1 // Copyright 2015, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 
28 #include <cmath>
29 
30 #include "assembler-aarch64.h"
31 #include "macro-assembler-aarch64.h"
32 
33 namespace vixl {
34 namespace aarch64 {
35 
RawLiteral(size_t size,LiteralPool * literal_pool,DeletionPolicy deletion_policy)36 RawLiteral::RawLiteral(size_t size,
37                        LiteralPool* literal_pool,
38                        DeletionPolicy deletion_policy)
39     : size_(size),
40       offset_(0),
41       low64_(0),
42       high64_(0),
43       literal_pool_(literal_pool),
44       deletion_policy_(deletion_policy) {
45   VIXL_ASSERT((deletion_policy == kManuallyDeleted) || (literal_pool_ != NULL));
46   if (deletion_policy == kDeletedOnPoolDestruction) {
47     literal_pool_->DeleteOnDestruction(this);
48   }
49 }
50 
51 
Reset()52 void Assembler::Reset() { GetBuffer()->Reset(); }
53 
54 
bind(Label * label)55 void Assembler::bind(Label* label) {
56   BindToOffset(label, GetBuffer()->GetCursorOffset());
57 }
58 
59 
BindToOffset(Label * label,ptrdiff_t offset)60 void Assembler::BindToOffset(Label* label, ptrdiff_t offset) {
61   VIXL_ASSERT((offset >= 0) && (offset <= GetBuffer()->GetCursorOffset()));
62   VIXL_ASSERT(offset % kInstructionSize == 0);
63 
64   label->Bind(offset);
65 
66   for (Label::LabelLinksIterator it(label); !it.Done(); it.Advance()) {
67     Instruction* link =
68         GetBuffer()->GetOffsetAddress<Instruction*>(*it.Current());
69     link->SetImmPCOffsetTarget(GetLabelAddress<Instruction*>(label));
70   }
71   label->ClearAllLinks();
72 }
73 
74 
75 // A common implementation for the LinkAndGet<Type>OffsetTo helpers.
76 //
77 // The offset is calculated by aligning the PC and label addresses down to a
78 // multiple of 1 << element_shift, then calculating the (scaled) offset between
79 // them. This matches the semantics of adrp, for example.
80 template <int element_shift>
LinkAndGetOffsetTo(Label * label)81 ptrdiff_t Assembler::LinkAndGetOffsetTo(Label* label) {
82   VIXL_STATIC_ASSERT(element_shift < (sizeof(ptrdiff_t) * 8));
83 
84   if (label->IsBound()) {
85     uintptr_t pc_offset = GetCursorAddress<uintptr_t>() >> element_shift;
86     uintptr_t label_offset = GetLabelAddress<uintptr_t>(label) >> element_shift;
87     return label_offset - pc_offset;
88   } else {
89     label->AddLink(GetBuffer()->GetCursorOffset());
90     return 0;
91   }
92 }
93 
94 
LinkAndGetByteOffsetTo(Label * label)95 ptrdiff_t Assembler::LinkAndGetByteOffsetTo(Label* label) {
96   return LinkAndGetOffsetTo<0>(label);
97 }
98 
99 
LinkAndGetInstructionOffsetTo(Label * label)100 ptrdiff_t Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
101   return LinkAndGetOffsetTo<kInstructionSizeLog2>(label);
102 }
103 
104 
LinkAndGetPageOffsetTo(Label * label)105 ptrdiff_t Assembler::LinkAndGetPageOffsetTo(Label* label) {
106   return LinkAndGetOffsetTo<kPageSizeLog2>(label);
107 }
108 
109 
place(RawLiteral * literal)110 void Assembler::place(RawLiteral* literal) {
111   VIXL_ASSERT(!literal->IsPlaced());
112 
113   // Patch instructions using this literal.
114   if (literal->IsUsed()) {
115     Instruction* target = GetCursorAddress<Instruction*>();
116     ptrdiff_t offset = literal->GetLastUse();
117     bool done;
118     do {
119       Instruction* ldr = GetBuffer()->GetOffsetAddress<Instruction*>(offset);
120       VIXL_ASSERT(ldr->IsLoadLiteral());
121 
122       ptrdiff_t imm19 = ldr->GetImmLLiteral();
123       VIXL_ASSERT(imm19 <= 0);
124       done = (imm19 == 0);
125       offset += imm19 * kLiteralEntrySize;
126 
127       ldr->SetImmLLiteral(target);
128     } while (!done);
129   }
130 
131   // "bind" the literal.
132   literal->SetOffset(GetCursorOffset());
133   // Copy the data into the pool.
134   switch (literal->GetSize()) {
135     case kSRegSizeInBytes:
136       dc32(literal->GetRawValue32());
137       break;
138     case kDRegSizeInBytes:
139       dc64(literal->GetRawValue64());
140       break;
141     default:
142       VIXL_ASSERT(literal->GetSize() == kQRegSizeInBytes);
143       dc64(literal->GetRawValue128Low64());
144       dc64(literal->GetRawValue128High64());
145   }
146 
147   literal->literal_pool_ = NULL;
148 }
149 
150 
LinkAndGetWordOffsetTo(RawLiteral * literal)151 ptrdiff_t Assembler::LinkAndGetWordOffsetTo(RawLiteral* literal) {
152   VIXL_ASSERT(IsWordAligned(GetCursorOffset()));
153 
154   bool register_first_use =
155       (literal->GetLiteralPool() != NULL) && !literal->IsUsed();
156 
157   if (literal->IsPlaced()) {
158     // The literal is "behind", the offset will be negative.
159     VIXL_ASSERT((literal->GetOffset() - GetCursorOffset()) <= 0);
160     return (literal->GetOffset() - GetCursorOffset()) >> kLiteralEntrySizeLog2;
161   }
162 
163   ptrdiff_t offset = 0;
164   // Link all uses together.
165   if (literal->IsUsed()) {
166     offset =
167         (literal->GetLastUse() - GetCursorOffset()) >> kLiteralEntrySizeLog2;
168   }
169   literal->SetLastUse(GetCursorOffset());
170 
171   if (register_first_use) {
172     literal->GetLiteralPool()->AddEntry(literal);
173   }
174 
175   return offset;
176 }
177 
178 
179 // Code generation.
br(const Register & xn)180 void Assembler::br(const Register& xn) {
181   VIXL_ASSERT(xn.Is64Bits());
182   Emit(BR | Rn(xn));
183 }
184 
185 
blr(const Register & xn)186 void Assembler::blr(const Register& xn) {
187   VIXL_ASSERT(xn.Is64Bits());
188   Emit(BLR | Rn(xn));
189 }
190 
191 
ret(const Register & xn)192 void Assembler::ret(const Register& xn) {
193   VIXL_ASSERT(xn.Is64Bits());
194   Emit(RET | Rn(xn));
195 }
196 
197 
braaz(const Register & xn)198 void Assembler::braaz(const Register& xn) {
199   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
200   VIXL_ASSERT(xn.Is64Bits());
201   Emit(BRAAZ | Rn(xn) | Rd_mask);
202 }
203 
brabz(const Register & xn)204 void Assembler::brabz(const Register& xn) {
205   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
206   VIXL_ASSERT(xn.Is64Bits());
207   Emit(BRABZ | Rn(xn) | Rd_mask);
208 }
209 
blraaz(const Register & xn)210 void Assembler::blraaz(const Register& xn) {
211   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
212   VIXL_ASSERT(xn.Is64Bits());
213   Emit(BLRAAZ | Rn(xn) | Rd_mask);
214 }
215 
blrabz(const Register & xn)216 void Assembler::blrabz(const Register& xn) {
217   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
218   VIXL_ASSERT(xn.Is64Bits());
219   Emit(BLRABZ | Rn(xn) | Rd_mask);
220 }
221 
retaa()222 void Assembler::retaa() {
223   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
224   Emit(RETAA | Rn_mask | Rd_mask);
225 }
226 
retab()227 void Assembler::retab() {
228   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
229   Emit(RETAB | Rn_mask | Rd_mask);
230 }
231 
232 // The Arm ARM names the register Xm but encodes it in the Xd bitfield.
