1 // Copyright 2017, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #ifndef VIXL_POOL_MANAGER_H_
28 #define VIXL_POOL_MANAGER_H_
29 
30 #include <stdint.h>
31 
32 #include <cstddef>
33 #include <limits>
34 #include <map>
35 #include <vector>
36 
37 #include "globals-vixl.h"
38 #include "macro-assembler-interface.h"
39 #include "utils-vixl.h"
40 
41 namespace vixl {
42 
43 class TestPoolManager;
44 
45 // There are four classes declared in this header file:
46 // PoolManager, PoolObject, ForwardReference and LocationBase.
47 
48 // The PoolManager manages both literal and veneer pools, and is designed to be
49 // shared between AArch32 and AArch64. A pool is represented as an abstract
50 // collection of references to objects. The manager does not need to know
51 // architecture-specific details about literals and veneers; the actual
52 // emission of the pool objects is delegated.
53 //
54 // Literal and Label will derive from LocationBase. The MacroAssembler will
55 // create these objects as instructions that reference pool objects are
56 // encountered, and ask the PoolManager to track them. The PoolManager will
57 // create an internal PoolObject object for each object derived from
58 // LocationBase.  Some of these PoolObject objects will be deleted when placed
59 // (e.g. the ones corresponding to Literals), whereas others will be updated
60 // with a new range when placed (e.g.  Veneers) and deleted when Bind() is
61 // called on the PoolManager with their corresponding object as a parameter.
62 //
63 // A ForwardReference represents a reference to a PoolObject that will be
64 // placed later in the instruction stream. Each ForwardReference may only refer
65 // to one PoolObject, but many ForwardReferences may refer to the same
66 // object.
67 //
68 // A PoolObject represents an object that has not yet been placed.  The final
69 // location of a PoolObject (and hence the LocationBase object to which it
70 // corresponds) is constrained mostly by the instructions that refer to it, but
71 // PoolObjects can also have inherent constraints, such as alignment.
72 //
73 // LocationBase objects, unlike PoolObject objects, can be used outside of the
74 // pool manager (e.g. as manually placed literals, which may still have
75 // forward references that need to be resolved).
76 //
77 // At the moment, each LocationBase will have at most one PoolObject that keeps
78 // the relevant information for placing this object in the pool. When that
79 // object is placed, all forward references of the object are resolved. For
80 // that reason, we do not need to keep track of the ForwardReference objects in
81 // the PoolObject.
82 
83 // T is an integral type used for representing locations. For a 32-bit
84 // architecture it will typically be int32_t, whereas for a 64-bit
85 // architecture it will be int64_t.
86 template <typename T>
87 class ForwardReference;
88 template <typename T>
89 class PoolObject;
90 template <typename T>
91 class PoolManager;
92 
93 // Represents an object that has a size and alignment, and either has a known
94 // location or has not been placed yet. An object of a subclass of LocationBase
95 // will typically keep track of a number of ForwardReferences when it has not
96 // yet been placed, but LocationBase does not assume or implement that
97 // functionality.  LocationBase provides virtual methods for emitting the
98 // object, updating all the forward references, and giving the PoolManager
99 // information on the lifetime of this object and the corresponding PoolObject.
100 template <typename T>
101 class LocationBase {
102  public:
103   // The size of a LocationBase object is restricted to 4KB, in order to avoid
104   // situations where the size of the pool becomes larger than the range of
105   // an unconditional branch. This cannot happen without having large objects,
106   // as typically the range of an unconditional branch is the larger range
107   // an instruction supports.
108   // TODO: This would ideally be an architecture-specific value, perhaps
109   // another template parameter.
110   static const int kMaxObjectSize = 4 * KBytes;
111 
112   // By default, LocationBase objects are aligned naturally to their size.
