1 //===- LinalgTransforms.cpp - Linalg transformations as patterns ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements logic and helpers to expose Linalg transforms as rewrite
10 // patterns.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
15 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
17 #include "mlir/Dialect/Linalg/Utils/Utils.h"
18 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
19 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
20 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
21 #include "mlir/Dialect/Vector/VectorOps.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/Matchers.h"
24 #include "mlir/Pass/Pass.h"
25 #include "mlir/Support/LLVM.h"
26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <type_traits>
30 
31 #define DEBUG_TYPE "linalg-transforms"
32 
33 using namespace mlir;
34 using namespace mlir::edsc;
35 using namespace mlir::edsc::intrinsics;
36 using namespace mlir::linalg;
37 
38 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
39 
40 //===----------------------------------------------------------------------===//
41 // Transformations exposed as rewrite patterns.
42 //===----------------------------------------------------------------------===//
43 // Marker used as attribute name in generated Linalg rewriting transformations.
44 const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker =
45     "__internal_linalg_transform__";
46 
LinalgMarker(ArrayRef<Identifier> matchDisjunction,Optional<Identifier> replacement)47 mlir::linalg::LinalgMarker::LinalgMarker(ArrayRef<Identifier> matchDisjunction,
48                                          Optional<Identifier> replacement)
49     : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
50       replacement(replacement) {}
51 
52 LogicalResult
checkAndNotify(PatternRewriter & rewriter,Operation * op) const53 mlir::linalg::LinalgMarker::checkAndNotify(PatternRewriter &rewriter,
54                                            Operation *op) const {
55   auto attr = op->template getAttrOfType<StringAttr>(
56       LinalgTransforms::kLinalgTransformMarker);
57 
58   if (!attr) {
59     // 1. Has no marker case and matchDisjunction is empty.
60     if (matchDisjunction.empty())
61       return success();
62 
63     // 2. Has no marker but was expecting a marker.
64     return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
65       diag << " does not have any marker from list: ";
66       interleaveComma(matchDisjunction, diag);
67     });
68   }
69 
70   // 4. Match explicit marker.
71   for (auto marker : matchDisjunction)
72     if (attr.getValue() == marker)
73       return success();
74 
75   // 5. Fail to match.
76   return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
77     diag << " does not have any marker from list: ";
78     interleaveComma(matchDisjunction, diag);
79   });
80 }
81 
replaceLinalgMarker(PatternRewriter & rewriter,Operation * op) const82 void mlir::linalg::LinalgMarker::replaceLinalgMarker(PatternRewriter &rewriter,
83                                                      Operation *op) const {
84   if (replacement.hasValue())
85     op->setAttr(LinalgTransforms::kLinalgTransformMarker,
86                 rewriter.getStringAttr(replacement.getValue()));
87   else
88     op->removeAttr(Identifier::get(LinalgTransforms::kLinalgTransformMarker,
89                                    rewriter.getContext()));
90 }
91 
92 LinalgTilingOptions &
setTileSizes(ArrayRef<int64_t> ts)93 mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
94   SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
95   tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
96     OpBuilder::InsertionGuard guard(b);
97     b.setInsertionPointToStart(
98         &op->getParentOfType<FuncOp>().getBody().front());
99     return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
100       Value v = b.create<ConstantIndexOp>(op->getLoc(), s);
101       return v;
102     }));
103   };
104   return *this;
105 }
106 
107 /// Linalg base tiling pattern.
LinalgBaseTilingPattern(StringRef opName,MLIRContext * context,LinalgTilingOptions options,LinalgMarker marker,PatternBenefit benefit)108 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern(
109     StringRef opName, MLIRContext *context, LinalgTilingOptions options,
110     LinalgMarker marker, PatternBenefit benefit)
111     : RewritePattern(opName, {}, benefit, context), marker(marker),
112       options(options) {}
113 
LinalgBaseTilingPattern(LinalgTilingOptions options,LinalgMarker marker,PatternBenefit benefit)114 mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern(
115     LinalgTilingOptions options, LinalgMarker marker, PatternBenefit benefit)
116     : RewritePattern(benefit, MatchAnyOpTypeTag()), marker(marker),
117       options(options) {}
118 
matchAndRewriteBase(Operation * op,PatternRewriter & rewriter,SmallVectorImpl<Value> & tensorResults) const119 LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewriteBase(
120     Operation *op, PatternRewriter &rewriter,
121     SmallVectorImpl<Value> &tensorResults) const {
122   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
123   if (!linalgOp)
124     return failure();
125   if (failed(marker.checkAndNotify(rewriter, linalgOp)))
126     return failure();
127 
128   // If LinalgOp has results, they must all be tied to init tensors.
