1 /*
2  * Compute the natural log of Gamma(x), accurate to 10 decimal places.
3  *
4  * This implementation is based on:
5  *
6  *   Pike, M.C., I.D. Hill (1966) Algorithm 291: Logarithm of Gamma function
7  *   [S14].  Communications of the ACM 9(9):684.
8  */
9 static inline double
ln_gamma(double x)10 ln_gamma(double x) {
11 	double f, z;
12 
13 	assert(x > 0.0);
14 
15 	if (x < 7.0) {
16 		f = 1.0;
17 		z = x;
18 		while (z < 7.0) {
19 			f *= z;
20 			z += 1.0;
21 		}
22 		x = z;
23 		f = -log(f);
24 	} else {
25 		f = 0.0;
26 	}
27 
28 	z = 1.0 / (x * x);
29 
30 	return f + (x-0.5) * log(x) - x + 0.918938533204673 +
31 	    (((-0.000595238095238 * z + 0.000793650793651) * z -
32 	    0.002777777777778) * z + 0.083333333333333) / x;
33 }
34 
35 /*
36  * Compute the incomplete Gamma ratio for [0..x], where p is the shape
37  * parameter, and ln_gamma_p is ln_gamma(p).
38  *
39  * This implementation is based on:
40  *
41  *   Bhattacharjee, G.P. (1970) Algorithm AS 32: The incomplete Gamma integral.
42  *   Applied Statistics 19:285-287.
43  */
44 static inline double
i_gamma(double x,double p,double ln_gamma_p)45 i_gamma(double x, double p, double ln_gamma_p) {
46 	double acu, factor, oflo, gin, term, rn, a, b, an, dif;
47 	double pn[6];
48 	unsigned i;
49 
50 	assert(p > 0.0);
51 	assert(x >= 0.0);
52 
53 	if (x == 0.0) {
54 		return 0.0;
55 	}
56 
57 	acu = 1.0e-10;
58 	oflo = 1.0e30;
59 	gin = 0.0;
60 	factor = exp(p * log(x) - x - ln_gamma_p);
61 
62 	if (x <= 1.0 || x < p) {
63 		/* Calculation by series expansion. */
64 		gin = 1.0;
65 		term = 1.0;
66 		rn = p;
67 
68 		while (true) {
69 			rn += 1.0;
70 			term *= x / rn;
71 			gin += term;
72 			if (term <= acu) {
73 				gin *= factor / p;
74 				return gin;
75 			}
76 		}
77 	} else {
78 		/* Calculation by continued fraction. */
79 		a = 1.0 - p;
80 		b = a + x + 1.0;
81 		term = 0.0;
82 		pn[0] = 1.0;
83 		pn[1] = x;
84 		pn[2] = x + 1.0;
85 		pn[3] = x * b;
86 		gin = pn[2] / pn[3];
87 
88 		while (true) {
89 			a += 1.0;
90 			b += 2.0;
91 			term += 1.0;
92 			an = a * term;
93 			for (i = 0; i < 2; i++) {
94 				pn[i+4] = b * pn[i+2] - an * pn[i];
95 			}
96 			if (pn[5] != 0.0) {
97 				rn = pn[4] / pn[5];
98 				dif = fabs(gin - rn);
99 				if (dif <= acu && dif <= acu * rn) {
100 					gin = 1.0 - factor * gin;
101 					return gin;
102 				}
103 				gin = rn;
104 			}
105 			for (i = 0; i < 4; i++) {
106 				pn[i] = pn[i+2];
107 			}
108 
109 			if (fabs(pn[4]) >= oflo) {
110 				for (i = 0; i < 4; i++) {
111 					pn[i] /= oflo;
112 				}
113 			}
114 		}
115 	}
116 }
117 
118 /*
119  * Given a value p in [0..1] of the lower tail area of the normal distribution,
120  * compute the limit on the definite integral from [-inf..z] that satisfies p,
121  * accurate to 16 decimal places.
122  *
123  * This implementation is based on:
124  *
125  *   Wichura, M.J. (1988) Algorithm AS 241: The percentage points of the normal
126  *   distribution.  Applied Statistics 37(3):477-484.