LocationBase(uint32_t type,int size)113   LocationBase(uint32_t type, int size)
114       : pool_object_size_(size),
115         pool_object_alignment_(size),
116         pool_object_type_(type),
117         is_bound_(false),
118         location_(0) {
119     VIXL_ASSERT(size > 0);
120     VIXL_ASSERT(size <= kMaxObjectSize);
121     VIXL_ASSERT(IsPowerOf2(size));
122   }
123 
124   // Allow alignment to be specified, as long as it is smaller than the size.
LocationBase(uint32_t type,int size,int alignment)125   LocationBase(uint32_t type, int size, int alignment)
126       : pool_object_size_(size),
127         pool_object_alignment_(alignment),
128         pool_object_type_(type),
129         is_bound_(false),
130         location_(0) {
131     VIXL_ASSERT(size > 0);
132     VIXL_ASSERT(size <= kMaxObjectSize);
133     VIXL_ASSERT(IsPowerOf2(alignment));
134     VIXL_ASSERT(alignment <= size);
135   }
136 
137   // Constructor for locations that are already bound.
LocationBase(T location)138   explicit LocationBase(T location)
139       : pool_object_size_(-1),
140         pool_object_alignment_(-1),
141         pool_object_type_(0),
142         is_bound_(true),
143         location_(location) {}
144 
~LocationBase()145   virtual ~LocationBase() VIXL_NEGATIVE_TESTING_ALLOW_EXCEPTION {}
146 
147   // The PoolManager should assume ownership of some objects, and delete them
148   // after they have been placed. This can happen for example for literals that
149   // are created internally to the MacroAssembler and the user doesn't get a
150   // handle to. By default, the PoolManager will not do this.
ShouldBeDeletedOnPlacementByPoolManager()151   virtual bool ShouldBeDeletedOnPlacementByPoolManager() const { return false; }
152   // The PoolManager should assume ownership of some objects, and delete them
153   // when it is destroyed. By default, the PoolManager will not do this.
ShouldBeDeletedOnPoolManagerDestruction()154   virtual bool ShouldBeDeletedOnPoolManagerDestruction() const { return false; }
155 
156   // Emit the PoolObject. Derived classes will implement this method to emit
157   // the necessary data and/or code (for example, to emit a literal or a
158   // veneer). This should not add padding, as it is added explicitly by the pool
159   // manager.
160   virtual void EmitPoolObject(MacroAssemblerInterface* masm) = 0;
161 
162   // Resolve the references to this object. Will encode the necessary offset
163   // in the instruction corresponding to each reference and then delete it.
164   // TODO: An alternative here would be to provide a ResolveReference()
165   // method that only asks the LocationBase to resolve a specific reference
166   // (thus allowing the pool manager to resolve some of the references only).
167   // This would mean we need to have some kind of API to get all the references
168   // to a LabelObject.
169   virtual void ResolveReferences(internal::AssemblerBase* assembler) = 0;
170 
171   // Returns true when the PoolObject corresponding to this LocationBase object
172   // needs to be removed from the pool once placed, and false if it needs to
173   // be updated instead (in which case UpdatePoolObject will be called).
ShouldDeletePoolObjectOnPlacement()174   virtual bool ShouldDeletePoolObjectOnPlacement() const { return true; }
175 
176   // Update the PoolObject after placing it, if necessary. This will happen for
177   // example in the case of a placed veneer, where we need to use a new updated
178   // range and a new reference (from the newly added branch instruction).
179   // By default, this does nothing, to avoid forcing objects that will not need
180   // this to have an empty implementation.
UpdatePoolObject(PoolObject<T> *)181   virtual void UpdatePoolObject(PoolObject<T>*) {}
182 
183   // Implement heuristics for emitting this object. If a margin is to be used
184   // as a hint during pool emission, we will try not to emit the object if we
185   // are further away from the maximum reachable location by more than the
186   // margin.