129   // We enforce this to ensure all tiled ops have been rewritten in
130   // "init tensor" form. This ensures tiling has anchor values into which to
131   // subtensor / subtensor_insert. Otherwise tiling would need to allocate which
132   // is not acceptable.
133   // This would not be the case with a special terminator op that generates the
134   // whole tensor (instead of inserting a subtensor). But the generator-based
135   // abstraction has other issues.
136   if (linalgOp.getNumInitTensors() != linalgOp->getNumResults())
137     return failure();
138 
139   Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options);
140 
141   if (!res)
142     return failure();
143 
144   // Return relevant information to derived pattern.
145   tensorResults = res->tensorResults;
146 
147   // New marker if specified.
148   marker.replaceLinalgMarker(rewriter, res->op.getOperation());
149   return success();
150 }
151 
LinalgBaseTileAndFusePattern(StringRef opName,MLIRContext * context,const LinalgDependenceGraph & dependenceGraph,LinalgTilingOptions tilingOptions,LinalgFusionOptions fusionOptions,LinalgMarker marker,LinalgMarker fusedOpMarker,LinalgMarker originalOpMarker,PatternBenefit benefit)152 mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern(
153     StringRef opName, MLIRContext *context,
154     const LinalgDependenceGraph &dependenceGraph,
155     LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions,
156     LinalgMarker marker, LinalgMarker fusedOpMarker,
157     LinalgMarker originalOpMarker, PatternBenefit benefit)
158     : RewritePattern(opName, {}, benefit, context),
159       dependenceGraph(dependenceGraph), tilingOptions(tilingOptions),
160       fusionOptions(fusionOptions), marker(marker),
161       fusedOpMarker(fusedOpMarker), originalOpMarker(originalOpMarker) {}
162 
matchAndRewrite(Operation * op,PatternRewriter & rewriter) const163 LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite(
164     Operation *op, PatternRewriter &rewriter) const {
165   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
166   if (!linalgOp)
167     return failure();
168   if (failed(marker.checkAndNotify(rewriter, linalgOp)))
169     return failure();
170   if (!linalgOp.hasBufferSemantics())
171     return failure();
172 
173   DenseSet<Operation *> producers;
174   producers.insert(linalgOp);
175   for (auto dependence : dependenceGraph.getDependentOperations(linalgOp)) {
176     if (!fusionOptions.indicesToFuse.count(
177             dependence.indexingOpView.operandIndex))
178       continue;
179     if (isa<LinalgOp>(dependence.dependentOpView.op))
180       producers.insert(dependence.dependentOpView.op);
181   }
182 
183   SmallVector<LinalgOp, 1> fusionOps;
184   for (auto it = op->getBlock()->begin(), ie = Block::iterator(op); it != ie;
185        ++it) {
186     auto producerLinalgOp = dyn_cast<LinalgOp>(&(*it));
187     if (producerLinalgOp && producers.count(producerLinalgOp))
188       fusionOps.push_back(producerLinalgOp);
189   }
190   fusionOps.push_back(linalgOp);
191 
192   SmallVector<Value, 4> tileSizes =
193       tilingOptions.tileSizeComputationFunction(rewriter, op);
194   LinalgTilingOptions instanceTilingOptions = tilingOptions;
195   instanceTilingOptions.setTileSizes(tileSizes);
196   Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps(
197       rewriter, fusionOps, dependenceGraph, instanceTilingOptions);
198   if (!tiledAndFusedOps)
199     return failure();
200 
201   // Tile the unfused loops;
202   SmallVector<Value, 4> unfusedLoopTileSizes;
203   Value zero = rewriter.create<ConstantIndexOp>(op->getLoc(), 0);
204   for (auto tileSize : enumerate(tileSizes)) {
205     if (tiledAndFusedOps->fusedLoopDims.count(tileSize.index()))
206       unfusedLoopTileSizes.push_back(zero);
207     else
208       unfusedLoopTileSizes.push_back(tileSize.value());
209   }
210   // Tile the loop only if there is a non-zero tile size.
