1 /*
2  * Copyright (C) 2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3  * Copyright (C) 2019-2020 Collabora, Ltd.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "compiler.h"
26 #include "midgard_ops.h"
27 
mir_rewrite_index_src_single(midgard_instruction * ins,unsigned old,unsigned new)28 void mir_rewrite_index_src_single(midgard_instruction *ins, unsigned old, unsigned new)
29 {
30         mir_foreach_src(ins, i) {
31                 if (ins->src[i] == old)
32                         ins->src[i] = new;
33         }
34 }
35 
mir_rewrite_index_dst_single(midgard_instruction * ins,unsigned old,unsigned new)36 void mir_rewrite_index_dst_single(midgard_instruction *ins, unsigned old, unsigned new)
37 {
38         if (ins->dest == old)
39                 ins->dest = new;
40 }
41 
42 static void
mir_rewrite_index_src_single_swizzle(midgard_instruction * ins,unsigned old,unsigned new,unsigned * swizzle)43 mir_rewrite_index_src_single_swizzle(midgard_instruction *ins, unsigned old, unsigned new, unsigned *swizzle)
44 {
45         for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
46                 if (ins->src[i] != old) continue;
47 
48                 ins->src[i] = new;
49                 mir_compose_swizzle(ins->swizzle[i], swizzle, ins->swizzle[i]);
50         }
51 }
52 
53 void
mir_rewrite_index_src(compiler_context * ctx,unsigned old,unsigned new)54 mir_rewrite_index_src(compiler_context *ctx, unsigned old, unsigned new)
55 {
56         mir_foreach_instr_global(ctx, ins) {
57                 mir_rewrite_index_src_single(ins, old, new);
58         }
59 }
60 
61 void
mir_rewrite_index_src_swizzle(compiler_context * ctx,unsigned old,unsigned new,unsigned * swizzle)62 mir_rewrite_index_src_swizzle(compiler_context *ctx, unsigned old, unsigned new, unsigned *swizzle)
63 {
64         mir_foreach_instr_global(ctx, ins) {
65                 mir_rewrite_index_src_single_swizzle(ins, old, new, swizzle);
66         }
67 }
68 
69 void
mir_rewrite_index_dst(compiler_context * ctx,unsigned old,unsigned new)70 mir_rewrite_index_dst(compiler_context *ctx, unsigned old, unsigned new)
71 {
72         mir_foreach_instr_global(ctx, ins) {
73                 mir_rewrite_index_dst_single(ins, old, new);
74         }
75 
76         /* Implicitly written before the shader */
77         if (ctx->blend_input == old)
78                 ctx->blend_input = new;
79 
80         if (ctx->blend_src1 == old)
81                 ctx->blend_src1 = new;
82 }
83 
84 void
mir_rewrite_index(compiler_context * ctx,unsigned old,unsigned new)85 mir_rewrite_index(compiler_context *ctx, unsigned old, unsigned new)
86 {
87         mir_rewrite_index_src(ctx, old, new);
88         mir_rewrite_index_dst(ctx, old, new);
89 }
90 
91 unsigned
mir_use_count(compiler_context * ctx,unsigned value)92 mir_use_count(compiler_context *ctx, unsigned value)
93 {
94         unsigned used_count = 0;
95 
96         mir_foreach_instr_global(ctx, ins) {
97                 if (mir_has_arg(ins, value))
98                         ++used_count;
99         }
100 
101         return used_count;
102 }
103 
104 /* Checks if a value is used only once (or totally dead), which is an important
105  * heuristic to figure out if certain optimizations are Worth It (TM) */
106 
107 bool
mir_single_use(compiler_context * ctx,unsigned value)108 mir_single_use(compiler_context *ctx, unsigned value)
109 {
110         /* We can replicate constants in places so who cares */
111         if (value == SSA_FIXED_REGISTER(REGISTER_CONSTANT))
112                 return true;
113 
114         return mir_use_count(ctx, value) <= 1;
115 }
116 
117 bool
mir_nontrivial_mod(midgard_instruction * ins,unsigned i,bool check_swizzle)118 mir_nontrivial_mod(midgard_instruction *ins, unsigned i, bool check_swizzle)
119 {
120         bool is_int = midgard_is_integer_op(ins->op);
121 
122         if (is_int) {
123                 if (ins->src_shift[i]) return true;
124         } else {
125                 if (ins->src_neg[i]) return true;
126                 if (ins->src_abs[i]) return true;
127         }
128 
129         if (ins->dest_type != ins->src_types[i]) return true;
130 
131         if (check_swizzle) {
132                 for (unsigned c = 0; c < 16; ++c) {