braa(const Register & xn,const Register & xm)233 void Assembler::braa(const Register& xn, const Register& xm) {
234   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
235   VIXL_ASSERT(xn.Is64Bits() && xm.Is64Bits());
236   Emit(BRAA | Rn(xn) | RdSP(xm));
237 }
238 
brab(const Register & xn,const Register & xm)239 void Assembler::brab(const Register& xn, const Register& xm) {
240   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
241   VIXL_ASSERT(xn.Is64Bits() && xm.Is64Bits());
242   Emit(BRAB | Rn(xn) | RdSP(xm));
243 }
244 
blraa(const Register & xn,const Register & xm)245 void Assembler::blraa(const Register& xn, const Register& xm) {
246   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
247   VIXL_ASSERT(xn.Is64Bits() && xm.Is64Bits());
248   Emit(BLRAA | Rn(xn) | RdSP(xm));
249 }
250 
blrab(const Register & xn,const Register & xm)251 void Assembler::blrab(const Register& xn, const Register& xm) {
252   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
253   VIXL_ASSERT(xn.Is64Bits() && xm.Is64Bits());
254   Emit(BLRAB | Rn(xn) | RdSP(xm));
255 }
256 
257 
b(int64_t imm26)258 void Assembler::b(int64_t imm26) { Emit(B | ImmUncondBranch(imm26)); }
259 
260 
b(int64_t imm19,Condition cond)261 void Assembler::b(int64_t imm19, Condition cond) {
262   Emit(B_cond | ImmCondBranch(imm19) | cond);
263 }
264 
265 
b(Label * label)266 void Assembler::b(Label* label) {
267   int64_t offset = LinkAndGetInstructionOffsetTo(label);
268   VIXL_ASSERT(Instruction::IsValidImmPCOffset(UncondBranchType, offset));
269   b(static_cast<int>(offset));
270 }
271 
272 
b(Label * label,Condition cond)273 void Assembler::b(Label* label, Condition cond) {
274   int64_t offset = LinkAndGetInstructionOffsetTo(label);
275   VIXL_ASSERT(Instruction::IsValidImmPCOffset(CondBranchType, offset));
276   b(static_cast<int>(offset), cond);
277 }
278 
279 
bl(int64_t imm26)280 void Assembler::bl(int64_t imm26) { Emit(BL | ImmUncondBranch(imm26)); }
281 
282 
bl(Label * label)283 void Assembler::bl(Label* label) {
284   int64_t offset = LinkAndGetInstructionOffsetTo(label);
285   VIXL_ASSERT(Instruction::IsValidImmPCOffset(UncondBranchType, offset));
286   bl(static_cast<int>(offset));
287 }
288 
289 
cbz(const Register & rt,int64_t imm19)290 void Assembler::cbz(const Register& rt, int64_t imm19) {
291   Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
292 }
293 
294 
cbz(const Register & rt,Label * label)295 void Assembler::cbz(const Register& rt, Label* label) {
296   int64_t offset = LinkAndGetInstructionOffsetTo(label);
297   VIXL_ASSERT(Instruction::IsValidImmPCOffset(CompareBranchType, offset));
298   cbz(rt, static_cast<int>(offset));
299 }
300 
301 
cbnz(const Register & rt,int64_t imm19)302 void Assembler::cbnz(const Register& rt, int64_t imm19) {
303   Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
304 }
305 
306 
cbnz(const Register & rt,Label * label)307 void Assembler::cbnz(const Register& rt, Label* label) {
308   int64_t offset = LinkAndGetInstructionOffsetTo(label);
309   VIXL_ASSERT(Instruction::IsValidImmPCOffset(CompareBranchType, offset));
310   cbnz(rt, static_cast<int>(offset));
311 }
312 
313 
NEONTable(const VRegister & vd,const VRegister & vn,const VRegister & vm,NEONTableOp op)314 void Assembler::NEONTable(const VRegister& vd,
315                           const VRegister& vn,
316                           const VRegister& vm,
317                           NEONTableOp op) {
318   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
319   VIXL_ASSERT(vd.Is16B() || vd.Is8B());
320   VIXL_ASSERT(vn.Is16B());
321   VIXL_ASSERT(AreSameFormat(vd, vm));
322   Emit(op | (vd.IsQ() ? NEON_Q : 0) | Rm(vm) | Rn(vn) | Rd(vd));
323 }
324 
325 
tbl(const VRegister & vd,const VRegister & vn,const VRegister & vm)326 void Assembler::tbl(const VRegister& vd,
327                     const VRegister& vn,
328                     const VRegister& vm) {
329   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
330   NEONTable(vd, vn, vm, NEON_TBL_1v);
331 }
332 
333 
tbl(const VRegister & vd,const VRegister & vn,const VRegister & vn2,const VRegister & vm)334 void Assembler::tbl(const VRegister& vd,
335                     const VRegister& vn,
336                     const VRegister& vn2,
337                     const VRegister& vm) {
338   USE(vn2);
339   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
340   VIXL_ASSERT(AreSameFormat(vn, vn2));
341   VIXL_ASSERT(AreConsecutive(vn, vn2));
342   NEONTable(vd, vn, vm, NEON_TBL_2v);
343 }
344 
345 
tbl(const VRegister & vd,const VRegister & vn,const VRegister & vn2,const VRegister & vn3,const VRegister & vm)346 void Assembler::tbl(const VRegister& vd,
347                     const VRegister& vn,
348                     const VRegister& vn2,
349                     const VRegister& vn3,
350                     const VRegister& vm) {
351   USE(vn2, vn3);
352   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
353   VIXL_ASSERT(AreSameFormat(vn, vn2, vn3));
354   VIXL_ASSERT(AreConsecutive(vn, vn2, vn3));
355   NEONTable(vd, vn, vm, NEON_TBL_3v);
356 }
357 
358 
tbl(const VRegister & vd,const VRegister & vn,const VRegister & vn2,const VRegister & vn3,const VRegister & vn4,const VRegister & vm)359 void Assembler::tbl(const VRegister& vd,
360                     const VRegister& vn,
361                     const VRegister& vn2,
362                     const VRegister& vn3,
363                     const VRegister& vn4,
364                     const VRegister& vm) {
365   USE(vn2, vn3, vn4);
366   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
367   VIXL_ASSERT(AreSameFormat(vn, vn2, vn3, vn4));
368   VIXL_ASSERT(AreConsecutive(vn, vn2, vn3, vn4));
369   NEONTable(vd, vn, vm, NEON_TBL_4v);
370 }
371 
372 
tbx(const VRegister & vd,const VRegister & vn,const VRegister & vm)373 void Assembler::tbx(const VRegister& vd,
374                     const VRegister& vn,
375                     const VRegister& vm) {
376   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
377   NEONTable(vd, vn, vm, NEON_TBX_1v);
378 }
379 
380 
tbx(const VRegister & vd,const VRegister & vn,const VRegister & vn2,const VRegister & vm)381 void Assembler::tbx(const VRegister& vd,
382                     const VRegister& vn,
383                     const VRegister& vn2,
384                     const VRegister& vm) {
385   USE(vn2);
386   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
387   VIXL_ASSERT(AreSameFormat(vn, vn2));
388   VIXL_ASSERT(AreConsecutive(vn, vn2));
389   NEONTable(vd, vn, vm, NEON_TBX_2v);
390 }
391 
392 
tbx(const VRegister & vd,const VRegister & vn,const VRegister & vn2,const VRegister & vn3,const VRegister & vm)393 void Assembler::tbx(const VRegister& vd,
394                     const VRegister& vn,
395                     const VRegister& vn2,
396                     const VRegister& vn3,
397                     const VRegister& vm) {
398   USE(vn2, vn3);
399   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
400   VIXL_ASSERT(AreSameFormat(vn, vn2, vn3));
401   VIXL_ASSERT(AreConsecutive(vn, vn2, vn3));
402   NEONTable(vd, vn, vm, NEON_TBX_3v);
403 }
404 
405 
tbx(const VRegister & vd,const VRegister & vn,const VRegister & vn2,const VRegister & vn3,const VRegister & vn4,const VRegister & vm)406 void Assembler::tbx(const VRegister& vd,
407                     const VRegister& vn,
408                     const VRegister& vn2,
409                     const VRegister& vn3,
410                     const VRegister& vn4,
411                     const VRegister& vm) {
412   USE(vn2, vn3, vn4);
413   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
414   VIXL_ASSERT(AreSameFormat(vn, vn2, vn3, vn4));
415   VIXL_ASSERT(AreConsecutive(vn, vn2, vn3, vn4));
416   NEONTable(vd, vn, vm, NEON_TBX_4v);
417 }
418 
419 
tbz(const Register & rt,unsigned bit_pos,int64_t imm14)420 void Assembler::tbz(const Register& rt, unsigned bit_pos, int64_t imm14) {
421   VIXL_ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize)));
422   Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
423 }
424 
425 
tbz(const Register & rt,unsigned bit_pos,Label * label)426 void Assembler::tbz(const Register& rt, unsigned bit_pos, Label* label) {
427   ptrdiff_t offset = LinkAndGetInstructionOffsetTo(label);
428   VIXL_ASSERT(Instruction::IsValidImmPCOffset(TestBranchType, offset));
429   tbz(rt, bit_pos, static_cast<int>(offset));
430 }
431 
432 
tbnz(const Register & rt,unsigned bit_pos,int64_t imm14)433 void Assembler::tbnz(const Register& rt, unsigned bit_pos, int64_t imm14) {
434   VIXL_ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize)));
435   Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
436 }
437 
438 
tbnz(const Register & rt,unsigned bit_pos,Label * label)439 void Assembler::tbnz(const Register& rt, unsigned bit_pos, Label* label) {
440   ptrdiff_t offset = LinkAndGetInstructionOffsetTo(label);
441   VIXL_ASSERT(Instruction::IsValidImmPCOffset(TestBranchType, offset));
