1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15
16"""Helper functions for creating partitioned variables.
17
18This is a convenient abstraction to partition a large variable across
19multiple smaller variables that can be assigned to different devices.
20
21The full variable can be reconstructed by concatenating the smaller variables.
22Using partitioned variables instead of a single variable is mostly a
23performance choice.  It however also has an impact on:
24
251. Random initialization, as the random number generator is called once per
26   slice
272. Updates, as they happen in parallel across slices
28
29A key design goal is to allow a different graph to repartition a variable
30with the same name but different slicings, including possibly no partitions.
31
32TODO(touts): If an initializer provides a seed, the seed must be changed
33deterministically for each slice, maybe by adding one to it, otherwise each
34slice will use the same values.  Maybe this can be done by passing the
35slice offsets to the initializer functions.
36
37Typical usage:
38
39```python
40# Create a list of partitioned variables with:
41vs = create_partitioned_variables(
42    <shape>, <slicing>, <initializer>, name=<optional-name>)
43
44# Pass the list as inputs to embedding_lookup for sharded, parallel lookup:
45y = embedding_lookup(vs, ids, partition_strategy="div")
46
47# Or fetch the variables in parallel to speed up large matmuls:
48z = matmul(x, concat(slice_dim, vs))
49```
50"""
51from __future__ import absolute_import
52from __future__ import division
53from __future__ import print_function
54
55import math
56
57from tensorflow.python.framework import dtypes
58from tensorflow.python.framework import tensor_shape
59from tensorflow.python.ops import variable_scope
60from tensorflow.python.util import deprecation
61from tensorflow.python.util.tf_export import tf_export
62
63__all__ = [
64    "create_partitioned_variables",
65    "variable_axis_size_partitioner",
66    "min_max_variable_partitioner",
67    "fixed_size_partitioner",
68]
69
70
71@tf_export(v1=["variable_axis_size_partitioner"])
72def variable_axis_size_partitioner(
73    max_shard_bytes, axis=0, bytes_per_string_element=16, max_shards=None):
74  """Get a partitioner for VariableScope to keep shards below `max_shard_bytes`.
75
76  This partitioner will shard a Variable along one axis, attempting to keep
77  the maximum shard size below `max_shard_bytes`.  In practice, this is not
78  always possible when sharding along only one axis.  When this happens,
79  this axis is sharded as much as possible (i.e., every dimension becomes
80  a separate shard).
81
82  If the partitioner hits the `max_shards` limit, then each shard may end up
83  larger than `max_shard_bytes`. By default `max_shards` equals `None` and no
84  limit on the number of shards is enforced.
85
86  One reasonable value for `max_shard_bytes` is `(64 << 20) - 1`, or almost
87  `64MB`, to keep below the protobuf byte limit.
88
89  Args:
90    max_shard_bytes: The maximum size any given shard is allowed to be.
91    axis: The axis to partition along.  Default: outermost axis.
92    bytes_per_string_element: If the `Variable` is of type string, this provides
93      an estimate of how large each scalar in the `Variable` is.
94    max_shards: The maximum number of shards in int created taking precedence
95      over `max_shard_bytes`.
96
97  Returns:
98    A partition function usable as the `partitioner` argument to
99    `variable_scope` and `get_variable`.
100
101  Raises:
102    ValueError: If any of the byte counts are non-positive.
103  """
104  if max_shard_bytes < 1 or bytes_per_string_element < 1:
105    raise ValueError(
106        "Both max_shard_bytes and bytes_per_string_element must be positive.")
107  if max_shards and max_shards < 1:
108    raise ValueError(
109        "max_shards must be positive.")
110
111  def _partitioner(shape, dtype):
112    """Partitioner that partitions shards to have max_shard_bytes total size.
113
114    Args:
115      shape: A `TensorShape`.
116      dtype: A `DType`.