133                         if (!(ins->mask & (1 << c))) continue;
134                         if (ins->swizzle[i][c] != c) return true;
135                 }
136         }
137 
138         return false;
139 }
140 
141 bool
mir_nontrivial_outmod(midgard_instruction * ins)142 mir_nontrivial_outmod(midgard_instruction *ins)
143 {
144         bool is_int = midgard_is_integer_op(ins->op);
145         unsigned mod = ins->outmod;
146 
147         if (ins->dest_type != ins->src_types[1])
148                 return true;
149 
150         if (is_int)
151                 return mod != midgard_outmod_int_wrap;
152         else
153                 return mod != midgard_outmod_none;
154 }
155 
156 /* 128 / sz = exp2(log2(128 / sz))
157  *          = exp2(log2(128) - log2(sz))
158  *          = exp2(7 - log2(sz))
159  *          = 1 << (7 - log2(sz))
160  */
161 
162 static unsigned
mir_components_for_bits(unsigned bits)163 mir_components_for_bits(unsigned bits)
164 {
165         return 1 << (7 - util_logbase2(bits));
166 }
167 
168 unsigned
mir_components_for_type(nir_alu_type T)169 mir_components_for_type(nir_alu_type T)
170 {
171         unsigned sz = nir_alu_type_get_type_size(T);
172         return mir_components_for_bits(sz);
173 }
174 
175 uint16_t
mir_from_bytemask(uint16_t bytemask,unsigned bits)176 mir_from_bytemask(uint16_t bytemask, unsigned bits)
177 {
178         unsigned value = 0;
179         unsigned count = bits / 8;
180 
181         for (unsigned c = 0, d = 0; c < 16; c += count, ++d) {
182                 bool a = (bytemask & (1 << c)) != 0;
183 
184                 for (unsigned q = c; q < count; ++q)
185                         assert(((bytemask & (1 << q)) != 0) == a);
186 
187                 value |= (a << d);
188         }
189 
190         return value;
191 }
192 
193 /* Rounds up a bytemask to fill a given component count. Iterate each
194  * component, and check if any bytes in the component are masked on */
195 
196 uint16_t
mir_round_bytemask_up(uint16_t mask,unsigned bits)197 mir_round_bytemask_up(uint16_t mask, unsigned bits)
198 {
199         unsigned bytes = bits / 8;
200         unsigned maxmask = mask_of(bytes);
201         unsigned channels = mir_components_for_bits(bits);
202 
203         for (unsigned c = 0; c < channels; ++c) {
204                 unsigned submask = maxmask << (c * bytes);
205 
206                 if (mask & submask)
207                         mask |= submask;
208         }
209 
210         return mask;
211 }
212 
213 /* Grabs the per-byte mask of an instruction (as opposed to per-component) */
214 
215 uint16_t
mir_bytemask(midgard_instruction * ins)216 mir_bytemask(midgard_instruction *ins)
217 {
218         unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
219         return pan_to_bytemask(type_size, ins->mask);
220 }
221 
222 void
mir_set_bytemask(midgard_instruction * ins,uint16_t bytemask)223 mir_set_bytemask(midgard_instruction *ins, uint16_t bytemask)
224 {
225         unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
226         ins->mask = mir_from_bytemask(bytemask, type_size);
227 }
228 
229 /* Checks if we should use an upper destination override, rather than the lower
230  * one in the IR. Returns zero if no, returns the bytes to shift otherwise */
231 
232 signed
mir_upper_override(midgard_instruction * ins,unsigned inst_size)233 mir_upper_override(midgard_instruction *ins, unsigned inst_size)
234 {
235         unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
236 
237         /* If the sizes are the same, there's nothing to override */
238         if (type_size == inst_size)
239                 return -1;
240 
241         /* There are 16 bytes per vector, so there are (16/bytes)
242          * components per vector. So the magic half is half of
243          * (16/bytes), which simplifies to 8/bytes = 8 / (bits / 8) = 64 / bits
244          * */
245 
246         unsigned threshold = mir_components_for_bits(type_size) >> 1;
247 
248         /* How many components did we shift over? */
249         unsigned zeroes = __builtin_ctz(ins->mask);
250 
251         /* Did we hit the threshold? */
252         return (zeroes >= threshold) ? threshold : 0;
253 }
254 
255 /* Creates a mask of the components of a node read by an instruction, by