UsePoolObjectEmissionMargin()187   virtual bool UsePoolObjectEmissionMargin() const { return false; }
GetPoolObjectEmissionMargin()188   virtual T GetPoolObjectEmissionMargin() const {
189     VIXL_ASSERT(UsePoolObjectEmissionMargin() == false);
190     return 0;
191   }
192 
GetPoolObjectSizeInBytes()193   int GetPoolObjectSizeInBytes() const { return pool_object_size_; }
GetPoolObjectAlignment()194   int GetPoolObjectAlignment() const { return pool_object_alignment_; }
GetPoolObjectType()195   uint32_t GetPoolObjectType() const { return pool_object_type_; }
196 
IsBound()197   bool IsBound() const { return is_bound_; }
GetLocation()198   T GetLocation() const { return location_; }
199 
200   // This function can be called multiple times before the object is marked as
201   // bound with MarkBound() below. This is because some objects (e.g. the ones
202   // used to represent labels) can have veneers; every time we place a veneer
203   // we need to keep track of the location in order to resolve the references
204   // to the object. Reusing the location_ field for this is convenient.
SetLocation(internal::AssemblerBase * assembler,T location)205   void SetLocation(internal::AssemblerBase* assembler, T location) {
206     VIXL_ASSERT(!is_bound_);
207     location_ = location;
208     ResolveReferences(assembler);
209   }
210 
MarkBound()211   void MarkBound() {
212     VIXL_ASSERT(!is_bound_);
213     is_bound_ = true;
214   }
215 
216   // The following two functions are used when an object is bound by a call to
217   // PoolManager<T>::Bind().
GetMaxAlignment()218   virtual int GetMaxAlignment() const {
219     VIXL_ASSERT(!ShouldDeletePoolObjectOnPlacement());
220     return 1;
221   }
GetMinLocation()222   virtual T GetMinLocation() const {
223     VIXL_ASSERT(!ShouldDeletePoolObjectOnPlacement());
224     return 0;
225   }
226 
227  private:
228   // The size of the corresponding PoolObject, in bytes.
229   int pool_object_size_;
230   // The alignment of the corresponding PoolObject; this must be a power of two.
231   int pool_object_alignment_;
232 
233   // Different derived classes should have different type values. This can be
234   // used internally by the PoolManager for grouping of objects.
235   uint32_t pool_object_type_;
236   // Has the object been bound to a location yet?
237   bool is_bound_;
238 
239  protected:
240   // See comment on SetLocation() for the use of this field.
241   T location_;
242 };
243 
244 template <typename T>
245 class PoolObject {
246  public:
247   // By default, PoolObjects have no inherent position constraints.
PoolObject(LocationBase<T> * parent)248   explicit PoolObject(LocationBase<T>* parent)
249       : label_base_(parent),
250         min_location_(0),
251         max_location_(std::numeric_limits<T>::max()),
252         alignment_(parent->GetPoolObjectAlignment()),
253         skip_until_location_hint_(0),
254         type_(parent->GetPoolObjectType()) {
255     VIXL_ASSERT(IsPowerOf2(alignment_));
256     UpdateLocationHint();
257   }
258 
259   // Reset the minimum and maximum location and the alignment of the object.
260   // This function is public in order to allow the LocationBase corresponding to
261   // this PoolObject to update the PoolObject when placed, e.g. in the case of
262   // veneers. The size and type of the object cannot be modified.
Update(T min,T max,int alignment)263   void Update(T min, T max, int alignment) {
264     // We don't use RestrictRange here as the new range is independent of the
265     // old range (and the maximum location is typically larger).