127  */
128 static inline double
pt_norm(double p)129 pt_norm(double p) {
130 	double q, r, ret;
131 
132 	assert(p > 0.0 && p < 1.0);
133 
134 	q = p - 0.5;
135 	if (fabs(q) <= 0.425) {
136 		/* p close to 1/2. */
137 		r = 0.180625 - q * q;
138 		return q * (((((((2.5090809287301226727e3 * r +
139 		    3.3430575583588128105e4) * r + 6.7265770927008700853e4) * r
140 		    + 4.5921953931549871457e4) * r + 1.3731693765509461125e4) *
141 		    r + 1.9715909503065514427e3) * r + 1.3314166789178437745e2)
142 		    * r + 3.3871328727963666080e0) /
143 		    (((((((5.2264952788528545610e3 * r +
144 		    2.8729085735721942674e4) * r + 3.9307895800092710610e4) * r
145 		    + 2.1213794301586595867e4) * r + 5.3941960214247511077e3) *
146 		    r + 6.8718700749205790830e2) * r + 4.2313330701600911252e1)
147 		    * r + 1.0);
148 	} else {
149 		if (q < 0.0) {
150 			r = p;
151 		} else {
152 			r = 1.0 - p;
153 		}
154 		assert(r > 0.0);
155 
156 		r = sqrt(-log(r));
157 		if (r <= 5.0) {
158 			/* p neither close to 1/2 nor 0 or 1. */
159 			r -= 1.6;
160 			ret = ((((((((7.74545014278341407640e-4 * r +
161 			    2.27238449892691845833e-2) * r +
162 			    2.41780725177450611770e-1) * r +
163 			    1.27045825245236838258e0) * r +
164 			    3.64784832476320460504e0) * r +
165 			    5.76949722146069140550e0) * r +
166 			    4.63033784615654529590e0) * r +
167 			    1.42343711074968357734e0) /
168 			    (((((((1.05075007164441684324e-9 * r +
169 			    5.47593808499534494600e-4) * r +
170 			    1.51986665636164571966e-2)
171 			    * r + 1.48103976427480074590e-1) * r +
172 			    6.89767334985100004550e-1) * r +
173 			    1.67638483018380384940e0) * r +
174 			    2.05319162663775882187e0) * r + 1.0));
175 		} else {
176 			/* p near 0 or 1. */
177 			r -= 5.0;
178 			ret = ((((((((2.01033439929228813265e-7 * r +
179 			    2.71155556874348757815e-5) * r +
180 			    1.24266094738807843860e-3) * r +
181 			    2.65321895265761230930e-2) * r +
182 			    2.96560571828504891230e-1) * r +
183 			    1.78482653991729133580e0) * r +
184 			    5.46378491116411436990e0) * r +
185 			    6.65790464350110377720e0) /
186 			    (((((((2.04426310338993978564e-15 * r +
187 			    1.42151175831644588870e-7) * r +
188 			    1.84631831751005468180e-5) * r +
189 			    7.86869131145613259100e-4) * r +
190 			    1.48753612908506148525e-2) * r +
191 			    1.36929880922735805310e-1) * r +
192 			    5.99832206555887937690e-1)
193 			    * r + 1.0));
194 		}
195 		if (q < 0.0) {
196 			ret = -ret;
197 		}
198 		return ret;
199 	}
200 }
201 
202 /*
203  * Given a value p in [0..1] of the lower tail area of the Chi^2 distribution
204  * with df degrees of freedom, where ln_gamma_df_2 is ln_gamma(df/2.0), compute
205  * the upper limit on the definite integral from [0..z] that satisfies p,
206  * accurate to 12 decimal places.
207  *
208  * This implementation is based on:
209  *
210  *   Best, D.J., D.E. Roberts (1975) Algorithm AS 91: The percentage points of
211  *   the Chi^2 distribution.  Applied Statistics 24(3):385-388.
212  *
213  *   Shea, B.L. (1991) Algorithm AS R85: A remark on AS 91: The percentage
214  *   points of the Chi^2 distribution.  Applied Statistics 40(1):233-235.