442   tbnz(rt, bit_pos, static_cast<int>(offset));
443 }
444 
445 
adr(const Register & xd,int64_t imm21)446 void Assembler::adr(const Register& xd, int64_t imm21) {
447   VIXL_ASSERT(xd.Is64Bits());
448   Emit(ADR | ImmPCRelAddress(imm21) | Rd(xd));
449 }
450 
451 
adr(const Register & xd,Label * label)452 void Assembler::adr(const Register& xd, Label* label) {
453   adr(xd, static_cast<int>(LinkAndGetByteOffsetTo(label)));
454 }
455 
456 
adrp(const Register & xd,int64_t imm21)457 void Assembler::adrp(const Register& xd, int64_t imm21) {
458   VIXL_ASSERT(xd.Is64Bits());
459   Emit(ADRP | ImmPCRelAddress(imm21) | Rd(xd));
460 }
461 
462 
adrp(const Register & xd,Label * label)463 void Assembler::adrp(const Register& xd, Label* label) {
464   VIXL_ASSERT(AllowPageOffsetDependentCode());
465   adrp(xd, static_cast<int>(LinkAndGetPageOffsetTo(label)));
466 }
467 
468 
add(const Register & rd,const Register & rn,const Operand & operand)469 void Assembler::add(const Register& rd,
470                     const Register& rn,
471                     const Operand& operand) {
472   AddSub(rd, rn, operand, LeaveFlags, ADD);
473 }
474 
475 
adds(const Register & rd,const Register & rn,const Operand & operand)476 void Assembler::adds(const Register& rd,
477                      const Register& rn,
478                      const Operand& operand) {
479   AddSub(rd, rn, operand, SetFlags, ADD);
480 }
481 
482 
cmn(const Register & rn,const Operand & operand)483 void Assembler::cmn(const Register& rn, const Operand& operand) {
484   Register zr = AppropriateZeroRegFor(rn);
485   adds(zr, rn, operand);
486 }
487 
488 
sub(const Register & rd,const Register & rn,const Operand & operand)489 void Assembler::sub(const Register& rd,
490                     const Register& rn,
491                     const Operand& operand) {
492   AddSub(rd, rn, operand, LeaveFlags, SUB);
493 }
494 
495 
subs(const Register & rd,const Register & rn,const Operand & operand)496 void Assembler::subs(const Register& rd,
497                      const Register& rn,
498                      const Operand& operand) {
499   AddSub(rd, rn, operand, SetFlags, SUB);
500 }
501 
502 
cmp(const Register & rn,const Operand & operand)503 void Assembler::cmp(const Register& rn, const Operand& operand) {
504   Register zr = AppropriateZeroRegFor(rn);
505   subs(zr, rn, operand);
506 }
507 
508 
neg(const Register & rd,const Operand & operand)509 void Assembler::neg(const Register& rd, const Operand& operand) {
510   Register zr = AppropriateZeroRegFor(rd);
511   sub(rd, zr, operand);
512 }
513 
514 
negs(const Register & rd,const Operand & operand)515 void Assembler::negs(const Register& rd, const Operand& operand) {
516   Register zr = AppropriateZeroRegFor(rd);
517   subs(rd, zr, operand);
518 }
519 
520 
adc(const Register & rd,const Register & rn,const Operand & operand)521 void Assembler::adc(const Register& rd,
522                     const Register& rn,
523                     const Operand& operand) {
524   AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
525 }
526 
527 
adcs(const Register & rd,const Register & rn,const Operand & operand)528 void Assembler::adcs(const Register& rd,
529                      const Register& rn,
530                      const Operand& operand) {
531   AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
532 }
533 
534 
sbc(const Register & rd,const Register & rn,const Operand & operand)535 void Assembler::sbc(const Register& rd,
536                     const Register& rn,
537                     const Operand& operand) {
538   AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
539 }
540 
541 
sbcs(const Register & rd,const Register & rn,const Operand & operand)542 void Assembler::sbcs(const Register& rd,
543                      const Register& rn,
544                      const Operand& operand) {
545   AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
546 }
547 
548 
rmif(const Register & xn,unsigned rotation,StatusFlags flags)549 void Assembler::rmif(const Register& xn, unsigned rotation, StatusFlags flags) {
550   VIXL_ASSERT(CPUHas(CPUFeatures::kFlagM));
551   VIXL_ASSERT(xn.Is64Bits());
552   Emit(RMIF | Rn(xn) | ImmRMIFRotation(rotation) | Nzcv(flags));
553 }
554 
555 
setf8(const Register & rn)556 void Assembler::setf8(const Register& rn) {
557   VIXL_ASSERT(CPUHas(CPUFeatures::kFlagM));
558   Emit(SETF8 | Rn(rn));
559 }
560 
561 
setf16(const Register & rn)562 void Assembler::setf16(const Register& rn) {
563   VIXL_ASSERT(CPUHas(CPUFeatures::kFlagM));
564   Emit(SETF16 | Rn(rn));
565 }
566 
567 
ngc(const Register & rd,const Operand & operand)568 void Assembler::ngc(const Register& rd, const Operand& operand) {
569   Register zr = AppropriateZeroRegFor(rd);
570   sbc(rd, zr, operand);
571 }
572 
573 
ngcs(const Register & rd,const Operand & operand)574 void Assembler::ngcs(const Register& rd, const Operand& operand) {
575   Register zr = AppropriateZeroRegFor(rd);
576   sbcs(rd, zr, operand);
577 }
578 
579 
580 // Logical instructions.
and_(const Register & rd,const Register & rn,const Operand & operand)581 void Assembler::and_(const Register& rd,
582                      const Register& rn,
583                      const Operand& operand) {
584   Logical(rd, rn, operand, AND);
585 }
586 
587 
ands(const Register & rd,const Register & rn,const Operand & operand)588 void Assembler::ands(const Register& rd,
589                      const Register& rn,
590                      const Operand& operand) {
591   Logical(rd, rn, operand, ANDS);
592 }
593 
594 
tst(const Register & rn,const Operand & operand)595 void Assembler::tst(const Register& rn, const Operand& operand) {
596   ands(AppropriateZeroRegFor(rn), rn, operand);
597 }
598 
599 
bic(const Register & rd,const Register & rn,const Operand & operand)600 void Assembler::bic(const Register& rd,
601                     const Register& rn,
602                     const Operand& operand) {
603   Logical(rd, rn, operand, BIC);
604 }
605 
606 
bics(const Register & rd,const Register & rn,const Operand & operand)607 void Assembler::bics(const Register& rd,
608                      const Register& rn,
609                      const Operand& operand) {
610   Logical(rd, rn, operand, BICS);
611 }
612 
613 
orr(const Register & rd,const Register & rn,const Operand & operand)614 void Assembler::orr(const Register& rd,
615                     const Register& rn,
616                     const Operand& operand) {
617   Logical(rd, rn, operand, ORR);
618 }
619 
620 
orn(const Register & rd,const Register & rn,const Operand & operand)621 void Assembler::orn(const Register& rd,
622                     const Register& rn,
623                     const Operand& operand) {
624   Logical(rd, rn, operand, ORN);
625 }
626 
627 
eor(const Register & rd,const Register & rn,const Operand & operand)628 void Assembler::eor(const Register& rd,
629                     const Register& rn,
630                     const Operand& operand) {
631   Logical(rd, rn, operand, EOR);
632 }
633 
634 
eon(const Register & rd,const Register & rn,const Operand & operand)635 void Assembler::eon(const Register& rd,
636                     const Register& rn,
637                     const Operand& operand) {
638   Logical(rd, rn, operand, EON);
639 }
640 
641 
lslv(const Register & rd,const Register & rn,const Register & rm)642 void Assembler::lslv(const Register& rd,
643                      const Register& rn,
644                      const Register& rm) {
645   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
646   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
647   Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
648 }
649 
650 
lsrv(const Register & rd,const Register & rn,const Register & rm)651 void Assembler::lsrv(const Register& rd,
652                      const Register& rn,
653                      const Register& rm) {
654   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
655   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
656   Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
657 }
658 
659 
asrv(const Register & rd,const Register & rn,const Register & rm)660 void Assembler::asrv(const Register& rd,
661                      const Register& rn,
662                      const Register& rm) {
663   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
664   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
665   Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
666 }
667 
668 
rorv(const Register & rd,const Register & rn,const Register & rm)669 void Assembler::rorv(const Register& rd,
670                      const Register& rn,
671                      const Register& rm) {
672   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
673   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
674   Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
675 }
676 
677 
678 // Bitfield operations.
