1 /**************************************************************************
2  *
3  * Copyright 2008 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /**
29  * @file
30  * SSE intrinsics portability header.
31  *
32  * Although the SSE intrinsics are support by all modern x86 and x86-64
33  * compilers, there are some intrisincs missing in some implementations
34  * (especially older MSVC versions). This header abstracts that away.
35  */
36 
37 #ifndef U_SSE_H_
38 #define U_SSE_H_
39 
40 #include "pipe/p_config.h"
41 
42 #if defined(PIPE_ARCH_SSE)
43 
44 #include <emmintrin.h>
45 
46 
47 union m128i {
48    __m128i m;
49    ubyte ub[16];
50    ushort us[8];
51    uint ui[4];
52 };
53 
u_print_epi8(const char * name,__m128i r)54 static inline void u_print_epi8(const char *name, __m128i r)
55 {
56    union { __m128i m; ubyte ub[16]; } u;
57    u.m = r;
58 
59    debug_printf("%s: "
60                 "%02x/"
61                 "%02x/"
62                 "%02x/"
63                 "%02x/"
64                 "%02x/"
65                 "%02x/"
66                 "%02x/"
67                 "%02x/"
68                 "%02x/"
69                 "%02x/"
70                 "%02x/"
71                 "%02x/"
72                 "%02x/"
73                 "%02x/"
74                 "%02x/"
75                 "%02x\n",
76                 name,
77                 u.ub[0],  u.ub[1],  u.ub[2],  u.ub[3],
78                 u.ub[4],  u.ub[5],  u.ub[6],  u.ub[7],
79                 u.ub[8],  u.ub[9],  u.ub[10], u.ub[11],
80                 u.ub[12], u.ub[13], u.ub[14], u.ub[15]);
81 }
82 
u_print_epi16(const char * name,__m128i r)83 static inline void u_print_epi16(const char *name, __m128i r)
84 {
85    union { __m128i m; ushort us[8]; } u;
86    u.m = r;
87 
88    debug_printf("%s: "
89                 "%04x/"
90                 "%04x/"
91                 "%04x/"
92                 "%04x/"
93                 "%04x/"
94                 "%04x/"
95                 "%04x/"
96                 "%04x\n",
97                 name,
98                 u.us[0],  u.us[1],  u.us[2],  u.us[3],
99                 u.us[4],  u.us[5],  u.us[6],  u.us[7]);
100 }
101 
u_print_epi32(const char * name,__m128i r)102 static inline void u_print_epi32(const char *name, __m128i r)
103 {
104    union { __m128i m; uint ui[4]; } u;
105    u.m = r;
106 
107    debug_printf("%s: "
108                 "%08x/"
109                 "%08x/"
110                 "%08x/"
111                 "%08x\n",
112                 name,
113                 u.ui[0],  u.ui[1],  u.ui[2],  u.ui[3]);
114 }
115 
u_print_ps(const char * name,__m128 r)116 static inline void u_print_ps(const char *name, __m128 r)
117 {
118    union { __m128 m; float f[4]; } u;
119    u.m = r;
120 
121    debug_printf("%s: "
122                 "%f/"
123                 "%f/"
124                 "%f/"
125                 "%f\n",
126                 name,
127                 u.f[0],  u.f[1],  u.f[2],  u.f[3]);
128 }
129 
130 
131 #define U_DUMP_EPI32(a) u_print_epi32(#a, a)
132 #define U_DUMP_EPI16(a) u_print_epi16(#a, a)
133 #define U_DUMP_EPI8(a)  u_print_epi8(#a, a)
134 #define U_DUMP_PS(a)    u_print_ps(#a, a)
135 
136 
137 
138 #if defined(PIPE_ARCH_SSSE3)
139 
140 #include <tmmintrin.h>
141 
142 #else /* !PIPE_ARCH_SSSE3 */
143 
144 /**
145  * Describe _mm_shuffle_epi8() with gcc extended inline assembly, for cases
146  * where -mssse3 is not supported/enabled.
