661 }
662
663 template Optional<LinalgLoops>
664 mlir::linalg::linalgLowerOpToLoops<AffineForOp>(OpBuilder &builder,
665 Operation *op);
666 template Optional<LinalgLoops>
667 mlir::linalg::linalgLowerOpToLoops<scf::ForOp>(OpBuilder &builder,
668 Operation *op);
669 template Optional<LinalgLoops>
670 mlir::linalg::linalgLowerOpToLoops<scf::ParallelOp>(OpBuilder &builder,
671 Operation *op);
672
673 /// Emits a loop nest of `affine.for` with the proper body for `op`.
linalgOpToAffineLoops(OpBuilder & builder,Operation * op)674 LogicalResult mlir::linalg::linalgOpToAffineLoops(OpBuilder &builder,
675 Operation *op) {
676 Optional<LinalgLoops> loops = linalgLowerOpToLoops<AffineForOp>(builder, op);
677 return loops ? success() : failure();
678 }
679
680 /// Emits a loop nest of `scf.for` with the proper body for `op`.
linalgOpToLoops(OpBuilder & builder,Operation * op)681 LogicalResult mlir::linalg::linalgOpToLoops(OpBuilder &builder, Operation *op) {
682 Optional<LinalgLoops> loops = linalgLowerOpToLoops<scf::ForOp>(builder, op);
683 return loops ? success() : failure();
684 }
685
686 /// Emits a loop nest of `scf.parallel` with the proper body for `op`.
linalgOpToParallelLoops(OpBuilder & builder,Operation * op)687 LogicalResult mlir::linalg::linalgOpToParallelLoops(OpBuilder &builder,
688 Operation *op) {
689 Optional<LinalgLoops> loops =
690 linalgLowerOpToLoops<scf::ParallelOp>(builder, op);
691 return loops ? success() : failure();
692 }
693