bfm(const Register & rd,const Register & rn,unsigned immr,unsigned imms)679 void Assembler::bfm(const Register& rd,
680                     const Register& rn,
681                     unsigned immr,
682                     unsigned imms) {
683   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
684   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
685   Emit(SF(rd) | BFM | N | ImmR(immr, rd.GetSizeInBits()) |
686        ImmS(imms, rn.GetSizeInBits()) | Rn(rn) | Rd(rd));
687 }
688 
689 
sbfm(const Register & rd,const Register & rn,unsigned immr,unsigned imms)690 void Assembler::sbfm(const Register& rd,
691                      const Register& rn,
692                      unsigned immr,
693                      unsigned imms) {
694   VIXL_ASSERT(rd.Is64Bits() || rn.Is32Bits());
695   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
696   Emit(SF(rd) | SBFM | N | ImmR(immr, rd.GetSizeInBits()) |
697        ImmS(imms, rn.GetSizeInBits()) | Rn(rn) | Rd(rd));
698 }
699 
700 
ubfm(const Register & rd,const Register & rn,unsigned immr,unsigned imms)701 void Assembler::ubfm(const Register& rd,
702                      const Register& rn,
703                      unsigned immr,
704                      unsigned imms) {
705   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
706   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
707   Emit(SF(rd) | UBFM | N | ImmR(immr, rd.GetSizeInBits()) |
708        ImmS(imms, rn.GetSizeInBits()) | Rn(rn) | Rd(rd));
709 }
710 
711 
extr(const Register & rd,const Register & rn,const Register & rm,unsigned lsb)712 void Assembler::extr(const Register& rd,
713                      const Register& rn,
714                      const Register& rm,
715                      unsigned lsb) {
716   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
717   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
718   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
719   Emit(SF(rd) | EXTR | N | Rm(rm) | ImmS(lsb, rn.GetSizeInBits()) | Rn(rn) |
720        Rd(rd));
721 }
722 
723 
csel(const Register & rd,const Register & rn,const Register & rm,Condition cond)724 void Assembler::csel(const Register& rd,
725                      const Register& rn,
726                      const Register& rm,
727                      Condition cond) {
728   ConditionalSelect(rd, rn, rm, cond, CSEL);
729 }
730 
731 
csinc(const Register & rd,const Register & rn,const Register & rm,Condition cond)732 void Assembler::csinc(const Register& rd,
733                       const Register& rn,
734                       const Register& rm,
735                       Condition cond) {
736   ConditionalSelect(rd, rn, rm, cond, CSINC);
737 }
738 
739 
csinv(const Register & rd,const Register & rn,const Register & rm,Condition cond)740 void Assembler::csinv(const Register& rd,
741                       const Register& rn,
742                       const Register& rm,
743                       Condition cond) {
744   ConditionalSelect(rd, rn, rm, cond, CSINV);
745 }
746 
747 
csneg(const Register & rd,const Register & rn,const Register & rm,Condition cond)748 void Assembler::csneg(const Register& rd,
749                       const Register& rn,
750                       const Register& rm,
751                       Condition cond) {
752   ConditionalSelect(rd, rn, rm, cond, CSNEG);
753 }
754 
755 
cset(const Register & rd,Condition cond)756 void Assembler::cset(const Register& rd, Condition cond) {
757   VIXL_ASSERT((cond != al) && (cond != nv));
758   Register zr = AppropriateZeroRegFor(rd);
759   csinc(rd, zr, zr, InvertCondition(cond));
760 }
761 
762 
csetm(const Register & rd,Condition cond)763 void Assembler::csetm(const Register& rd, Condition cond) {
764   VIXL_ASSERT((cond != al) && (cond != nv));
765   Register zr = AppropriateZeroRegFor(rd);
766   csinv(rd, zr, zr, InvertCondition(cond));
767 }
768 
769 
cinc(const Register & rd,const Register & rn,Condition cond)770 void Assembler::cinc(const Register& rd, const Register& rn, Condition cond) {
771   VIXL_ASSERT((cond != al) && (cond != nv));
772   csinc(rd, rn, rn, InvertCondition(cond));
773 }
774 
775 
cinv(const Register & rd,const Register & rn,Condition cond)776 void Assembler::cinv(const Register& rd, const Register& rn, Condition cond) {
777   VIXL_ASSERT((cond != al) && (cond != nv));
778   csinv(rd, rn, rn, InvertCondition(cond));
779 }
780 
781 
cneg(const Register & rd,const Register & rn,Condition cond)782 void Assembler::cneg(const Register& rd, const Register& rn, Condition cond) {
783   VIXL_ASSERT((cond != al) && (cond != nv));
784   csneg(rd, rn, rn, InvertCondition(cond));
785 }
786 
787 
ConditionalSelect(const Register & rd,const Register & rn,const Register & rm,Condition cond,ConditionalSelectOp op)788 void Assembler::ConditionalSelect(const Register& rd,
789                                   const Register& rn,
790                                   const Register& rm,
791                                   Condition cond,
792                                   ConditionalSelectOp op) {
793   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
794   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
795   Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
796 }
797 
798 
ccmn(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)799 void Assembler::ccmn(const Register& rn,
800                      const Operand& operand,
801                      StatusFlags nzcv,
802                      Condition cond) {
803   ConditionalCompare(rn, operand, nzcv, cond, CCMN);
804 }
805 
806 
ccmp(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)807 void Assembler::ccmp(const Register& rn,
808                      const Operand& operand,
809                      StatusFlags nzcv,
810                      Condition cond) {
811   ConditionalCompare(rn, operand, nzcv, cond, CCMP);
812 }
813 
814 
DataProcessing3Source(const Register & rd,const Register & rn,const Register & rm,const Register & ra,DataProcessing3SourceOp op)815 void Assembler::DataProcessing3Source(const Register& rd,
816                                       const Register& rn,
817                                       const Register& rm,
818                                       const Register& ra,
819                                       DataProcessing3SourceOp op) {
820   Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
821 }
822 
823 
crc32b(const Register & wd,const Register & wn,const Register & wm)824 void Assembler::crc32b(const Register& wd,
825                        const Register& wn,
826                        const Register& wm) {
827   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
828   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && wm.Is32Bits());
829   Emit(SF(wm) | Rm(wm) | CRC32B | Rn(wn) | Rd(wd));
830 }
831 
832 
crc32h(const Register & wd,const Register & wn,const Register & wm)833 void Assembler::crc32h(const Register& wd,
834                        const Register& wn,
835                        const Register& wm) {
836   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
837   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && wm.Is32Bits());
838   Emit(SF(wm) | Rm(wm) | CRC32H | Rn(wn) | Rd(wd));
839 }
840 
841 
crc32w(const Register & wd,const Register & wn,const Register & wm)842 void Assembler::crc32w(const Register& wd,
843                        const Register& wn,
844                        const Register& wm) {
845   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
846   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && wm.Is32Bits());
847   Emit(SF(wm) | Rm(wm) | CRC32W | Rn(wn) | Rd(wd));
848 }
849 
850 
crc32x(const Register & wd,const Register & wn,const Register & xm)851 void Assembler::crc32x(const Register& wd,
852                        const Register& wn,
853                        const Register& xm) {
854   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
855   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && xm.Is64Bits());
856   Emit(SF(xm) | Rm(xm) | CRC32X | Rn(wn) | Rd(wd));
857 }
858 
859 
crc32cb(const Register & wd,const Register & wn,const Register & wm)860 void Assembler::crc32cb(const Register& wd,
861                         const Register& wn,
862                         const Register& wm) {
863   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
864   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && wm.Is32Bits());
865   Emit(SF(wm) | Rm(wm) | CRC32CB | Rn(wn) | Rd(wd));
866 }
867 
868 
crc32ch(const Register & wd,const Register & wn,const Register & wm)869 void Assembler::crc32ch(const Register& wd,
870                         const Register& wn,
871                         const Register& wm) {
872   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
873   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && wm.Is32Bits());
874   Emit(SF(wm) | Rm(wm) | CRC32CH | Rn(wn) | Rd(wd));
875 }
876 
877 
crc32cw(const Register & wd,const Register & wn,const Register & wm)878 void Assembler::crc32cw(const Register& wd,
879                         const Register& wn,
880                         const Register& wm) {
881   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
882   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && wm.Is32Bits());
883   Emit(SF(wm) | Rm(wm) | CRC32CW | Rn(wn) | Rd(wd));
884 }
885 
886 
crc32cx(const Register & wd,const Register & wn,const Register & xm)887 void Assembler::crc32cx(const Register& wd,
888                         const Register& wn,
889                         const Register& xm) {
890   VIXL_ASSERT(CPUHas(CPUFeatures::kCRC32));
891   VIXL_ASSERT(wd.Is32Bits() && wn.Is32Bits() && xm.Is64Bits());
892   Emit(SF(xm) | Rm(xm) | CRC32CX | Rn(wn) | Rd(wd));
893 }
894 
895 
mul(const Register & rd,const Register & rn,const Register & rm)896 void Assembler::mul(const Register& rd,
897                     const Register& rn,
898                     const Register& rm) {
899   VIXL_ASSERT(AreSameSizeAndType(rd, rn, rm));
900   DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MADD);
