1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Logging and Summary Operations."""
16# pylint: disable=protected-access
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21import collections as py_collections
22import os
23import pprint
24import random
25import sys
26
27from absl import logging
28import six
29
30from tensorflow.python import pywrap_tfe
31from tensorflow.python.framework import dtypes
32from tensorflow.python.framework import ops
33from tensorflow.python.framework import sparse_tensor
34from tensorflow.python.framework import tensor_util
35from tensorflow.python.ops import gen_logging_ops
36from tensorflow.python.ops import string_ops
37# go/tf-wildcard-import
38# pylint: disable=wildcard-import
39from tensorflow.python.ops.gen_logging_ops import *
40# pylint: enable=wildcard-import
41from tensorflow.python.platform import tf_logging
42from tensorflow.python.util import dispatch
43from tensorflow.python.util import nest
44from tensorflow.python.util.deprecation import deprecated
45from tensorflow.python.util.tf_export import tf_export
46
47# Register printing to the cell output if we are in a Colab or Jupyter Notebook.
48try:
49  get_ipython()  # Exists in an ipython env like Jupyter or Colab
50  pywrap_tfe.TFE_Py_EnableInteractivePythonLogging()
51except NameError:
52  pass
53
54# The python wrapper for Assert is in control_flow_ops, as the Assert
55# call relies on certain conditionals for its dependencies.  Use
56# control_flow_ops.Assert.
57
58# Assert and Print are special symbols in Python 2, so we must
59# have an upper-case version of them. When support for it is dropped,
60# we can allow lowercase.
61# See https://github.com/tensorflow/tensorflow/issues/18053
62
63
64# pylint: disable=invalid-name
65@deprecated("2018-08-20", "Use tf.print instead of tf.Print. Note that "
66            "tf.print returns a no-output operator that directly "
67            "prints the output. Outside of defuns or eager mode, "
68            "this operator will not be executed unless it is "
69            "directly specified in session.run or used as a "
70            "control dependency for other operators. This is "
71            "only a concern in graph mode. Below is an example "
72            "of how to ensure tf.print executes in graph mode:\n")
73@tf_export(v1=["Print"])
74@dispatch.add_dispatch_support
75def Print(input_, data, message=None, first_n=None, summarize=None, name=None):
76  """Prints a list of tensors.
77
78  This is an identity op (behaves like `tf.identity`) with the side effect
79  of printing `data` when evaluating.
80
81  Note: This op prints to the standard error. It is not currently compatible
82    with jupyter notebook (printing to the notebook *server's* output, not into
83    the notebook).
84
85  Args:
86    input_: A tensor passed through this op.
87    data: A list of tensors to print out when op is evaluated.
88    message: A string, prefix of the error message.
89    first_n: Only log `first_n` number of times. Negative numbers log always;
90      this is the default.
91    summarize: Only print this many entries of each tensor. If None, then a
92      maximum of 3 elements are printed per input tensor.
93    name: A name for the operation (optional).
94
95  Returns:
96    A `Tensor`. Has the same type and contents as `input_`.
97
98    ```python
99    sess = tf.compat.v1.Session()
100    with sess.as_default():
101        tensor = tf.range(10)
102        print_op = tf.print(tensor)
103        with tf.control_dependencies([print_op]):
104          out = tf.add(tensor, tensor)
105        sess.run(out)
106    ```
107  """
108  return gen_logging_ops._print(input_, data, message, first_n, summarize, name)
109
110
111# pylint: enable=invalid-name
112
113
114def _generate_placeholder_string(x, default_placeholder="{}"):
115  """Generate and return a string that does not appear in `x`."""
116  placeholder = default_placeholder
117  rng = random.Random(5)
118  while placeholder in x:
119    placeholder = placeholder + str(rng.randint(0, 9))
120  return placeholder
121
122
123def _is_filepath(output_stream):
124  """Returns True if output_stream is a file path."""
125  return isinstance(output_stream, str) and output_stream.startswith("file://")
126
127
128# Temporarily disable pylint g-doc-args error to allow giving more context
129# about what the kwargs are.
130# Because we are using arbitrary-length positional arguments, python 2
131# does not support explicitly specifying the keyword arguments in the
132# function definition.
133# pylint: disable=g-doc-args
134@tf_export("print")
135@dispatch.add_dispatch_support
136def print_v2(*inputs, **kwargs):
137  """Print the specified inputs.