117
118    Returns:
119      A tuple representing how much to slice each axis in shape.
120
121    Raises:
122      ValueError: If shape is not a fully defined `TensorShape` or dtype is not
123        a `DType`.
124    """
125    if not isinstance(shape, tensor_shape.TensorShape):
126      raise ValueError("shape is not a TensorShape: %s" % shape)
127    if not shape.is_fully_defined():
128      raise ValueError("shape is not fully defined: %s" % shape)
129    if not isinstance(dtype, dtypes.DType):
130      raise ValueError("dtype is not a DType: %s" % dtype)
131
132    if dtype.base_dtype == dtypes.string:
133      element_size = bytes_per_string_element
134    else:
135      element_size = dtype.size
136
137    partitions = [1] * shape.ndims
138    bytes_per_slice = 1.0 * (
139        shape.num_elements() / shape.dims[axis].value) * element_size
140    # How many slices can we fit on one shard of size at most max_shard_bytes?
141    # At least one slice is required.
142    slices_per_shard = max(1, math.floor(max_shard_bytes / bytes_per_slice))
143    # How many shards do we need for axis given that each shard fits
144    # slices_per_shard slices from a total of shape[axis] slices?
145    axis_shards = int(math.ceil(
146        1.0 * shape.dims[axis].value / slices_per_shard))
147    if max_shards:
148      axis_shards = min(max_shards, axis_shards)
149
150    partitions[axis] = axis_shards
151
152    return partitions
153
154  return _partitioner
155
156
157@tf_export(v1=["min_max_variable_partitioner"])
158def min_max_variable_partitioner(max_partitions=1, axis=0,
159                                 min_slice_size=256 << 10,
160                                 bytes_per_string_element=16):
161  """Partitioner to allocate minimum size per slice.
162
163  Returns a partitioner that partitions the variable of given shape and dtype
164  such that each partition has a minimum of `min_slice_size` slice of the
165  variable. The maximum number of such partitions (upper bound) is given by
166  `max_partitions`.
167
168  Args:
169    max_partitions: Upper bound on the number of partitions. Defaults to 1.
170    axis: Axis along which to partition the variable. Defaults to 0.
171    min_slice_size: Minimum size of the variable slice per partition. Defaults
172      to 256K.
173    bytes_per_string_element: If the `Variable` is of type string, this provides
174      an estimate of how large each scalar in the `Variable` is.
175
176  Returns:
177    A partition function usable as the `partitioner` argument to
178    `variable_scope` and `get_variable`.
179
180  """
181  def _partitioner(shape, dtype):
182    """Partitioner that partitions list for a variable of given shape and type.
183
184    Ex: Consider partitioning a variable of type float32 with
185      shape=[1024, 1024].
186      If `max_partitions` >= 16, this function would return
187        [(1024 * 1024 * 4) / (256 * 1024), 1] = [16, 1].
188      If `max_partitions` < 16, this function would return
189        [`max_partitions`, 1].
190
191    Args:
192      shape: Shape of the variable.
193      dtype: Type of the variable.
194
195    Returns:
196      List of partitions for each axis (currently only one axis can be
197      partitioned).
198
199    Raises:
200      ValueError: If axis to partition along does not exist for the variable.
201    """
202    if axis >= len(shape):
203      raise ValueError("Can not partition variable along axis %d when shape is "
204                       "only %s" % (axis, shape))
205    if dtype.base_dtype == dtypes.string:
206      bytes_per_element = bytes_per_string_element
207    else:
208      bytes_per_element = dtype.size
209    total_size_bytes = shape.num_elements() * bytes_per_element
210    partitions = total_size_bytes / min_slice_size
211    partitions_list = [1] * len(shape)
212    # We can not partition the variable beyond what its shape or
213    # `max_partitions` allows.