266     min_location_ = min;
267     max_location_ = max;
268     RestrictAlignment(alignment);
269     UpdateLocationHint();
270   }
271 
272  private:
RestrictRange(T min,T max)273   void RestrictRange(T min, T max) {
274     VIXL_ASSERT(min <= max_location_);
275     VIXL_ASSERT(max >= min_location_);
276     min_location_ = std::max(min_location_, min);
277     max_location_ = std::min(max_location_, max);
278     UpdateLocationHint();
279   }
280 
RestrictAlignment(int alignment)281   void RestrictAlignment(int alignment) {
282     VIXL_ASSERT(IsPowerOf2(alignment));
283     VIXL_ASSERT(IsPowerOf2(alignment_));
284     alignment_ = std::max(alignment_, alignment);
285   }
286 
UpdateLocationHint()287   void UpdateLocationHint() {
288     if (label_base_->UsePoolObjectEmissionMargin()) {
289       skip_until_location_hint_ =
290           max_location_ - label_base_->GetPoolObjectEmissionMargin();
291     }
292   }
293 
294   // The LocationBase that this pool object represents.
295   LocationBase<T>* label_base_;
296 
297   // Hard, precise location constraints for the start location of the object.
298   // They are both inclusive, that is the start location of the object can be
299   // at any location between min_location_ and max_location_, themselves
300   // included.
301   T min_location_;
302   T max_location_;
303 
304   // The alignment must be a power of two.
305   int alignment_;
306 
307   // Avoid generating this object until skip_until_location_hint_. This
308   // supports cases where placing the object in the pool has an inherent cost
309   // that could be avoided in some other way. Veneers are a typical example; we
310   // would prefer to branch directly (over a pool) rather than use veneers, so
311   // this value can be set using some heuristic to leave them in the pool.
312   // This value is only a hint, which will be ignored if it has to in order to
313   // meet the hard constraints we have.
314   T skip_until_location_hint_;
315 
316   // Used only to group objects of similar type together. The PoolManager does
317   // not know what the types represent.
318   uint32_t type_;
319 
320   friend class PoolManager<T>;
321 };
322 
323 // Class that represents a forward reference. It is the responsibility of
324 // LocationBase objects to keep track of forward references and patch them when
325 // an object is placed - this class is only used by the PoolManager in order to
326 // restrict the requirements on PoolObjects it is tracking.
327 template <typename T>
328 class ForwardReference {
329  public:
330   ForwardReference(T location,
331                    int size,
332                    T min_object_location,
333                    T max_object_location,
334                    int object_alignment = 1)
location_(location)335       : location_(location),
336         size_(size),
337         object_alignment_(object_alignment),
338         min_object_location_(min_object_location),
339         max_object_location_(max_object_location) {
340     VIXL_ASSERT(AlignDown(max_object_location, object_alignment) >=
341                 min_object_location);
342   }
343 
LocationIsEncodable(T location)344   bool LocationIsEncodable(T location) const {
345     return location >= min_object_location_ &&
346            location <= max_object_location_ &&
347            IsAligned(location, object_alignment_);
348   }
349 
GetLocation()350   T GetLocation() const { return location_; }
GetMinLocation()351   T GetMinLocation() const { return min_object_location_; }
GetMaxLocation()352   T GetMaxLocation() const { return max_object_location_; }
GetAlignment()353   int GetAlignment() const { return object_alignment_; }
354 
355   // Needed for InvalSet.
SetLocationToInvalidateOnly(T location)356   void SetLocationToInvalidateOnly(T location) { location_ = location; }
357 
358  private:
359   // The location of the thing that contains the reference. For example, this
360   // can be the location of the branch or load instruction.
361   T location_;
362 
363   // The size of the instruction that makes the reference, in bytes.
364   int size_;
365 
366   // The alignment that the object must satisfy for this reference - must be a
367   // power of two.
368   int object_alignment_;
369 
370   // Specify the possible locations where the object could be stored. AArch32's
371   // PC offset, and T32's PC alignment calculations should be applied by the
372   // Assembler, not here. The PoolManager deals only with simple locationes.
373   // Including min_object_adddress_ is necessary to handle AArch32 some
374   // instructions which have a minimum offset of 0, but also have the implicit
375   // PC offset.
376   // Note that this structure cannot handle sparse ranges, such as A32's ADR,
377   // but doing so is costly and probably not useful in practice. The min and
378   // and max object location both refer to the beginning of the object, are
379   // inclusive and are not affected by the object size. E.g. if
380   // max_object_location_ is equal to X, we can place the object at location X
381   // regardless of its size.