211   if (unfusedLoopTileSizes.size() > linalgOp.getNumLoops())
212     unfusedLoopTileSizes.resize(linalgOp.getNumLoops());
213   if (llvm::any_of(unfusedLoopTileSizes, [](Value val) {
214         if (auto cst = val.getDefiningOp<ConstantIndexOp>())
215           return cst.getValue() != 0;
216         return true;
217       })) {
218     LinalgTilingOptions unfusedTilingOptions = tilingOptions;
219     unfusedTilingOptions.setTileSizes(unfusedLoopTileSizes);
220     Optional<TiledLinalgOp> unfusedTiledOp =
221         tileLinalgOp(rewriter, tiledAndFusedOps->op, unfusedTilingOptions);
222     if (!unfusedTiledOp)
223       return failure();
224     rewriter.eraseOp(tiledAndFusedOps->op);
225     tiledAndFusedOps->op = unfusedTiledOp->op;
226   }
227 
228   marker.replaceLinalgMarker(rewriter, tiledAndFusedOps->op.getOperation());
229   for (auto fusedOp : tiledAndFusedOps->fusedProducers) {
230     fusedOpMarker.replaceLinalgMarker(rewriter, fusedOp.getOperation());
231   }
232   for (auto origProducerOp : ArrayRef<LinalgOp>(fusionOps).drop_back()) {
233     originalOpMarker.replaceLinalgMarker(rewriter,
234                                          origProducerOp.getOperation());
235   }
236   rewriter.updateRootInPlace(
237       op, [&]() { originalOpMarker.replaceLinalgMarker(rewriter, op); });
238   return success();
239 }
240 
241 /// Linalg base interchange pattern.
LinalgBaseInterchangePattern(StringRef opName,MLIRContext * context,ArrayRef<unsigned> interchangeVector,LinalgMarker marker,PatternBenefit benefit)242 mlir::linalg::LinalgBaseInterchangePattern::LinalgBaseInterchangePattern(
243     StringRef opName, MLIRContext *context,
244     ArrayRef<unsigned> interchangeVector, LinalgMarker marker,
245     PatternBenefit benefit)
246     : RewritePattern(opName, {}, benefit, context), marker(marker),
247       interchangeVector(interchangeVector.begin(), interchangeVector.end()) {}
248 
matchAndRewrite(Operation * op,PatternRewriter & rewriter) const249 LogicalResult mlir::linalg::LinalgBaseInterchangePattern::matchAndRewrite(
250     Operation *op, PatternRewriter &rewriter) const {
251   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
252   if (!linalgOp)
253     return failure();
254   if (failed(marker.checkAndNotify(rewriter, linalgOp)))
255     return failure();
256   if (failed(interchangeGenericLinalgOpPrecondition(op, interchangeVector)))
257     return failure();
258 
259   // TODO: figure out how this interplays with named ops. In particular this
260   // should break the named op property.
261   rewriter.updateRootInPlace(op, [&]() {
262     interchange(linalgOp, interchangeVector);
263     // New marker if specified.
264     marker.replaceLinalgMarker(rewriter, op);
265   });
266   return success();
267 }
268 
LinalgBasePromotionPattern(StringRef opName,MLIRContext * context,LinalgPromotionOptions options,LinalgMarker marker,PatternBenefit benefit)269 mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern(
270     StringRef opName, MLIRContext *context, LinalgPromotionOptions options,
271     LinalgMarker marker, PatternBenefit benefit)
272     : RewritePattern(opName, {}, benefit, context), marker(marker),
273       options(options) {}
274 
matchAndRewrite(Operation * op,PatternRewriter & rewriter) const275 LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite(
276     Operation *op, PatternRewriter &rewriter) const {
277   if (failed(marker.checkAndNotify(rewriter, op)))
278     return failure();
279   if (failed(promoteSubviewsPrecondition(op, options)))
280     return failure();
281 
282   // TODO: We cannot use root update here. This pattern is creating other ops,
283   // so if the promotion fails, those need to be cleaned up, which doesnt seem
284   // to be happening here. So to fail properly, we should be cloning the op and
285   // deleting the previous op. This needs more investigation.