214    partitions_list[axis] = max(1, min(shape.dims[axis].value,
215                                       max_partitions,
216                                       int(math.ceil(partitions))))
217    return partitions_list
218  return _partitioner
219
220
221@tf_export(v1=["fixed_size_partitioner"])
222def fixed_size_partitioner(num_shards, axis=0):
223  """Partitioner to specify a fixed number of shards along given axis.
224
225  Args:
226    num_shards: `int`, number of shards to partition variable.
227    axis: `int`, axis to partition on.
228
229  Returns:
230    A partition function usable as the `partitioner` argument to
231    `variable_scope` and `get_variable`.
232  """
233  def _partitioner(shape, **unused_args):
234    partitions_list = [1] * len(shape)
235    partitions_list[axis] = min(num_shards, shape.dims[axis].value)
236    return partitions_list
237  return _partitioner
238
239
240@tf_export(v1=["create_partitioned_variables"])
241@deprecation.deprecated(
242    date=None,
243    instructions="Use `tf.get_variable` with a partitioner set.")
244def create_partitioned_variables(
245    shape, slicing, initializer, dtype=dtypes.float32,
246    trainable=True, collections=None, name=None, reuse=None):
247  """Create a list of partitioned variables according to the given `slicing`.
248
249  Currently only one dimension of the full variable can be sliced, and the
250  full variable can be reconstructed by the concatenation of the returned
251  list along that dimension.
252
253  Args:
254    shape: List of integers.  The shape of the full variable.
255    slicing: List of integers.  How to partition the variable.
256      Must be of the same length as `shape`.  Each value
257      indicate how many slices to create in the corresponding
258      dimension.  Presently only one of the values can be more than 1;
259      that is, the variable can only be sliced along one dimension.
260
261      For convenience, The requested number of partitions does not have to
262      divide the corresponding dimension evenly.  If it does not, the
263      shapes of the partitions are incremented by 1 starting from partition
264      0 until all slack is absorbed.  The adjustment rules may change in the
265      future, but as you can save/restore these variables with different
266      slicing specifications this should not be a problem.
267    initializer: A `Tensor` of shape `shape` or a variable initializer
268      function.  If a function, it will be called once for each slice,
269      passing the shape and data type of the slice as parameters.  The
270      function must return a tensor with the same shape as the slice.
271    dtype: Type of the variables. Ignored if `initializer` is a `Tensor`.
272    trainable: If True also add all the variables to the graph collection
273      `GraphKeys.TRAINABLE_VARIABLES`.
274    collections: List of graph collections keys to add the variables to.
275      Defaults to `[GraphKeys.GLOBAL_VARIABLES]`.
276    name: Optional name for the full variable.  Defaults to
277      `"PartitionedVariable"` and gets uniquified automatically.
278    reuse: Boolean or `None`; if `True` and name is set, it would reuse
279      previously created variables. if `False` it will create new variables.
280      if `None`, it would inherit the parent scope reuse.
281
282  Returns:
283    A list of Variables corresponding to the slicing.
284
285  Raises:
286    ValueError: If any of the arguments is malformed.
287  """
288  if len(shape) != len(slicing):
289    raise ValueError("The 'shape' and 'slicing' of a partitioned Variable "
290                     "must have the length: shape: %s, slicing: %s" %
291                     (shape, slicing))
292  if len(shape) < 1:
293    raise ValueError("A partitioned Variable must have rank at least 1: "
294                     "shape: %s" % shape)
295
296  # Legacy: we are provided the slicing directly, so just pass it to
297  # the partitioner.
298  partitioner = lambda **unused_kwargs: slicing
299
300  with variable_scope.variable_scope(
301      name, "PartitionedVariable", reuse=reuse):
302    # pylint: disable=protected-access
303    partitioned_var = variable_scope._get_partitioned_variable(
304        name=None,
305        shape=shape,
306        dtype=dtype,
307        initializer=initializer,
308        trainable=trainable,
309        partitioner=partitioner,
310        collections=collections)
311    return list(partitioned_var)
312    # pylint: enable=protected-access
313