901 }
902 
903 
madd(const Register & rd,const Register & rn,const Register & rm,const Register & ra)904 void Assembler::madd(const Register& rd,
905                      const Register& rn,
906                      const Register& rm,
907                      const Register& ra) {
908   DataProcessing3Source(rd, rn, rm, ra, MADD);
909 }
910 
911 
mneg(const Register & rd,const Register & rn,const Register & rm)912 void Assembler::mneg(const Register& rd,
913                      const Register& rn,
914                      const Register& rm) {
915   VIXL_ASSERT(AreSameSizeAndType(rd, rn, rm));
916   DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MSUB);
917 }
918 
919 
msub(const Register & rd,const Register & rn,const Register & rm,const Register & ra)920 void Assembler::msub(const Register& rd,
921                      const Register& rn,
922                      const Register& rm,
923                      const Register& ra) {
924   DataProcessing3Source(rd, rn, rm, ra, MSUB);
925 }
926 
927 
umaddl(const Register & xd,const Register & wn,const Register & wm,const Register & xa)928 void Assembler::umaddl(const Register& xd,
929                        const Register& wn,
930                        const Register& wm,
931                        const Register& xa) {
932   VIXL_ASSERT(xd.Is64Bits() && xa.Is64Bits());
933   VIXL_ASSERT(wn.Is32Bits() && wm.Is32Bits());
934   DataProcessing3Source(xd, wn, wm, xa, UMADDL_x);
935 }
936 
937 
smaddl(const Register & xd,const Register & wn,const Register & wm,const Register & xa)938 void Assembler::smaddl(const Register& xd,
939                        const Register& wn,
940                        const Register& wm,
941                        const Register& xa) {
942   VIXL_ASSERT(xd.Is64Bits() && xa.Is64Bits());
943   VIXL_ASSERT(wn.Is32Bits() && wm.Is32Bits());
944   DataProcessing3Source(xd, wn, wm, xa, SMADDL_x);
945 }
946 
947 
umsubl(const Register & xd,const Register & wn,const Register & wm,const Register & xa)948 void Assembler::umsubl(const Register& xd,
949                        const Register& wn,
950                        const Register& wm,
951                        const Register& xa) {
952   VIXL_ASSERT(xd.Is64Bits() && xa.Is64Bits());
953   VIXL_ASSERT(wn.Is32Bits() && wm.Is32Bits());
954   DataProcessing3Source(xd, wn, wm, xa, UMSUBL_x);
955 }
956 
957 
smsubl(const Register & xd,const Register & wn,const Register & wm,const Register & xa)958 void Assembler::smsubl(const Register& xd,
959                        const Register& wn,
960                        const Register& wm,
961                        const Register& xa) {
962   VIXL_ASSERT(xd.Is64Bits() && xa.Is64Bits());
963   VIXL_ASSERT(wn.Is32Bits() && wm.Is32Bits());
964   DataProcessing3Source(xd, wn, wm, xa, SMSUBL_x);
965 }
966 
967 
smull(const Register & xd,const Register & wn,const Register & wm)968 void Assembler::smull(const Register& xd,
969                       const Register& wn,
970                       const Register& wm) {
971   VIXL_ASSERT(xd.Is64Bits());
972   VIXL_ASSERT(wn.Is32Bits() && wm.Is32Bits());
973   DataProcessing3Source(xd, wn, wm, xzr, SMADDL_x);
974 }
975 
976 
sdiv(const Register & rd,const Register & rn,const Register & rm)977 void Assembler::sdiv(const Register& rd,
978                      const Register& rn,
979                      const Register& rm) {
980   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
981   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
982   Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
983 }
984 
985 
smulh(const Register & xd,const Register & xn,const Register & xm)986 void Assembler::smulh(const Register& xd,
987                       const Register& xn,
988                       const Register& xm) {
989   VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits());
990   DataProcessing3Source(xd, xn, xm, xzr, SMULH_x);
991 }
992 
993 
umulh(const Register & xd,const Register & xn,const Register & xm)994 void Assembler::umulh(const Register& xd,
995                       const Register& xn,
996                       const Register& xm) {
997   VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits());
998   DataProcessing3Source(xd, xn, xm, xzr, UMULH_x);
999 }
1000 
1001 
udiv(const Register & rd,const Register & rn,const Register & rm)1002 void Assembler::udiv(const Register& rd,
1003                      const Register& rn,
1004                      const Register& rm) {
1005   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
1006   VIXL_ASSERT(rd.GetSizeInBits() == rm.GetSizeInBits());
1007   Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
1008 }
1009 
1010 
rbit(const Register & rd,const Register & rn)1011 void Assembler::rbit(const Register& rd, const Register& rn) {
1012   DataProcessing1Source(rd, rn, RBIT);
1013 }
1014 
1015 
rev16(const Register & rd,const Register & rn)1016 void Assembler::rev16(const Register& rd, const Register& rn) {
1017   DataProcessing1Source(rd, rn, REV16);
1018 }
1019 
1020 
rev32(const Register & xd,const Register & xn)1021 void Assembler::rev32(const Register& xd, const Register& xn) {
1022   VIXL_ASSERT(xd.Is64Bits());
1023   DataProcessing1Source(xd, xn, REV);
1024 }
1025 
1026 
rev(const Register & rd,const Register & rn)1027 void Assembler::rev(const Register& rd, const Register& rn) {
1028   DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
1029 }
1030 
1031 
clz(const Register & rd,const Register & rn)1032 void Assembler::clz(const Register& rd, const Register& rn) {
1033   DataProcessing1Source(rd, rn, CLZ);
1034 }
1035 
1036 
cls(const Register & rd,const Register & rn)1037 void Assembler::cls(const Register& rd, const Register& rn) {
1038   DataProcessing1Source(rd, rn, CLS);
1039 }
1040 
1041 #define PAUTH_VARIATIONS(V) \
1042   V(paci, PACI)             \
1043   V(pacd, PACD)             \
1044   V(auti, AUTI)             \
1045   V(autd, AUTD)
1046 
1047 #define VIXL_DEFINE_ASM_FUNC(PRE, OP)                              \
1048   void Assembler::PRE##a(const Register& xd, const Register& xn) { \
1049     VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));                      \
1050     VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits());                   \
1051     Emit(SF(xd) | OP##A | Rd(xd) | RnSP(xn));                      \
1052   }                                                                \
1053                                                                    \
1054   void Assembler::PRE##za(const Register& xd) {                    \
1055     VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));                      \
1056     VIXL_ASSERT(xd.Is64Bits());                                    \
1057     Emit(SF(xd) | OP##ZA | Rd(xd));                                \
1058   }                                                                \
1059                                                                    \
1060   void Assembler::PRE##b(const Register& xd, const Register& xn) { \
1061     VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));                      \
1062     VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits());                   \
1063     Emit(SF(xd) | OP##B | Rd(xd) | RnSP(xn));                      \
1064   }                                                                \
1065                                                                    \
1066   void Assembler::PRE##zb(const Register& xd) {                    \
1067     VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));                      \
1068     VIXL_ASSERT(xd.Is64Bits());                                    \
1069     Emit(SF(xd) | OP##ZB | Rd(xd));                                \
1070   }
1071 
PAUTH_VARIATIONS(VIXL_DEFINE_ASM_FUNC)1072 PAUTH_VARIATIONS(VIXL_DEFINE_ASM_FUNC)
1073 #undef VIXL_DEFINE_ASM_FUNC
1074 
1075 void Assembler::pacga(const Register& xd,
1076                       const Register& xn,
1077                       const Register& xm) {
1078   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth, CPUFeatures::kPAuthGeneric));
1079   VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits());
1080   Emit(SF(xd) | PACGA | Rd(xd) | Rn(xn) | RmSP(xm));
1081 }
1082 
xpaci(const Register & xd)1083 void Assembler::xpaci(const Register& xd) {
1084   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
1085   VIXL_ASSERT(xd.Is64Bits());
1086   Emit(SF(xd) | XPACI | Rd(xd));
1087 }
1088 
xpacd(const Register & xd)1089 void Assembler::xpacd(const Register& xd) {
1090   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
1091   VIXL_ASSERT(xd.Is64Bits());
1092   Emit(SF(xd) | XPACD | Rd(xd));
1093 }
1094 
1095 
ldp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & src)1096 void Assembler::ldp(const CPURegister& rt,
1097                     const CPURegister& rt2,
1098                     const MemOperand& src) {
1099   LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
1100 }
1101 
1102 
stp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & dst)1103 void Assembler::stp(const CPURegister& rt,
1104                     const CPURegister& rt2,
1105                     const MemOperand& dst) {
1106   LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
1107 }
1108 
1109 
ldpsw(const Register & xt,const Register & xt2,const MemOperand & src)1110 void Assembler::ldpsw(const Register& xt,
1111                       const Register& xt2,
1112                       const MemOperand& src) {
1113   VIXL_ASSERT(xt.Is64Bits() && xt2.Is64Bits());
1114   LoadStorePair(xt, xt2, src, LDPSW_x);
1115 }
1116 
1117 
LoadStorePair(const CPURegister & rt,const CPURegister & rt2,const MemOperand & addr,LoadStorePairOp op)1118 void Assembler::LoadStorePair(const CPURegister& rt,
1119                               const CPURegister& rt2,
1120                               const MemOperand& addr,
1121                               LoadStorePairOp op) {
1122   VIXL_ASSERT(CPUHas(rt, rt2));
1123 
1124   // 'rt' and 'rt2' can only be aliased for stores.