382   T min_object_location_;
383   T max_object_location_;
384 
385   friend class PoolManager<T>;
386 };
387 
388 
389 template <typename T>
390 class PoolManager {
391  public:
PoolManager(int header_size,int alignment,int buffer_alignment)392   PoolManager(int header_size, int alignment, int buffer_alignment)
393       : header_size_(header_size),
394         alignment_(alignment),
395         buffer_alignment_(buffer_alignment),
396         checkpoint_(std::numeric_limits<T>::max()),
397         max_pool_size_(0),
398         monitor_(0) {}
399 
400   ~PoolManager() VIXL_NEGATIVE_TESTING_ALLOW_EXCEPTION;
401 
402   // Check if we will need to emit the pool at location 'pc', when planning to
403   // generate a certain number of bytes. This optionally takes a
404   // ForwardReference we are about to generate, in which case the size of the
405   // reference must be included in 'num_bytes'.
406   bool MustEmit(T pc,
407                 int num_bytes = 0,
408                 ForwardReference<T>* reference = NULL,
409                 LocationBase<T>* object = NULL) const;
410 
411   enum EmitOption { kBranchRequired, kNoBranchRequired };
412 
413   // Emit the pool at location 'pc', using 'masm' as the macroassembler.
414   // The branch over the header can be optionally omitted using 'option'.
415   // Returns the new PC after pool emission.
416   // This expects a number of bytes that are about to be emitted, to be taken
417   // into account in heuristics for pool object emission.
418   // This also optionally takes a forward reference and an object as
419   // parameters, to be used in the case where emission of the pool is triggered
420   // by adding a new reference to the pool that does not fit. The pool manager
421   // will need this information in order to apply its heuristics correctly.
422   T Emit(MacroAssemblerInterface* masm,
423          T pc,
424          int num_bytes = 0,
425          ForwardReference<T>* new_reference = NULL,
426          LocationBase<T>* new_object = NULL,
427          EmitOption option = kBranchRequired);
428 
429   // Add 'reference' to 'object'. Should not be preceded by a call to MustEmit()
430   // that returned true, unless Emit() has been successfully afterwards.
431   void AddObjectReference(const ForwardReference<T>* reference,
432                           LocationBase<T>* object);
433 
434   // This is to notify the pool that a LocationBase has been bound to a location
435   // and does not need to be tracked anymore.
436   // This will happen, for example, for Labels, which are manually bound by the
437   // user.
438   // This can potentially add some padding bytes in order to meet the object
439   // requirements, and will return the new location.
440   T Bind(MacroAssemblerInterface* masm, LocationBase<T>* object, T location);
441 
442   // Functions for blocking and releasing the pools.
Block()443   void Block() { monitor_++; }
444   void Release(T pc);
IsBlocked()445   bool IsBlocked() const { return monitor_ != 0; }
446 
447  private:
448   typedef typename std::vector<PoolObject<T> >::iterator objects_iter;
449   typedef
450       typename std::vector<PoolObject<T> >::const_iterator const_objects_iter;
451 
GetObjectIfTracked(LocationBase<T> * label)452   PoolObject<T>* GetObjectIfTracked(LocationBase<T>* label) {
453     return const_cast<PoolObject<T>*>(
454         static_cast<const PoolManager<T>*>(this)->GetObjectIfTracked(label));
455   }
456 
GetObjectIfTracked(LocationBase<T> * label)457   const PoolObject<T>* GetObjectIfTracked(LocationBase<T>* label) const {
458     for (const_objects_iter iter = objects_.begin(); iter != objects_.end();
459          ++iter) {
460       const PoolObject<T>& current = *iter;
461       if (current.label_base_ == label) return &current;
462     }
463     return NULL;
464   }
465 
466   // Helper function for calculating the checkpoint.