147  *
148  * MSVC will never get in here as its intrinsics support do not rely on
149  * compiler command line options.
150  */
151 static __inline __m128i
152 #ifdef __clang__
153    __attribute__((__always_inline__, __nodebug__))
154 #else
155    __attribute__((__gnu_inline__, __always_inline__, __artificial__))
156 #endif
_mm_shuffle_epi8(__m128i a,__m128i mask)157 _mm_shuffle_epi8(__m128i a, __m128i mask)
158 {
159     __m128i result;
160     __asm__("pshufb %1, %0"
161             : "=x" (result)
162             : "xm" (mask), "0" (a));
163     return result;
164 }
165 
166 #endif /* !PIPE_ARCH_SSSE3 */
167 
168 
169 /*
170  * Provide an SSE implementation of _mm_mul_epi32() in terms of
171  * _mm_mul_epu32().
172  *
173  * Basically, albeit surprising at first (and second, and third...) look
174  * if a * b is done signed instead of unsigned, can just
175  * subtract b from the high bits of the result if a is negative
176  * (and the same for a if b is negative). Modular arithmetic at its best!
177  *
178  * So for int32 a,b in crude pseudo-code ("*" here denoting a widening mul)
179  * fixupb = (signmask(b) & a) << 32ULL
180  * fixupa = (signmask(a) & b) << 32ULL
181  * a * b = (unsigned)a * (unsigned)b - fixupb - fixupa
182  * = (unsigned)a * (unsigned)b -(fixupb + fixupa)
183  *
184  * This does both lo (dwords 0/2) and hi parts (1/3) at the same time due
185  * to some optimization potential.
186  */
187 static inline __m128i
mm_mullohi_epi32(const __m128i a,const __m128i b,__m128i * res13)188 mm_mullohi_epi32(const __m128i a, const __m128i b, __m128i *res13)
189 {
190    __m128i a13, b13, mul02, mul13;
191    __m128i anegmask, bnegmask, fixup, fixup02, fixup13;
192    a13 = _mm_shuffle_epi32(a, _MM_SHUFFLE(2,3,0,1));
193    b13 = _mm_shuffle_epi32(b, _MM_SHUFFLE(2,3,0,1));
194    anegmask = _mm_srai_epi32(a, 31);
195    bnegmask = _mm_srai_epi32(b, 31);
196    fixup = _mm_add_epi32(_mm_and_si128(anegmask, b),
197                          _mm_and_si128(bnegmask, a));
198    mul02 = _mm_mul_epu32(a, b);
199    mul13 = _mm_mul_epu32(a13, b13);
200    fixup02 = _mm_slli_epi64(fixup, 32);
201    fixup13 = _mm_and_si128(fixup, _mm_set_epi32(-1,0,-1,0));
202    *res13 = _mm_sub_epi64(mul13, fixup13);
203    return _mm_sub_epi64(mul02, fixup02);
204 }
205 
206 
207 /* Provide an SSE2 implementation of _mm_mullo_epi32() in terms of
208  * _mm_mul_epu32().
209  *
210  * This always works regardless the signs of the operands, since
211  * the high bits (which would be different) aren't used.
212  *
213  * This seems close enough to the speed of SSE4 and the real
214  * _mm_mullo_epi32() intrinsic as to not justify adding an sse4
215  * dependency at this point.
216  */
mm_mullo_epi32(const __m128i a,const __m128i b)217 static inline __m128i mm_mullo_epi32(const __m128i a, const __m128i b)
218 {
219    __m128i a4   = _mm_srli_epi64(a, 32);  /* shift by one dword */
220    __m128i b4   = _mm_srli_epi64(b, 32);  /* shift by one dword */
221    __m128i ba   = _mm_mul_epu32(b, a);   /* multply dwords 0, 2 */
222    __m128i b4a4 = _mm_mul_epu32(b4, a4); /* multiply dwords 1, 3 */
223 
224    /* Interleave the results, either with shuffles or (slightly
225     * faster) direct bit operations:
226     * XXX: might be only true for some cpus (in particular 65nm
227     * Core 2). On most cpus (including that Core 2, but not Nehalem...)