256  * analyzing the swizzle with respect to the instruction's mask. E.g.:
257  *
258  *  fadd r0.xz, r1.yyyy, r2.zwyx
259  *
260  * will return a mask of Z/Y for r2
261  */
262 
263 static uint16_t
mir_bytemask_of_read_components_single(unsigned * swizzle,unsigned inmask,unsigned bits)264 mir_bytemask_of_read_components_single(unsigned *swizzle, unsigned inmask, unsigned bits)
265 {
266         unsigned cmask = 0;
267 
268         for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
269                 if (!(inmask & (1 << c))) continue;
270                 cmask |= (1 << swizzle[c]);
271         }
272 
273         return pan_to_bytemask(bits, cmask);
274 }
275 
276 uint16_t
mir_bytemask_of_read_components_index(midgard_instruction * ins,unsigned i)277 mir_bytemask_of_read_components_index(midgard_instruction *ins, unsigned i)
278 {
279         /* Conditional branches read one 32-bit component = 4 bytes (TODO: multi branch??) */
280         if (ins->compact_branch && ins->branch.conditional && (i == 0))
281                 return 0xF;
282 
283         /* ALU ops act componentwise so we need to pay attention to
284          * their mask. Texture/ldst does not so we don't clamp source
285          * readmasks based on the writemask */
286         unsigned qmask = ~0;
287 
288         /* Handle dot products and things */
289         if (ins->type == TAG_ALU_4 && !ins->compact_branch) {
290                 unsigned props = alu_opcode_props[ins->op].props;
291 
292                 unsigned channel_override = GET_CHANNEL_COUNT(props);
293 
294                 if (channel_override)
295                         qmask = mask_of(channel_override);
296                 else
297                         qmask = ins->mask;
298         }
299 
300         return mir_bytemask_of_read_components_single(ins->swizzle[i], qmask,
301                 nir_alu_type_get_type_size(ins->src_types[i]));
302 }
303 
304 uint16_t
mir_bytemask_of_read_components(midgard_instruction * ins,unsigned node)305 mir_bytemask_of_read_components(midgard_instruction *ins, unsigned node)
306 {
307         uint16_t mask = 0;
308 
309         if (node == ~0)
310                 return 0;
311 
312         mir_foreach_src(ins, i) {
313                 if (ins->src[i] != node) continue;
314                 mask |= mir_bytemask_of_read_components_index(ins, i);
315         }
316 
317         return mask;
318 }
319 
320 /* Register allocation occurs after instruction scheduling, which is fine until
321  * we start needing to spill registers and therefore insert instructions into
322  * an already-scheduled program. We don't have to be terribly efficient about
323  * this, since spilling is already slow. So just semantically we need to insert
324  * the instruction into a new bundle before/after the bundle of the instruction
325  * in question */
326 
327 static midgard_bundle
mir_bundle_for_op(compiler_context * ctx,midgard_instruction ins)328 mir_bundle_for_op(compiler_context *ctx, midgard_instruction ins)
329 {
330         midgard_instruction *u = mir_upload_ins(ctx, ins);
331 
332         midgard_bundle bundle = {
333                 .tag = ins.type,
334                 .instruction_count = 1,
335                 .instructions = { u },
336         };
337 
338         if (bundle.tag == TAG_ALU_4) {
339                 assert(OP_IS_MOVE(u->op));
340                 u->unit = UNIT_VMUL;
341 
342                 size_t bytes_emitted = sizeof(uint32_t) + sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
343                 bundle.padding = ~(bytes_emitted - 1) & 0xF;
344                 bundle.control = ins.type | u->unit;
345         }
346 
347         return bundle;
348 }
349 
350 static unsigned
mir_bundle_idx_for_ins(midgard_instruction * tag,midgard_block * block)351 mir_bundle_idx_for_ins(midgard_instruction *tag, midgard_block *block)
352 {
353         midgard_bundle *bundles =
354                 (midgard_bundle *) block->bundles.data;
355 
356         size_t count = (block->bundles.size / sizeof(midgard_bundle));
357 
358         for (unsigned i = 0; i < count; ++i) {
359                 for (unsigned j = 0; j < bundles[i].instruction_count; ++j) {
360                         if (bundles[i].instructions[j] == tag)
361                                 return i;