1125   VIXL_ASSERT(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
1126   VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
1127   VIXL_ASSERT(IsImmLSPair(addr.GetOffset(), CalcLSPairDataSize(op)));
1128 
1129   int offset = static_cast<int>(addr.GetOffset());
1130   Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.GetBaseRegister()) |
1131                 ImmLSPair(offset, CalcLSPairDataSize(op));
1132 
1133   Instr addrmodeop;
1134   if (addr.IsImmediateOffset()) {
1135     addrmodeop = LoadStorePairOffsetFixed;
1136   } else {
1137     if (addr.IsPreIndex()) {
1138       addrmodeop = LoadStorePairPreIndexFixed;
1139     } else {
1140       VIXL_ASSERT(addr.IsPostIndex());
1141       addrmodeop = LoadStorePairPostIndexFixed;
1142     }
1143   }
1144 
1145   Instr emitop = addrmodeop | memop;
1146 
1147   // Only X registers may be specified for ldpsw.
1148   VIXL_ASSERT(((emitop & LoadStorePairMask) != LDPSW_x) || rt.IsX());
1149 
1150   Emit(emitop);
1151 }
1152 
1153 
ldnp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & src)1154 void Assembler::ldnp(const CPURegister& rt,
1155                      const CPURegister& rt2,
1156                      const MemOperand& src) {
1157   LoadStorePairNonTemporal(rt, rt2, src, LoadPairNonTemporalOpFor(rt, rt2));
1158 }
1159 
1160 
stnp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & dst)1161 void Assembler::stnp(const CPURegister& rt,
1162                      const CPURegister& rt2,
1163                      const MemOperand& dst) {
1164   LoadStorePairNonTemporal(rt, rt2, dst, StorePairNonTemporalOpFor(rt, rt2));
1165 }
1166 
1167 
LoadStorePairNonTemporal(const CPURegister & rt,const CPURegister & rt2,const MemOperand & addr,LoadStorePairNonTemporalOp op)1168 void Assembler::LoadStorePairNonTemporal(const CPURegister& rt,
1169                                          const CPURegister& rt2,
1170                                          const MemOperand& addr,
1171                                          LoadStorePairNonTemporalOp op) {
1172   VIXL_ASSERT(CPUHas(rt, rt2));
1173 
1174   VIXL_ASSERT(!rt.Is(rt2));
1175   VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
1176   VIXL_ASSERT(addr.IsImmediateOffset());
1177 
1178   unsigned size =
1179       CalcLSPairDataSize(static_cast<LoadStorePairOp>(op & LoadStorePairMask));
1180   VIXL_ASSERT(IsImmLSPair(addr.GetOffset(), size));
1181   int offset = static_cast<int>(addr.GetOffset());
1182   Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.GetBaseRegister()) |
1183        ImmLSPair(offset, size));
1184 }
1185 
1186 
1187 // Memory instructions.
ldrb(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1188 void Assembler::ldrb(const Register& rt,
1189                      const MemOperand& src,
1190                      LoadStoreScalingOption option) {
1191   VIXL_ASSERT(option != RequireUnscaledOffset);
1192   VIXL_ASSERT(option != PreferUnscaledOffset);
1193   LoadStore(rt, src, LDRB_w, option);
1194 }
1195 
1196 
strb(const Register & rt,const MemOperand & dst,LoadStoreScalingOption option)1197 void Assembler::strb(const Register& rt,
1198                      const MemOperand& dst,
1199                      LoadStoreScalingOption option) {
1200   VIXL_ASSERT(option != RequireUnscaledOffset);
1201   VIXL_ASSERT(option != PreferUnscaledOffset);
1202   LoadStore(rt, dst, STRB_w, option);
1203 }
1204 
1205 
ldrsb(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1206 void Assembler::ldrsb(const Register& rt,
1207                       const MemOperand& src,
1208                       LoadStoreScalingOption option) {
1209   VIXL_ASSERT(option != RequireUnscaledOffset);
1210   VIXL_ASSERT(option != PreferUnscaledOffset);
1211   LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w, option);
1212 }
1213 
1214 
ldrh(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1215 void Assembler::ldrh(const Register& rt,
1216                      const MemOperand& src,
1217                      LoadStoreScalingOption option) {
1218   VIXL_ASSERT(option != RequireUnscaledOffset);
1219   VIXL_ASSERT(option != PreferUnscaledOffset);
1220   LoadStore(rt, src, LDRH_w, option);
1221 }
1222 
1223 
strh(const Register & rt,const MemOperand & dst,LoadStoreScalingOption option)1224 void Assembler::strh(const Register& rt,
1225                      const MemOperand& dst,
1226                      LoadStoreScalingOption option) {
1227   VIXL_ASSERT(option != RequireUnscaledOffset);
1228   VIXL_ASSERT(option != PreferUnscaledOffset);
1229   LoadStore(rt, dst, STRH_w, option);
1230 }
1231 
1232 
ldrsh(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1233 void Assembler::ldrsh(const Register& rt,
1234                       const MemOperand& src,
1235                       LoadStoreScalingOption option) {
1236   VIXL_ASSERT(option != RequireUnscaledOffset);
1237   VIXL_ASSERT(option != PreferUnscaledOffset);
1238   LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w, option);
1239 }
1240 
1241 
ldr(const CPURegister & rt,const MemOperand & src,LoadStoreScalingOption option)1242 void Assembler::ldr(const CPURegister& rt,
1243                     const MemOperand& src,
1244                     LoadStoreScalingOption option) {
1245   VIXL_ASSERT(option != RequireUnscaledOffset);
1246   VIXL_ASSERT(option != PreferUnscaledOffset);
1247   LoadStore(rt, src, LoadOpFor(rt), option);
1248 }
1249 
1250 
str(const CPURegister & rt,const MemOperand & dst,LoadStoreScalingOption option)1251 void Assembler::str(const CPURegister& rt,
1252                     const MemOperand& dst,
1253                     LoadStoreScalingOption option) {
1254   VIXL_ASSERT(option != RequireUnscaledOffset);
1255   VIXL_ASSERT(option != PreferUnscaledOffset);
1256   LoadStore(rt, dst, StoreOpFor(rt), option);
1257 }
1258 
1259 
ldrsw(const Register & xt,const MemOperand & src,LoadStoreScalingOption option)1260 void Assembler::ldrsw(const Register& xt,
1261                       const MemOperand& src,
1262                       LoadStoreScalingOption option) {
1263   VIXL_ASSERT(xt.Is64Bits());
1264   VIXL_ASSERT(option != RequireUnscaledOffset);
1265   VIXL_ASSERT(option != PreferUnscaledOffset);
1266   LoadStore(xt, src, LDRSW_x, option);
1267 }
1268 
1269 
ldurb(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1270 void Assembler::ldurb(const Register& rt,
1271                       const MemOperand& src,
1272                       LoadStoreScalingOption option) {
1273   VIXL_ASSERT(option != RequireScaledOffset);
1274   VIXL_ASSERT(option != PreferScaledOffset);
1275   LoadStore(rt, src, LDRB_w, option);
1276 }
1277 
1278 
sturb(const Register & rt,const MemOperand & dst,LoadStoreScalingOption option)1279 void Assembler::sturb(const Register& rt,
1280                       const MemOperand& dst,
1281                       LoadStoreScalingOption option) {
1282   VIXL_ASSERT(option != RequireScaledOffset);
1283   VIXL_ASSERT(option != PreferScaledOffset);
1284   LoadStore(rt, dst, STRB_w, option);
1285 }
1286 
1287 
ldursb(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1288 void Assembler::ldursb(const Register& rt,
1289                        const MemOperand& src,
1290                        LoadStoreScalingOption option) {
1291   VIXL_ASSERT(option != RequireScaledOffset);
1292   VIXL_ASSERT(option != PreferScaledOffset);
1293   LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w, option);
1294 }
1295 
1296 
ldurh(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1297 void Assembler::ldurh(const Register& rt,
1298                       const MemOperand& src,
1299                       LoadStoreScalingOption option) {
1300   VIXL_ASSERT(option != RequireScaledOffset);
1301   VIXL_ASSERT(option != PreferScaledOffset);
1302   LoadStore(rt, src, LDRH_w, option);
1303 }
1304 
1305 
sturh(const Register & rt,const MemOperand & dst,LoadStoreScalingOption option)1306 void Assembler::sturh(const Register& rt,
1307                       const MemOperand& dst,
1308                       LoadStoreScalingOption option) {
1309   VIXL_ASSERT(option != RequireScaledOffset);
1310   VIXL_ASSERT(option != PreferScaledOffset);
1311   LoadStore(rt, dst, STRH_w, option);
1312 }
1313 
1314 
ldursh(const Register & rt,const MemOperand & src,LoadStoreScalingOption option)1315 void Assembler::ldursh(const Register& rt,
1316                        const MemOperand& src,
1317                        LoadStoreScalingOption option) {
1318   VIXL_ASSERT(option != RequireScaledOffset);
1319   VIXL_ASSERT(option != PreferScaledOffset);
1320   LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w, option);
1321 }
1322 
1323 