138
139  A TensorFlow operator that prints the specified inputs to a desired
140  output stream or logging level. The inputs may be dense or sparse Tensors,
141  primitive python objects, data structures that contain tensors, and printable
142  Python objects. Printed tensors will recursively show the first and last
143  elements of each dimension to summarize.
144
145  Example:
146    Single-input usage:
147
148    ```python
149    tensor = tf.range(10)
150    tf.print(tensor, output_stream=sys.stderr)
151    ```
152
153    (This prints "[0 1 2 ... 7 8 9]" to sys.stderr)
154
155    Multi-input usage:
156
157    ```python
158    tensor = tf.range(10)
159    tf.print("tensors:", tensor, {2: tensor * 2}, output_stream=sys.stdout)
160    ```
161
162    (This prints "tensors: [0 1 2 ... 7 8 9] {2: [0 2 4 ... 14 16 18]}" to
163    sys.stdout)
164
165    Changing the input separator:
166    ```python
167    tensor_a = tf.range(2)
168    tensor_b = tensor_a * 2
169    tf.print(tensor_a, tensor_b, output_stream=sys.stderr, sep=',')
170    ```
171
172    (This prints "[0 1],[0 2]" to sys.stderr)
173
174    Usage in a `tf.function`:
175
176    ```python
177    @tf.function
178    def f():
179        tensor = tf.range(10)
180        tf.print(tensor, output_stream=sys.stderr)
181        return tensor
182
183    range_tensor = f()
184    ```
185
186    (This prints "[0 1 2 ... 7 8 9]" to sys.stderr)
187
188  @compatibility(TF 1.x Graphs and Sessions)
189  In graphs manually created outside of `tf.function`, this method returns
190  the created TF operator that prints the data. To make sure the
191  operator runs, users need to pass the produced op to
192  `tf.compat.v1.Session`'s run method, or to use the op as a control
193  dependency for executed ops by specifying
194  `with tf.compat.v1.control_dependencies([print_op])`.
195  @end_compatibility
196
197    Compatibility usage in TF 1.x graphs:
198
199    ```python
200    sess = tf.compat.v1.Session()
201    with sess.as_default():
202        tensor = tf.range(10)
203        print_op = tf.print("tensors:", tensor, {2: tensor * 2},
204                            output_stream=sys.stdout)
205        with tf.control_dependencies([print_op]):
206          tripled_tensor = tensor * 3
207        sess.run(tripled_tensor)
208    ```
209
210    (This prints "tensors: [0 1 2 ... 7 8 9] {2: [0 2 4 ... 14 16 18]}" to
211    sys.stdout)
212
213  Note: In Jupyter notebooks and colabs, `tf.print` prints to the notebook
214    cell outputs. It will not write to the notebook kernel's console logs.
215
216  Args:
217    *inputs: Positional arguments that are the inputs to print. Inputs in the
218      printed output will be separated by spaces. Inputs may be python
219      primitives, tensors, data structures such as dicts and lists that may
220      contain tensors (with the data structures possibly nested in arbitrary
221      ways), and printable python objects.
222    output_stream: The output stream, logging level, or file to print to.
223      Defaults to sys.stderr, but sys.stdout, tf.compat.v1.logging.info,
224      tf.compat.v1.logging.warning, tf.compat.v1.logging.error,
225      absl.logging.info, absl.logging.warning and absl.logging.error are also
226      supported. To print to a file, pass a string started with "file://"
227      followed by the file path, e.g., "file:///tmp/foo.out".
228    summarize: The first and last `summarize` elements within each dimension are
229      recursively printed per Tensor. If None, then the first 3 and last 3
230      elements of each dimension are printed for each tensor. If set to -1, it
231      will print all elements of every tensor.
232    sep: The string to use to separate the inputs. Defaults to " ".
233    end: End character that is appended at the end the printed string.
234      Defaults to the newline character.
235    name: A name for the operation (optional).
236
237  Returns:
238    None when executing eagerly. During graph tracing this returns
239    a TF operator that prints the specified inputs in the specified output
240    stream or logging level. This operator will be automatically executed
241    except inside of `tf.compat.v1` graphs and sessions.
242
243  Raises:
244    ValueError: If an unsupported output stream is specified.
245  """
246  # Because we are using arbitrary-length positional arguments, python 2
247  # does not support explicitly specifying the keyword arguments in the
248  # function definition. So, we manually get the keyword arguments w/ default
249  # values here.