362                 }
363         }
364 
365         mir_print_instruction(tag);
366         unreachable("Instruction not scheduled in block");
367 }
368 
369 void
mir_insert_instruction_before_scheduled(compiler_context * ctx,midgard_block * block,midgard_instruction * tag,midgard_instruction ins)370 mir_insert_instruction_before_scheduled(
371         compiler_context *ctx,
372         midgard_block *block,
373         midgard_instruction *tag,
374         midgard_instruction ins)
375 {
376         unsigned before = mir_bundle_idx_for_ins(tag, block);
377         size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
378         UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
379 
380         midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
381         memmove(bundles + before + 1, bundles + before, (count - before) * sizeof(midgard_bundle));
382         midgard_bundle *before_bundle = bundles + before + 1;
383 
384         midgard_bundle new = mir_bundle_for_op(ctx, ins);
385         memcpy(bundles + before, &new, sizeof(new));
386 
387         list_addtail(&new.instructions[0]->link, &before_bundle->instructions[0]->link);
388         block->quadword_count += midgard_tag_props[new.tag].size;
389 }
390 
391 void
mir_insert_instruction_after_scheduled(compiler_context * ctx,midgard_block * block,midgard_instruction * tag,midgard_instruction ins)392 mir_insert_instruction_after_scheduled(
393         compiler_context *ctx,
394         midgard_block *block,
395         midgard_instruction *tag,
396         midgard_instruction ins)
397 {
398         /* We need to grow the bundles array to add our new bundle */
399         size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
400         UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
401 
402         /* Find the bundle that we want to insert after */
403         unsigned after = mir_bundle_idx_for_ins(tag, block);
404 
405         /* All the bundles after that one, we move ahead by one */
406         midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
407         memmove(bundles + after + 2, bundles + after + 1, (count - after - 1) * sizeof(midgard_bundle));
408         midgard_bundle *after_bundle = bundles + after;
409 
410         midgard_bundle new = mir_bundle_for_op(ctx, ins);
411         memcpy(bundles + after + 1, &new, sizeof(new));
412         list_add(&new.instructions[0]->link, &after_bundle->instructions[after_bundle->instruction_count - 1]->link);
413         block->quadword_count += midgard_tag_props[new.tag].size;
414 }
415 
416 /* Flip the first-two arguments of a (binary) op. Currently ALU
417  * only, no known uses for ldst/tex */
418 
419 void
mir_flip(midgard_instruction * ins)420 mir_flip(midgard_instruction *ins)
421 {
422         unsigned temp = ins->src[0];
423         ins->src[0] = ins->src[1];
424         ins->src[1] = temp;
425 
426         assert(ins->type == TAG_ALU_4);
427 
428         temp = ins->src_types[0];
429         ins->src_types[0] = ins->src_types[1];
430         ins->src_types[1] = temp;
431 
432         temp = ins->src_abs[0];
433         ins->src_abs[0] = ins->src_abs[1];
434         ins->src_abs[1] = temp;
435 
436         temp = ins->src_neg[0];
437         ins->src_neg[0] = ins->src_neg[1];
438         ins->src_neg[1] = temp;
439 
440         temp = ins->src_invert[0];
441         ins->src_invert[0] = ins->src_invert[1];
442         ins->src_invert[1] = temp;
443 
444         unsigned temp_swizzle[16];
445         memcpy(temp_swizzle, ins->swizzle[0], sizeof(ins->swizzle[0]));
446         memcpy(ins->swizzle[0], ins->swizzle[1], sizeof(ins->swizzle[0]));
447         memcpy(ins->swizzle[1], temp_swizzle, sizeof(ins->swizzle[0]));
448 }
449 
450 /* Before squashing, calculate ctx->temp_count just by observing the MIR */
451 
452 void
mir_compute_temp_count(compiler_context * ctx)453 mir_compute_temp_count(compiler_context *ctx)
454 {
455         if (ctx->temp_count)
456                 return;
457 
458         unsigned max_dest = 0;
459 
460         mir_foreach_instr_global(ctx, ins) {
461                 if (ins->dest < SSA_FIXED_MINIMUM)
462                         max_dest = MAX2(max_dest, ins->dest + 1);
463         }
464 
465         ctx->temp_count = max_dest;
466 }
467