286   rewriter.startRootUpdate(op);
287   Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options);
288   if (!promotedOp) {
289     rewriter.cancelRootUpdate(op);
290     return op->emitError("subview promotion failed");
291   }
292   rewriter.finalizeRootUpdate(op);
293   marker.replaceLinalgMarker(rewriter, op);
294   return success();
295 }
296 
LinalgBaseVectorizationPattern(StringRef opName,MLIRContext * context,LinalgMarker marker,PatternBenefit benefit)297 mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern(
298     StringRef opName, MLIRContext *context, LinalgMarker marker,
299     PatternBenefit benefit)
300     : RewritePattern(opName, {}, benefit, context), marker(marker) {}
301 
matchAndRewrite(Operation * op,PatternRewriter & rewriter) const302 LogicalResult mlir::linalg::LinalgBaseVectorizationPattern::matchAndRewrite(
303     Operation *op, PatternRewriter &rewriter) const {
304   LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
305   if (!linalgOp)
306     return failure();
307   if (failed(marker.checkAndNotify(rewriter, linalgOp)))
308     return failure();
309   if (failed(vectorizeLinalgOpPrecondition(op)))
310     return failure();
311   vectorizeLinalgOp(rewriter, op);
312   rewriter.eraseOp(op);
313   return success();
314 }
315 
applyStagedPatterns(Operation * op,ArrayRef<FrozenRewritePatternList> stage1Patterns,const FrozenRewritePatternList & stage2Patterns,function_ref<LogicalResult (Operation *)> stage3Lambda)316 LogicalResult mlir::linalg::applyStagedPatterns(
317     Operation *op, ArrayRef<FrozenRewritePatternList> stage1Patterns,
318     const FrozenRewritePatternList &stage2Patterns,
319     function_ref<LogicalResult(Operation *)> stage3Lambda) {
320   unsigned iteration = 0;
321   (void)iteration;
322   for (const auto &patterns : stage1Patterns) {
323     LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n"
324                       << *op);
325     if (failed(applyPatternsAndFoldGreedily(op, patterns))) {
326       LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge");
327       return failure();
328     }
329     LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n"
330                       << *op);
331     if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) {
332       LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge");
333       return failure();
334     }
335     LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n"
336                       << *op);
337     if (stage3Lambda) {
338       if (failed(stage3Lambda(op)))
339         return failure();
340       LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n"
341                         << *op);
342     }
343   }
344   return success();
345 }
346 
347 /// Traverse `e` and return an AffineExpr where all occurrences of `dim` have
348 /// been replaced by either:
349 ///  - `min` if `positivePath` is true when we reach an occurrence of `dim`
350 ///  - `max` if `positivePath` is true when we reach an occurrence of `dim`
351 /// `positivePath` is negated each time we hit a multiplicative or divisive
352 /// binary op with a constant negative coefficient.
substWithMin(AffineExpr e,AffineExpr dim,AffineExpr min,AffineExpr max,bool positivePath=true)353 static AffineExpr substWithMin(AffineExpr e, AffineExpr dim, AffineExpr min,
354                                AffineExpr max, bool positivePath = true) {
355   if (e == dim)
356     return positivePath ? min : max;
357   if (auto bin = e.dyn_cast<AffineBinaryOpExpr>()) {
358     AffineExpr lhs = bin.getLHS();
359     AffineExpr rhs = bin.getRHS();
360     if (bin.getKind() == mlir::AffineExprKind::Add)
361       return substWithMin(lhs, dim, min, max, positivePath) +
362              substWithMin(rhs, dim, min, max, positivePath);
363 
364     auto c1 = bin.getLHS().dyn_cast<AffineConstantExpr>();
365     auto c2 = bin.getRHS().dyn_cast<AffineConstantExpr>();
366     if (c1 && c1.getValue() < 0)
367       return getAffineBinaryOpExpr(
368           bin.getKind(), c1, substWithMin(rhs, dim, min, max, !positivePath));
369     if (c2 && c2.getValue() < 0)
370       return getAffineBinaryOpExpr(
371           bin.getKind(), substWithMin(lhs, dim, min, max, !positivePath), c2);
372     return getAffineBinaryOpExpr(
373         bin.getKind(), substWithMin(lhs, dim, min, max, positivePath),
374         substWithMin(rhs, dim, min, max, positivePath));
375   }
376   return e;
377 }
378 
379 /// Given the `lbVal`, `ubVal` and `stepVal` of a loop, append `lbVal` and
380 /// `ubVal` to `dims` and `stepVal` to `symbols`.