467   enum SortOption { kSortRequired, kNoSortRequired };
468   void RecalculateCheckpoint(SortOption sort_option = kSortRequired);
469 
470   // Comparison function for using std::sort() on objects_. PoolObject A is
471   // ordered before PoolObject B when A should be emitted before B. The
472   // comparison depends on the max_location_, size_, alignment_ and
473   // min_location_.
474   static bool PoolObjectLessThan(const PoolObject<T>& a,
475                                  const PoolObject<T>& b);
476 
477   // Helper function used in the checkpoint calculation. 'checkpoint' is the
478   // current checkpoint, which is modified to take 'object' into account. The
479   // new checkpoint is returned.
480   static T UpdateCheckpointForObject(T checkpoint, const PoolObject<T>* object);
481 
482   // Helper function to add a new object into a sorted objects_ array.
483   void Insert(const PoolObject<T>& new_object);
484 
485   // Helper functions to remove an object from objects_ and delete the
486   // corresponding LocationBase object, if necessary. This will be called
487   // either after placing the object, or when Bind() is called.
488   void RemoveAndDelete(PoolObject<T>* object);
489   objects_iter RemoveAndDelete(objects_iter iter);
490 
491   // Helper function to check if we should skip emitting an object.
492   bool ShouldSkipObject(PoolObject<T>* pool_object,
493                         T pc,
494                         int num_bytes,
495                         ForwardReference<T>* new_reference,
496                         LocationBase<T>* new_object,
497                         PoolObject<T>* existing_object) const;
498 
499   // Used only for debugging.
500   void DumpCurrentState(T pc) const;
501 
502   // Methods used for testing only, via the test friend classes.
PoolIsEmptyForTest()503   bool PoolIsEmptyForTest() const { return objects_.empty(); }
GetCheckpointForTest()504   T GetCheckpointForTest() const { return checkpoint_; }
505   int GetPoolSizeForTest() const;
506 
507   // The objects we are tracking references to. The objects_ vector is sorted
508   // at all times between calls to the public members of the PoolManager. It
509   // is sorted every time we add, delete or update a PoolObject.
510   // TODO: Consider a more efficient data structure here, to allow us to delete
511   // elements as we emit them.
512   std::vector<PoolObject<T> > objects_;
513 
514   // Objects to be deleted on pool destruction.
515   std::vector<LocationBase<T>*> delete_on_destruction_;
516 
517   // The header_size_ and alignment_ values are hardcoded for each instance of
518   // PoolManager. The PoolManager does not know how to emit the header, and
519   // relies on the EmitPoolHeader and EndPool methods of the
520   // MacroAssemblerInterface for that.  It will also emit padding if necessary,
521   // both for the header and at the end of the pool, according to alignment_,
522   // and using the EmitNopBytes and EmitPaddingBytes method of the
523   // MacroAssemblerInterface.
524 
525   // The size of the header, in bytes.
526   int header_size_;
527   // The alignment of the header - must be a power of two.
528   int alignment_;
529   // The alignment of the buffer - we cannot guarantee any object alignment
530   // larger than this alignment. When a buffer is grown, this alignment has
531   // to be guaranteed.
532   // TODO: Consider extending this to describe the guaranteed alignment as the
533   // modulo of a known number.
534   int buffer_alignment_;
535 
536   // The current checkpoint. This is the latest location at which the pool
537   // *must* be emitted. This should not be visible outside the pool manager
538   // and should only be updated in RecalculateCheckpoint.
539   T checkpoint_;
540 
541   // Maximum size of the pool, assuming we need the maximum possible padding
542   // for each object and for the header. It is only updated in
543   // RecalculateCheckpoint.
544   T max_pool_size_;
545 
546   // Indicates whether the emission of this pool is blocked.
547   int monitor_;
548 
549   friend class vixl::TestPoolManager;
550 };
551 
552 
553 }  // namespace vixl
554 
555 #endif  // VIXL_POOL_MANAGER_H_
556