ldur(const CPURegister & rt,const MemOperand & src,LoadStoreScalingOption option)1324 void Assembler::ldur(const CPURegister& rt,
1325                      const MemOperand& src,
1326                      LoadStoreScalingOption option) {
1327   VIXL_ASSERT(option != RequireScaledOffset);
1328   VIXL_ASSERT(option != PreferScaledOffset);
1329   LoadStore(rt, src, LoadOpFor(rt), option);
1330 }
1331 
1332 
stur(const CPURegister & rt,const MemOperand & dst,LoadStoreScalingOption option)1333 void Assembler::stur(const CPURegister& rt,
1334                      const MemOperand& dst,
1335                      LoadStoreScalingOption option) {
1336   VIXL_ASSERT(option != RequireScaledOffset);
1337   VIXL_ASSERT(option != PreferScaledOffset);
1338   LoadStore(rt, dst, StoreOpFor(rt), option);
1339 }
1340 
1341 
ldursw(const Register & xt,const MemOperand & src,LoadStoreScalingOption option)1342 void Assembler::ldursw(const Register& xt,
1343                        const MemOperand& src,
1344                        LoadStoreScalingOption option) {
1345   VIXL_ASSERT(xt.Is64Bits());
1346   VIXL_ASSERT(option != RequireScaledOffset);
1347   VIXL_ASSERT(option != PreferScaledOffset);
1348   LoadStore(xt, src, LDRSW_x, option);
1349 }
1350 
1351 
ldraa(const Register & xt,const MemOperand & src)1352 void Assembler::ldraa(const Register& xt, const MemOperand& src) {
1353   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
1354   LoadStorePAC(xt, src, LDRAA);
1355 }
1356 
1357 
ldrab(const Register & xt,const MemOperand & src)1358 void Assembler::ldrab(const Register& xt, const MemOperand& src) {
1359   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
1360   LoadStorePAC(xt, src, LDRAB);
1361 }
1362 
1363 
ldrsw(const Register & xt,RawLiteral * literal)1364 void Assembler::ldrsw(const Register& xt, RawLiteral* literal) {
1365   VIXL_ASSERT(xt.Is64Bits());
1366   VIXL_ASSERT(literal->GetSize() == kWRegSizeInBytes);
1367   ldrsw(xt, static_cast<int>(LinkAndGetWordOffsetTo(literal)));
1368 }
1369 
1370 
ldr(const CPURegister & rt,RawLiteral * literal)1371 void Assembler::ldr(const CPURegister& rt, RawLiteral* literal) {
1372   VIXL_ASSERT(CPUHas(rt));
1373   VIXL_ASSERT(literal->GetSize() == static_cast<size_t>(rt.GetSizeInBytes()));
1374   ldr(rt, static_cast<int>(LinkAndGetWordOffsetTo(literal)));
1375 }
1376 
1377 
ldrsw(const Register & rt,int64_t imm19)1378 void Assembler::ldrsw(const Register& rt, int64_t imm19) {
1379   Emit(LDRSW_x_lit | ImmLLiteral(imm19) | Rt(rt));
1380 }
1381 
1382 
ldr(const CPURegister & rt,int64_t imm19)1383 void Assembler::ldr(const CPURegister& rt, int64_t imm19) {
1384   VIXL_ASSERT(CPUHas(rt));
1385   LoadLiteralOp op = LoadLiteralOpFor(rt);
1386   Emit(op | ImmLLiteral(imm19) | Rt(rt));
1387 }
1388 
1389 
prfm(int op,int64_t imm19)1390 void Assembler::prfm(int op, int64_t imm19) {
1391   Emit(PRFM_lit | ImmPrefetchOperation(op) | ImmLLiteral(imm19));
1392 }
1393 
prfm(PrefetchOperation op,int64_t imm19)1394 void Assembler::prfm(PrefetchOperation op, int64_t imm19) {
1395   // Passing unnamed values in 'op' is undefined behaviour in C++.
1396   VIXL_ASSERT(IsNamedPrefetchOperation(op));
1397   prfm(static_cast<int>(op), imm19);
1398 }
1399 
1400 
1401 // Exclusive-access instructions.
stxrb(const Register & rs,const Register & rt,const MemOperand & dst)1402 void Assembler::stxrb(const Register& rs,
1403                       const Register& rt,
1404                       const MemOperand& dst) {
1405   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1406   Emit(STXRB_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1407 }
1408 
1409 
stxrh(const Register & rs,const Register & rt,const MemOperand & dst)1410 void Assembler::stxrh(const Register& rs,
1411                       const Register& rt,
1412                       const MemOperand& dst) {
1413   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1414   Emit(STXRH_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1415 }
1416 
1417 
stxr(const Register & rs,const Register & rt,const MemOperand & dst)1418 void Assembler::stxr(const Register& rs,
1419                      const Register& rt,
1420                      const MemOperand& dst) {
1421   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1422   LoadStoreExclusive op = rt.Is64Bits() ? STXR_x : STXR_w;
1423   Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1424 }
1425 
1426 
ldxrb(const Register & rt,const MemOperand & src)1427 void Assembler::ldxrb(const Register& rt, const MemOperand& src) {
1428   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1429   Emit(LDXRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1430 }
1431 
1432 
ldxrh(const Register & rt,const MemOperand & src)1433 void Assembler::ldxrh(const Register& rt, const MemOperand& src) {
1434   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1435   Emit(LDXRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1436 }
1437 
1438 
ldxr(const Register & rt,const MemOperand & src)1439 void Assembler::ldxr(const Register& rt, const MemOperand& src) {
1440   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1441   LoadStoreExclusive op = rt.Is64Bits() ? LDXR_x : LDXR_w;
1442   Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1443 }
1444 
1445 
stxp(const Register & rs,const Register & rt,const Register & rt2,const MemOperand & dst)1446 void Assembler::stxp(const Register& rs,
1447                      const Register& rt,
1448                      const Register& rt2,
1449                      const MemOperand& dst) {
1450   VIXL_ASSERT(rt.GetSizeInBits() == rt2.GetSizeInBits());
1451   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1452   LoadStoreExclusive op = rt.Is64Bits() ? STXP_x : STXP_w;
1453   Emit(op | Rs(rs) | Rt(rt) | Rt2(rt2) | RnSP(dst.GetBaseRegister()));
1454 }
1455 
1456 
ldxp(const Register & rt,const Register & rt2,const MemOperand & src)1457 void Assembler::ldxp(const Register& rt,
1458                      const Register& rt2,
1459                      const MemOperand& src) {
1460   VIXL_ASSERT(rt.GetSizeInBits() == rt2.GetSizeInBits());
1461   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1462   LoadStoreExclusive op = rt.Is64Bits() ? LDXP_x : LDXP_w;
1463   Emit(op | Rs_mask | Rt(rt) | Rt2(rt2) | RnSP(src.GetBaseRegister()));
1464 }
1465 
1466 
stlxrb(const Register & rs,const Register & rt,const MemOperand & dst)1467 void Assembler::stlxrb(const Register& rs,
1468                        const Register& rt,
1469                        const MemOperand& dst) {
1470   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1471   Emit(STLXRB_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1472 }
1473 
1474 
stlxrh(const Register & rs,const Register & rt,const MemOperand & dst)1475 void Assembler::stlxrh(const Register& rs,
1476                        const Register& rt,
1477                        const MemOperand& dst) {
1478   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1479   Emit(STLXRH_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1480 }
1481 
1482 
stlxr(const Register & rs,const Register & rt,const MemOperand & dst)1483 void Assembler::stlxr(const Register& rs,
1484                       const Register& rt,
1485                       const MemOperand& dst) {
1486   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1487   LoadStoreExclusive op = rt.Is64Bits() ? STLXR_x : STLXR_w;
1488   Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1489 }
1490 
1491 
ldaxrb(const Register & rt,const MemOperand & src)1492 void Assembler::ldaxrb(const Register& rt, const MemOperand& src) {
1493   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1494   Emit(LDAXRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1495 }
1496 
1497 
ldaxrh(const Register & rt,const MemOperand & src)1498 void Assembler::ldaxrh(const Register& rt, const MemOperand& src) {
1499   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1500   Emit(LDAXRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1501 }
1502 
1503 
ldaxr(const Register & rt,const MemOperand & src)1504 void Assembler::ldaxr(const Register& rt, const MemOperand& src) {
1505   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1506   LoadStoreExclusive op = rt.Is64Bits() ? LDAXR_x : LDAXR_w;
1507   Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1508 }
1509 
1510 
stlxp(const Register & rs,const Register & rt,const Register & rt2,const MemOperand & dst)1511 void Assembler::stlxp(const Register& rs,
1512                       const Register& rt,
1513                       const Register& rt2,
1514                       const MemOperand& dst) {