381 /// Create new AffineDimExpr (`%lb` and `%ub`) and AffineSymbolExpr (`%step`)
382 /// with positions matching the newly appended values. Substitute occurrences of
383 /// `dimExpr` by either the min expression (i.e. `%lb`) or the max expression
384 /// (i.e. `%lb + %step * floordiv(%ub -1 - %lb, %step)`), depending on whether
385 /// the induction variable is used with a positive or negative  coefficient.
substituteLoopInExpr(AffineExpr expr,AffineExpr dimExpr,Value lbVal,Value ubVal,Value stepVal,SmallVectorImpl<Value> & dims,SmallVectorImpl<Value> & symbols)386 static AffineExpr substituteLoopInExpr(AffineExpr expr, AffineExpr dimExpr,
387                                        Value lbVal, Value ubVal, Value stepVal,
388                                        SmallVectorImpl<Value> &dims,
389                                        SmallVectorImpl<Value> &symbols) {
390   MLIRContext *ctx = lbVal.getContext();
391   AffineExpr lb = getAffineDimExpr(dims.size(), ctx);
392   dims.push_back(lbVal);
393   AffineExpr ub = getAffineDimExpr(dims.size(), ctx);
394   dims.push_back(ubVal);
395   AffineExpr step = getAffineSymbolExpr(symbols.size(), ctx);
396   symbols.push_back(stepVal);
397   LLVM_DEBUG(DBGS() << "Before: " << expr << "\n");
398   AffineExpr ee = substWithMin(expr, dimExpr, lb,
399                                lb + step * ((ub - 1) - lb).floorDiv(step));
400   LLVM_DEBUG(DBGS() << "After: " << expr << "\n");
401   return ee;
402 }
403 
404 /// Traverse the `dims` and substitute known min or max expressions in place of
405 /// induction variables in `exprs`.
substitute(AffineMap map,SmallVectorImpl<Value> & dims,SmallVectorImpl<Value> & symbols)406 static AffineMap substitute(AffineMap map, SmallVectorImpl<Value> &dims,
407                             SmallVectorImpl<Value> &symbols) {
408   auto exprs = llvm::to_vector<4>(map.getResults());
409   for (AffineExpr &expr : exprs) {
410     bool substituted = true;
411     while (substituted) {
412       substituted = false;
413       for (unsigned dimIdx = 0; dimIdx < dims.size(); ++dimIdx) {
414         Value dim = dims[dimIdx];
415         AffineExpr dimExpr = getAffineDimExpr(dimIdx, expr.getContext());
416         LLVM_DEBUG(DBGS() << "Subst: " << dim << " @ " << dimExpr << "\n");
417         AffineExpr substitutedExpr;
418         if (auto forOp = scf::getForInductionVarOwner(dim))
419           substitutedExpr = substituteLoopInExpr(
420               expr, dimExpr, forOp.lowerBound(), forOp.upperBound(),
421               forOp.step(), dims, symbols);
422 
423         if (auto parallelForOp = scf::getParallelForInductionVarOwner(dim))
424           for (unsigned idx = 0, e = parallelForOp.getNumLoops(); idx < e;
425                ++idx)
426             substitutedExpr = substituteLoopInExpr(
427                 expr, dimExpr, parallelForOp.lowerBound()[idx],
428                 parallelForOp.upperBound()[idx], parallelForOp.step()[idx],
429                 dims, symbols);
430 
431         if (!substitutedExpr)
432           continue;
433 
434         substituted = (substitutedExpr != expr);
435         expr = substitutedExpr;
436       }
437     }
438 
439     // Cleanup and simplify the results.