250  output_stream = kwargs.pop("output_stream", sys.stderr)
251  name = kwargs.pop("name", None)
252  summarize = kwargs.pop("summarize", 3)
253  sep = kwargs.pop("sep", " ")
254  end = kwargs.pop("end", os.linesep)
255  if kwargs:
256    raise ValueError("Unrecognized keyword arguments for tf.print: %s" % kwargs)
257  format_name = None
258  if name:
259    format_name = name + "_format"
260
261  # Match the C++ string constants representing the different output streams.
262  # Keep this updated!
263  output_stream_to_constant = {
264      sys.stdout: "stdout",
265      sys.stderr: "stderr",
266      tf_logging.INFO: "log(info)",
267      tf_logging.info: "log(info)",
268      tf_logging.WARN: "log(warning)",
269      tf_logging.warning: "log(warning)",
270      tf_logging.warn: "log(warning)",
271      tf_logging.ERROR: "log(error)",
272      tf_logging.error: "log(error)",
273      logging.INFO: "log(info)",
274      logging.info: "log(info)",
275      logging.INFO: "log(info)",
276      logging.WARNING: "log(warning)",
277      logging.WARN: "log(warning)",
278      logging.warning: "log(warning)",
279      logging.warn: "log(warning)",
280      logging.ERROR: "log(error)",
281      logging.error: "log(error)",
282  }
283
284  if _is_filepath(output_stream):
285    output_stream_string = output_stream
286  else:
287    output_stream_string = output_stream_to_constant.get(output_stream)
288    if not output_stream_string:
289      raise ValueError("Unsupported output stream, logging level, or file." +
290                       str(output_stream) +
291                       ". Supported streams are sys.stdout, "
292                       "sys.stderr, tf.logging.info, "
293                       "tf.logging.warning, tf.logging.error. " +
294                       "File needs to be in the form of 'file://<filepath>'.")
295
296  # If we are only printing a single string scalar, there is no need to format
297  if (len(inputs) == 1 and tensor_util.is_tf_type(inputs[0]) and
298      (not isinstance(inputs[0], sparse_tensor.SparseTensor)) and
299      (inputs[0].shape.ndims == 0) and (inputs[0].dtype == dtypes.string)):
300    formatted_string = inputs[0]
301  # Otherwise, we construct an appropriate template for the tensors we are
302  # printing, and format the template using those tensors.
303  else:
304    # For each input to this print function, we extract any nested tensors,
305    # and construct an appropriate template to format representing the
306    # printed input.
307    templates = []
308    tensors = []
309    # If an input to the print function is of type `OrderedDict`, sort its
310    # elements by the keys for consistency with the ordering of `nest.flatten`.
311    # This is not needed for `dict` types because `pprint.pformat()` takes care
312    # of printing the template in a sorted fashion.
313    inputs_ordered_dicts_sorted = []
314    for input_ in inputs:
315      if isinstance(input_, py_collections.OrderedDict):
316        inputs_ordered_dicts_sorted.append(
317            py_collections.OrderedDict(sorted(input_.items())))
318      else:
319        inputs_ordered_dicts_sorted.append(input_)
320    tensor_free_structure = nest.map_structure(
321        lambda x: "" if tensor_util.is_tf_type(x) else x,
322        inputs_ordered_dicts_sorted)
323
324    tensor_free_template = " ".join(
325        pprint.pformat(x) for x in tensor_free_structure)
326    placeholder = _generate_placeholder_string(tensor_free_template)
327
328    for input_ in inputs:
329      placeholders = []
330      # Use the nest utilities to flatten & process any nested elements in this
331      # input. The placeholder for a tensor in the template should be the
332      # placeholder string, and the placeholder for a non-tensor can just be
333      # the printed value of the non-tensor itself.
334      for x in nest.flatten(input_):
335        # support sparse tensors
336        if isinstance(x, sparse_tensor.SparseTensor):
337          tensors.extend([x.indices, x.values, x.dense_shape])
338          placeholders.append(
339              "SparseTensor(indices={}, values={}, shape={})".format(
340                  placeholder, placeholder, placeholder))
341        elif tensor_util.is_tf_type(x):
342          tensors.append(x)
343          placeholders.append(placeholder)
344        else:
345          placeholders.append(x)
346
347      if isinstance(input_, six.string_types):
348        # If the current input to format/print is a normal string, that string
349        # can act as the template.
350        cur_template = input_
351      else:
352        # We pack the placeholders into a data structure that matches the
353        # input data structure format, then format that data structure
354        # into a string template.