215  */
216 static inline double
pt_chi2(double p,double df,double ln_gamma_df_2)217 pt_chi2(double p, double df, double ln_gamma_df_2) {
218 	double e, aa, xx, c, ch, a, q, p1, p2, t, x, b, s1, s2, s3, s4, s5, s6;
219 	unsigned i;
220 
221 	assert(p >= 0.0 && p < 1.0);
222 	assert(df > 0.0);
223 
224 	e = 5.0e-7;
225 	aa = 0.6931471805;
226 
227 	xx = 0.5 * df;
228 	c = xx - 1.0;
229 
230 	if (df < -1.24 * log(p)) {
231 		/* Starting approximation for small Chi^2. */
232 		ch = pow(p * xx * exp(ln_gamma_df_2 + xx * aa), 1.0 / xx);
233 		if (ch - e < 0.0) {
234 			return ch;
235 		}
236 	} else {
237 		if (df > 0.32) {
238 			x = pt_norm(p);
239 			/*
240 			 * Starting approximation using Wilson and Hilferty
241 			 * estimate.
242 			 */
243 			p1 = 0.222222 / df;
244 			ch = df * pow(x * sqrt(p1) + 1.0 - p1, 3.0);
245 			/* Starting approximation for p tending to 1. */
246 			if (ch > 2.2 * df + 6.0) {
247 				ch = -2.0 * (log(1.0 - p) - c * log(0.5 * ch) +
248 				    ln_gamma_df_2);
249 			}
250 		} else {
251 			ch = 0.4;
252 			a = log(1.0 - p);
253 			while (true) {
254 				q = ch;
255 				p1 = 1.0 + ch * (4.67 + ch);
256 				p2 = ch * (6.73 + ch * (6.66 + ch));
257 				t = -0.5 + (4.67 + 2.0 * ch) / p1 - (6.73 + ch
258 				    * (13.32 + 3.0 * ch)) / p2;
259 				ch -= (1.0 - exp(a + ln_gamma_df_2 + 0.5 * ch +
260 				    c * aa) * p2 / p1) / t;
261 				if (fabs(q / ch - 1.0) - 0.01 <= 0.0) {
262 					break;
263 				}
264 			}
265 		}
266 	}
267 
268 	for (i = 0; i < 20; i++) {
269 		/* Calculation of seven-term Taylor series. */
270 		q = ch;
271 		p1 = 0.5 * ch;
272 		if (p1 < 0.0) {
273 			return -1.0;
274 		}
275 		p2 = p - i_gamma(p1, xx, ln_gamma_df_2);
276 		t = p2 * exp(xx * aa + ln_gamma_df_2 + p1 - c * log(ch));
277 		b = t / ch;
278 		a = 0.5 * t - b * c;
279 		s1 = (210.0 + a * (140.0 + a * (105.0 + a * (84.0 + a * (70.0 +
280 		    60.0 * a))))) / 420.0;
281 		s2 = (420.0 + a * (735.0 + a * (966.0 + a * (1141.0 + 1278.0 *
282 		    a)))) / 2520.0;
283 		s3 = (210.0 + a * (462.0 + a * (707.0 + 932.0 * a))) / 2520.0;
284 		s4 = (252.0 + a * (672.0 + 1182.0 * a) + c * (294.0 + a *
285 		    (889.0 + 1740.0 * a))) / 5040.0;
286 		s5 = (84.0 + 264.0 * a + c * (175.0 + 606.0 * a)) / 2520.0;
287 		s6 = (120.0 + c * (346.0 + 127.0 * c)) / 5040.0;
288 		ch += t * (1.0 + 0.5 * t * s1 - b * c * (s1 - b * (s2 - b * (s3
289 		    - b * (s4 - b * (s5 - b * s6))))));
290 		if (fabs(q / ch - 1.0) <= e) {
291 			break;
292 		}
293 	}
294 
295 	return ch;
296 }
297 
298 /*
299  * Given a value p in [0..1] and Gamma distribution shape and scale parameters,
300  * compute the upper limit on the definite integral from [0..z] that satisfies
301  * p.
302  */
303 static inline double
pt_gamma(double p,double shape,double scale,double ln_gamma_shape)304 pt_gamma(double p, double shape, double scale, double ln_gamma_shape) {
305 	return pt_chi2(p, shape * 2.0, ln_gamma_shape) * 0.5 * scale;
306 }
307