440     // This needs to happen outside of the loop iterating on dims.size() since
441     // it modifies dims.
442     SmallVector<Value, 4> operands(dims.begin(), dims.end());
443     operands.append(symbols.begin(), symbols.end());
444     auto map = AffineMap::get(dims.size(), symbols.size(), exprs,
445                               exprs.front().getContext());
446 
447     LLVM_DEBUG(DBGS() << "Map to simplify: " << map << "\n");
448 
449     // Pull in affine.apply operations and compose them fully into the
450     // result.
451     fullyComposeAffineMapAndOperands(&map, &operands);
452     canonicalizeMapAndOperands(&map, &operands);
453     map = simplifyAffineMap(map);
454     // Assign the results.
455     exprs.assign(map.getResults().begin(), map.getResults().end());
456     dims.assign(operands.begin(), operands.begin() + map.getNumDims());
457     symbols.assign(operands.begin() + map.getNumDims(), operands.end());
458 
459     LLVM_DEBUG(DBGS() << "Map simplified: " << map << "\n");
460   }
461 
462   assert(!exprs.empty() && "Unexpected empty exprs");
463   return AffineMap::get(dims.size(), symbols.size(), exprs, map.getContext());
464 }
465 
matchAndRewrite(AffineMinOp minOp,PatternRewriter & rewriter) const466 LogicalResult AffineMinSCFCanonicalizationPattern::matchAndRewrite(
467     AffineMinOp minOp, PatternRewriter &rewriter) const {
468   LLVM_DEBUG(DBGS() << "Canonicalize AffineMinSCF: " << *minOp.getOperation()
469                     << "\n");
470 
471   SmallVector<Value, 4> dims(minOp.getDimOperands()),
472       symbols(minOp.getSymbolOperands());
473   AffineMap map = substitute(minOp.getAffineMap(), dims, symbols);
474 
475   LLVM_DEBUG(DBGS() << "Resulting map: " << map << "\n");
476 
477   // Check whether any of the expressions, when subtracted from all other
478   // expressions, produces only >= 0 constants. If so, it is the min.
479   for (auto e : minOp.getAffineMap().getResults()) {
480     LLVM_DEBUG(DBGS() << "Candidate min: " << e << "\n");
481     if (!e.isSymbolicOrConstant())
482       continue;
483 
484     auto isNonPositive = [](AffineExpr e) {
485       if (auto cst = e.dyn_cast<AffineConstantExpr>())
486         return cst.getValue() < 0;
487       return true;
488     };
489 
490     // Build the subMap and check everything is statically known to be
491     // positive.
492     SmallVector<AffineExpr, 4> subExprs;
493     subExprs.reserve(map.getNumResults());
494     for (auto ee : map.getResults())
495       subExprs.push_back(ee - e);
496     MLIRContext *ctx = minOp.getContext();
497     AffineMap subMap = simplifyAffineMap(
498         AffineMap::get(map.getNumDims(), map.getNumSymbols(), subExprs, ctx));
499     LLVM_DEBUG(DBGS() << "simplified subMap: " << subMap << "\n");
500     if (llvm::any_of(subMap.getResults(), isNonPositive))
501       continue;
502 
503     // Static min found.
504     if (auto cst = e.dyn_cast<AffineConstantExpr>()) {
505       rewriter.replaceOpWithNewOp<ConstantIndexOp>(minOp, cst.getValue());
506     } else {
507       auto resultMap = AffineMap::get(0, map.getNumSymbols(), {e}, ctx);
508       SmallVector<Value, 4> resultOperands = dims;
509       resultOperands.append(symbols.begin(), symbols.end());
510       canonicalizeMapAndOperands(&resultMap, &resultOperands);
511       resultMap = simplifyAffineMap(resultMap);
512       rewriter.replaceOpWithNewOp<AffineApplyOp>(minOp, resultMap,
513                                                  resultOperands);
514     }
515     return success();
516   }
517 
518   return failure();
519 }
520