228     * using _mm_shuffle_ps/_mm_shuffle_epi32 might also be faster
229     * than using the 3 instructions below. But logic should be fine
230     * as well, we can't have optimal solution for all cpus (if anything,
231     * should just use _mm_mullo_epi32() if sse41 is available...).
232     */
233 #if 0
234    __m128i ba8             = _mm_shuffle_epi32(ba, 8);
235    __m128i b4a48           = _mm_shuffle_epi32(b4a4, 8);
236    __m128i result          = _mm_unpacklo_epi32(ba8, b4a48);
237 #else
238    __m128i mask            = _mm_setr_epi32(~0,0,~0,0);
239    __m128i ba_mask         = _mm_and_si128(ba, mask);
240    __m128i b4a4_mask_shift = _mm_slli_epi64(b4a4, 32);
241    __m128i result          = _mm_or_si128(ba_mask, b4a4_mask_shift);
242 #endif
243 
244    return result;
245 }
246 
247 
248 static inline void
transpose4_epi32(const __m128i * restrict a,const __m128i * restrict b,const __m128i * restrict c,const __m128i * restrict d,__m128i * restrict o,__m128i * restrict p,__m128i * restrict q,__m128i * restrict r)249 transpose4_epi32(const __m128i * restrict a,
250                  const __m128i * restrict b,
251                  const __m128i * restrict c,
252                  const __m128i * restrict d,
253                  __m128i * restrict o,
254                  __m128i * restrict p,
255                  __m128i * restrict q,
256                  __m128i * restrict r)
257 {
258    __m128i t0 = _mm_unpacklo_epi32(*a, *b);
259    __m128i t1 = _mm_unpacklo_epi32(*c, *d);
260    __m128i t2 = _mm_unpackhi_epi32(*a, *b);
261    __m128i t3 = _mm_unpackhi_epi32(*c, *d);
262 
263    *o = _mm_unpacklo_epi64(t0, t1);
264    *p = _mm_unpackhi_epi64(t0, t1);
265    *q = _mm_unpacklo_epi64(t2, t3);
266    *r = _mm_unpackhi_epi64(t2, t3);
267 }
268 
269 
270 /*
271  * Same as above, except the first two values are already interleaved
272  * (i.e. contain 64bit values).
273  */
274 static inline void
transpose2_64_2_32(const __m128i * restrict a01,const __m128i * restrict a23,const __m128i * restrict c,const __m128i * restrict d,__m128i * restrict o,__m128i * restrict p,__m128i * restrict q,__m128i * restrict r)275 transpose2_64_2_32(const __m128i * restrict a01,
276                    const __m128i * restrict a23,
277                    const __m128i * restrict c,
278                    const __m128i * restrict d,
279                    __m128i * restrict o,
280                    __m128i * restrict p,
281                    __m128i * restrict q,
282                    __m128i * restrict r)
283 {
284    __m128i t0 = *a01;
285    __m128i t1 = _mm_unpacklo_epi32(*c, *d);
286    __m128i t2 = *a23;
287    __m128i t3 = _mm_unpackhi_epi32(*c, *d);
288 
289    *o = _mm_unpacklo_epi64(t0, t1);
290    *p = _mm_unpackhi_epi64(t0, t1);
291    *q = _mm_unpacklo_epi64(t2, t3);
292    *r = _mm_unpackhi_epi64(t2, t3);
293 }
294 
295 
296 #define SCALAR_EPI32(m, i) _mm_shuffle_epi32((m), _MM_SHUFFLE(i,i,i,i))
297 
298 
299 #endif /* PIPE_ARCH_SSE */
300 
301 #endif /* U_SSE_H_ */
302