355        #
356        # NOTE: We must use pprint.pformat here for building the template for
357        # unordered data structures such as `dict`, because `str` doesn't
358        # guarantee orderings, while pprint prints in sorted order. pprint
359        # will match the ordering of `nest.flatten`.
360        # This even works when nest.flatten reorders OrderedDicts, because
361        # pprint is printing *after* the OrderedDicts have been reordered.
362        cur_template = pprint.pformat(
363            nest.pack_sequence_as(input_, placeholders))
364      templates.append(cur_template)
365
366    # We join the templates for the various inputs into a single larger
367    # template. We also remove all quotes surrounding the placeholders, so that
368    # the formatted/printed output will not contain quotes around tensors.
369    # (example of where these quotes might appear: if we have added a
370    # placeholder string into a list, then pretty-formatted that list)
371    template = sep.join(templates)
372    template = template.replace("'" + placeholder + "'", placeholder)
373    formatted_string = string_ops.string_format(
374        inputs=tensors,
375        template=template,
376        placeholder=placeholder,
377        summarize=summarize,
378        name=format_name)
379
380  return gen_logging_ops.print_v2(
381      formatted_string, output_stream=output_stream_string, name=name, end=end)
382
383# pylint: enable=g-doc-args
384
385
386@ops.RegisterGradient("Print")
387def _PrintGrad(op, *grad):
388  return list(grad) + [None] * (len(op.inputs) - 1)
389
390
391def _Collect(val, collections, default_collections):
392  if collections is None:
393    collections = default_collections
394  for key in collections:
395    ops.add_to_collection(key, val)
396
397
398@deprecated(
399    "2016-11-30", "Please switch to tf.summary.histogram. Note that "
400    "tf.summary.histogram uses the node name instead of the tag. "
401    "This means that TensorFlow will automatically de-duplicate summary "
402    "names based on the scope they are created in.")
403def histogram_summary(tag, values, collections=None, name=None):
404  # pylint: disable=line-too-long
405  """Outputs a `Summary` protocol buffer with a histogram.
406
407  This ops is deprecated. Please switch to tf.summary.histogram.
408
409  For an explanation of why this op was deprecated, and information on how to
410  migrate, look
411  ['here'](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/deprecated/__init__.py)
412
413  The generated
414  [`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto)
415  has one summary value containing a histogram for `values`.
416
417  This op reports an `InvalidArgument` error if any value is not finite.
418
419  Args:
420    tag: A `string` `Tensor`. 0-D.  Tag to use for the summary value.
421    values: A real numeric `Tensor`. Any shape. Values to use to build the
422      histogram.
423    collections: Optional list of graph collections keys. The new summary op is
424      added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
425    name: A name for the operation (optional).
426
427  Returns:
428    A scalar `Tensor` of type `string`. The serialized `Summary` protocol
429    buffer.
430  """
431  with ops.name_scope(name, "HistogramSummary", [tag, values]) as scope:
432    val = gen_logging_ops.histogram_summary(tag=tag, values=values, name=scope)
433    _Collect(val, collections, [ops.GraphKeys.SUMMARIES])
434  return val
435
436
437@deprecated(
438    "2016-11-30", "Please switch to tf.summary.image. Note that "
439    "tf.summary.image uses the node name instead of the tag. "
440    "This means that TensorFlow will automatically de-duplicate summary "
441    "names based on the scope they are created in. Also, the max_images "
442    "argument was renamed to max_outputs.")
443def image_summary(tag, tensor, max_images=3, collections=None, name=None):
444  # pylint: disable=line-too-long
445  """Outputs a `Summary` protocol buffer with images.
446
447  For an explanation of why this op was deprecated, and information on how to
448  migrate, look
449  ['here'](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/deprecated/__init__.py)
450
451  The summary has up to `max_images` summary values containing images. The
452  images are built from `tensor` which must be 4-D with shape `[batch_size,
453  height, width, channels]` and where `channels` can be:
454
455  *  1: `tensor` is interpreted as Grayscale.
456  *  3: `tensor` is interpreted as RGB.
457  *  4: `tensor` is interpreted as RGBA.
458
459  The images have the same number of channels as the input tensor. For float
460  input, the values are normalized one image at a time to fit in the range
461  `[0, 255]`.  `uint8` values are unchanged.  The op uses two different
462  normalization algorithms:
463
464  *  If the input values are all positive, they are rescaled so the largest one
465     is 255.
466
467  *  If any input value is negative, the values are shifted so input value 0.0
468     is at 127.  They are then rescaled so that either the smallest value is 0,
469     or the largest one is 255.
470
471  The `tag` argument is a scalar `Tensor` of type `string`.  It is used to
472  build the `tag` of the summary values:
473
474  *  If `max_images` is 1, the summary value tag is '*tag*/image'.
475  *  If `max_images` is greater than 1, the summary value tags are
476     generated sequentially as '*tag*/image/0', '*tag*/image/1', etc.
477
478  Args:
479    tag: A scalar `Tensor` of type `string`. Used to build the `tag` of the
480      summary values.
481    tensor: A 4-D `uint8` or `float32` `Tensor` of shape `[batch_size, height,
482      width, channels]` where `channels` is 1, 3, or 4.
483    max_images: Max number of batch elements to generate images for.
484    collections: Optional list of ops.GraphKeys.  The collections to add the
485      summary to.  Defaults to [ops.GraphKeys.SUMMARIES]
486    name: A name for the operation (optional).
487
488  Returns:
489    A scalar `Tensor` of type `string`. The serialized `Summary` protocol
490    buffer.
491  """
492  with ops.name_scope(name, "ImageSummary", [tag, tensor]) as scope:
493    val = gen_logging_ops.image_summary(
494        tag=tag, tensor=tensor, max_images=max_images, name=scope)
495    _Collect(val, collections, [ops.GraphKeys.SUMMARIES])
496  return val
497
498
499@deprecated(
500    "2016-11-30", "Please switch to tf.summary.audio. Note that "
501    "tf.summary.audio uses the node name instead of the tag. "
502    "This means that TensorFlow will automatically de-duplicate summary "
503    "names based on the scope they are created in.")
504def audio_summary(tag,
505                  tensor,
506                  sample_rate,
507                  max_outputs=3,
508                  collections=None,
509                  name=None):
510  # pylint: disable=line-too-long
511  """Outputs a `Summary` protocol buffer with audio.
512
513  This op is deprecated. Please switch to tf.summary.audio.
514  For an explanation of why this op was deprecated, and information on how to
515  migrate, look
516  ['here'](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/deprecated/__init__.py)
517
518  The summary has up to `max_outputs` summary values containing audio. The
519  audio is built from `tensor` which must be 3-D with shape `[batch_size,
520  frames, channels]` or 2-D with shape `[batch_size, frames]`. The values are
521  assumed to be in the range of `[-1.0, 1.0]` with a sample rate of
522  `sample_rate`.
523
524  The `tag` argument is a scalar `Tensor` of type `string`.  It is used to
525  build the `tag` of the summary values:
526
527  *  If `max_outputs` is 1, the summary value tag is '*tag*/audio'.
528  *  If `max_outputs` is greater than 1, the summary value tags are
529     generated sequentially as '*tag*/audio/0', '*tag*/audio/1', etc.
530
531  Args:
532    tag: A scalar `Tensor` of type `string`. Used to build the `tag` of the
533      summary values.
534    tensor: A 3-D `float32` `Tensor` of shape `[batch_size, frames, channels]`
535      or a 2-D `float32` `Tensor` of shape `[batch_size, frames]`.
536    sample_rate: A Scalar `float32` `Tensor` indicating the sample rate of the
537      signal in hertz.
538    max_outputs: Max number of batch elements to generate audio for.
539    collections: Optional list of ops.GraphKeys.  The collections to add the
540      summary to.  Defaults to [ops.GraphKeys.SUMMARIES]
541    name: A name for the operation (optional).
542
543  Returns:
544    A scalar `Tensor` of type `string`. The serialized `Summary` protocol
545    buffer.
546  """
547  with ops.name_scope(name, "AudioSummary", [tag, tensor]) as scope:
548    sample_rate = ops.convert_to_tensor(
549        sample_rate, dtype=dtypes.float32, name="sample_rate")
550    val = gen_logging_ops.audio_summary_v2(
551        tag=tag,
552        tensor=tensor,
553        max_outputs=max_outputs,
554        sample_rate=sample_rate,
555        name=scope)
556    _Collect(val, collections, [ops.GraphKeys.SUMMARIES])
557  return val
558
559
560@deprecated("2016-11-30", "Please switch to tf.summary.merge.")
561def merge_summary(inputs, collections=None, name=None):
562  # pylint: disable=line-too-long
563  """Merges summaries.
564
565  This op is deprecated. Please switch to tf.compat.v1.summary.merge, which has
566  identical
567  behavior.
568
569  This op creates a
570  [`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto)
571  protocol buffer that contains the union of all the values in the input
572  summaries.
573
574  When the Op is run, it reports an `InvalidArgument` error if multiple values
575  in the summaries to merge use the same tag.
576
577  Args:
578    inputs: A list of `string` `Tensor` objects containing serialized `Summary`
579      protocol buffers.
580    collections: Optional list of graph collections keys. The new summary op is
581      added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
582    name: A name for the operation (optional).
583
584  Returns:
585    A scalar `Tensor` of type `string`. The serialized `Summary` protocol
586    buffer resulting from the merging.
587  """
588  with ops.name_scope(name, "MergeSummary", inputs):
589    val = gen_logging_ops.merge_summary(inputs=inputs, name=name)
590    _Collect(val, collections, [])
591  return val
592
593
594@deprecated("2016-11-30", "Please switch to tf.summary.merge_all.")
595def merge_all_summaries(key=ops.GraphKeys.SUMMARIES):
596  """Merges all summaries collected in the default graph.
597
598  This op is deprecated. Please switch to tf.compat.v1.summary.merge_all, which
599  has
600  identical behavior.
601
602  Args:
603    key: `GraphKey` used to collect the summaries.  Defaults to
604      `GraphKeys.SUMMARIES`.
605
606  Returns:
607    If no summaries were collected, returns None.  Otherwise returns a scalar
608    `Tensor` of type `string` containing the serialized `Summary` protocol
609    buffer resulting from the merging.
610  """
611  summary_ops = ops.get_collection(key)
612  if not summary_ops:
613    return None
614  else:
615    return merge_summary(summary_ops)
616
617
618def get_summary_op():
619  """Returns a single Summary op that would run all summaries.
620
621  Either existing one from `SUMMARY_OP` collection or merges all existing
622  summaries.
623
624  Returns:
625    If no summaries were collected, returns None. Otherwise returns a scalar
626    `Tensor` of type `string` containing the serialized `Summary` protocol
627    buffer resulting from the merging.
628  """
629  summary_op = ops.get_collection(ops.GraphKeys.SUMMARY_OP)
630  if summary_op is not None:
631    if summary_op:
632      summary_op = summary_op[0]
633    else:
634      summary_op = None
635  if summary_op is None:
636    summary_op = merge_all_summaries()
637    if summary_op is not None:
638      ops.add_to_collection(ops.GraphKeys.SUMMARY_OP, summary_op)
639  return summary_op
640
641
642@deprecated(
643    "2016-11-30", "Please switch to tf.summary.scalar. Note that "
644    "tf.summary.scalar uses the node name instead of the tag. "
645    "This means that TensorFlow will automatically de-duplicate summary "
646    "names based on the scope they are created in. Also, passing a "
647    "tensor or list of tags to a scalar summary op is no longer "
648    "supported.")
649def scalar_summary(tags, values, collections=None, name=None):
650  # pylint: disable=line-too-long
651  """Outputs a `Summary` protocol buffer with scalar values.
652
653  This ops is deprecated. Please switch to tf.summary.scalar.
654  For an explanation of why this op was deprecated, and information on how to
655  migrate, look
656  ['here'](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/deprecated/__init__.py)
657
658  The input `tags` and `values` must have the same shape.  The generated
659  summary has a summary value for each tag-value pair in `tags` and `values`.
660
661  Args:
662    tags: A `string` `Tensor`.  Tags for the summaries.
663    values: A real numeric Tensor.  Values for the summaries.
664    collections: Optional list of graph collections keys. The new summary op is
665      added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
666    name: A name for the operation (optional).
667
668  Returns:
669    A scalar `Tensor` of type `string`. The serialized `Summary` protocol
670    buffer.
671  """
672  with ops.name_scope(name, "ScalarSummary", [tags, values]) as scope:
673    val = gen_logging_ops.scalar_summary(tags=tags, values=values, name=scope)
674    _Collect(val, collections, [ops.GraphKeys.SUMMARIES])
675  return val
676
677
678ops.NotDifferentiable("HistogramSummary")
679ops.NotDifferentiable("ImageSummary")
680ops.NotDifferentiable("AudioSummary")
681ops.NotDifferentiable("AudioSummaryV2")
682ops.NotDifferentiable("MergeSummary")
683ops.NotDifferentiable("ScalarSummary")
684ops.NotDifferentiable("TensorSummary")
685ops.NotDifferentiable("TensorSummaryV2")
686ops.NotDifferentiable("Timestamp")
687