1515   VIXL_ASSERT(rt.GetSizeInBits() == rt2.GetSizeInBits());
1516   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1517   LoadStoreExclusive op = rt.Is64Bits() ? STLXP_x : STLXP_w;
1518   Emit(op | Rs(rs) | Rt(rt) | Rt2(rt2) | RnSP(dst.GetBaseRegister()));
1519 }
1520 
1521 
ldaxp(const Register & rt,const Register & rt2,const MemOperand & src)1522 void Assembler::ldaxp(const Register& rt,
1523                       const Register& rt2,
1524                       const MemOperand& src) {
1525   VIXL_ASSERT(rt.GetSizeInBits() == rt2.GetSizeInBits());
1526   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1527   LoadStoreExclusive op = rt.Is64Bits() ? LDAXP_x : LDAXP_w;
1528   Emit(op | Rs_mask | Rt(rt) | Rt2(rt2) | RnSP(src.GetBaseRegister()));
1529 }
1530 
1531 
stlrb(const Register & rt,const MemOperand & dst)1532 void Assembler::stlrb(const Register& rt, const MemOperand& dst) {
1533   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1534   Emit(STLRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1535 }
1536 
stlurb(const Register & rt,const MemOperand & dst)1537 void Assembler::stlurb(const Register& rt, const MemOperand& dst) {
1538   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc, CPUFeatures::kRCpcImm));
1539   VIXL_ASSERT(dst.IsImmediateOffset() && IsImmLSUnscaled(dst.GetOffset()));
1540 
1541   Instr base = RnSP(dst.GetBaseRegister());
1542   int64_t offset = dst.GetOffset();
1543   Emit(STLURB | Rt(rt) | base | ImmLS(static_cast<int>(offset)));
1544 }
1545 
1546 
stlrh(const Register & rt,const MemOperand & dst)1547 void Assembler::stlrh(const Register& rt, const MemOperand& dst) {
1548   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1549   Emit(STLRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1550 }
1551 
stlurh(const Register & rt,const MemOperand & dst)1552 void Assembler::stlurh(const Register& rt, const MemOperand& dst) {
1553   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc, CPUFeatures::kRCpcImm));
1554   VIXL_ASSERT(dst.IsImmediateOffset() && IsImmLSUnscaled(dst.GetOffset()));
1555 
1556   Instr base = RnSP(dst.GetBaseRegister());
1557   int64_t offset = dst.GetOffset();
1558   Emit(STLURH | Rt(rt) | base | ImmLS(static_cast<int>(offset)));
1559 }
1560 
1561 
stlr(const Register & rt,const MemOperand & dst)1562 void Assembler::stlr(const Register& rt, const MemOperand& dst) {
1563   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1564   LoadStoreExclusive op = rt.Is64Bits() ? STLR_x : STLR_w;
1565   Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1566 }
1567 
stlur(const Register & rt,const MemOperand & dst)1568 void Assembler::stlur(const Register& rt, const MemOperand& dst) {
1569   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc, CPUFeatures::kRCpcImm));
1570   VIXL_ASSERT(dst.IsImmediateOffset() && IsImmLSUnscaled(dst.GetOffset()));
1571 
1572   Instr base = RnSP(dst.GetBaseRegister());
1573   int64_t offset = dst.GetOffset();
1574   Instr op = rt.Is64Bits() ? STLUR_x : STLUR_w;
1575   Emit(op | Rt(rt) | base | ImmLS(static_cast<int>(offset)));
1576 }
1577 
1578 
ldarb(const Register & rt,const MemOperand & src)1579 void Assembler::ldarb(const Register& rt, const MemOperand& src) {
1580   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1581   Emit(LDARB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1582 }
1583 
1584 
ldarh(const Register & rt,const MemOperand & src)1585 void Assembler::ldarh(const Register& rt, const MemOperand& src) {
1586   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1587   Emit(LDARH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1588 }
1589 
1590 
ldar(const Register & rt,const MemOperand & src)1591 void Assembler::ldar(const Register& rt, const MemOperand& src) {
1592   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1593   LoadStoreExclusive op = rt.Is64Bits() ? LDAR_x : LDAR_w;
1594   Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1595 }
1596 
1597 
stllrb(const Register & rt,const MemOperand & dst)1598 void Assembler::stllrb(const Register& rt, const MemOperand& dst) {
1599   VIXL_ASSERT(CPUHas(CPUFeatures::kLORegions));
1600   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1601   Emit(STLLRB | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1602 }
1603 
1604 
stllrh(const Register & rt,const MemOperand & dst)1605 void Assembler::stllrh(const Register& rt, const MemOperand& dst) {
1606   VIXL_ASSERT(CPUHas(CPUFeatures::kLORegions));
1607   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1608   Emit(STLLRH | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1609 }
1610 
1611 
stllr(const Register & rt,const MemOperand & dst)1612 void Assembler::stllr(const Register& rt, const MemOperand& dst) {
1613   VIXL_ASSERT(CPUHas(CPUFeatures::kLORegions));
1614   VIXL_ASSERT(dst.IsImmediateOffset() && (dst.GetOffset() == 0));
1615   LoadStoreExclusive op = rt.Is64Bits() ? STLLR_x : STLLR_w;
1616   Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.GetBaseRegister()));
1617 }
1618 
1619 
ldlarb(const Register & rt,const MemOperand & src)1620 void Assembler::ldlarb(const Register& rt, const MemOperand& src) {
1621   VIXL_ASSERT(CPUHas(CPUFeatures::kLORegions));
1622   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1623   Emit(LDLARB | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1624 }
1625 
1626 
ldlarh(const Register & rt,const MemOperand & src)1627 void Assembler::ldlarh(const Register& rt, const MemOperand& src) {
1628   VIXL_ASSERT(CPUHas(CPUFeatures::kLORegions));
1629   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1630   Emit(LDLARH | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1631 }
1632 
1633 
ldlar(const Register & rt,const MemOperand & src)1634 void Assembler::ldlar(const Register& rt, const MemOperand& src) {
1635   VIXL_ASSERT(CPUHas(CPUFeatures::kLORegions));
1636   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1637   LoadStoreExclusive op = rt.Is64Bits() ? LDLAR_x : LDLAR_w;
1638   Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister()));
1639 }
1640 
1641 
1642 // clang-format off
1643 #define COMPARE_AND_SWAP_W_X_LIST(V) \
1644   V(cas,   CAS)                      \
1645   V(casa,  CASA)                     \
1646   V(casl,  CASL)                     \
1647   V(casal, CASAL)
1648 // clang-format on
1649 
1650 #define VIXL_DEFINE_ASM_FUNC(FN, OP)                                     \
1651   void Assembler::FN(const Register& rs,                                 \
1652                      const Register& rt,                                 \
1653                      const MemOperand& src) {                            \
1654     VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics));                          \
1655     VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));      \
1656     VIXL_ASSERT(AreSameFormat(rs, rt));                                  \
1657     LoadStoreExclusive op = rt.Is64Bits() ? OP##_x : OP##_w;             \
1658     Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister())); \
1659   }
1660 COMPARE_AND_SWAP_W_X_LIST(VIXL_DEFINE_ASM_FUNC)
1661 #undef VIXL_DEFINE_ASM_FUNC
1662 
1663 // clang-format off
1664 #define COMPARE_AND_SWAP_W_LIST(V) \
1665   V(casb,   CASB)                  \
1666   V(casab,  CASAB)                 \
1667   V(caslb,  CASLB)                 \
1668   V(casalb, CASALB)                \
1669   V(cash,   CASH)                  \
1670   V(casah,  CASAH)                 \
1671   V(caslh,  CASLH)                 \
1672   V(casalh, CASALH)
1673 // clang-format on
1674 
1675 #define VIXL_DEFINE_ASM_FUNC(FN, OP)                                     \
1676   void Assembler::FN(const Register& rs,                                 \
1677                      const Register& rt,                                 \
1678                      const MemOperand& src) {                            \
1679     VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics));                          \
1680     VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));      \
1681     Emit(OP | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister())); \
1682   }
COMPARE_AND_SWAP_W_LIST(VIXL_DEFINE_ASM_FUNC)1683 COMPARE_AND_SWAP_W_LIST(VIXL_DEFINE_ASM_FUNC)
1684 #undef VIXL_DEFINE_ASM_FUNC
1685 
1686 
1687 // clang-format off
1688 #define COMPARE_AND_SWAP_PAIR_LIST(V) \
1689   V(casp,   CASP)                     \
1690   V(caspa,  CASPA)                    \
1691   V(caspl,  CASPL)                    \
1692   V(caspal, CASPAL)
1693 // clang-format on
1694 
1695 #define VIXL_DEFINE_ASM_FUNC(FN, OP)                                     \
1696   void Assembler::FN(const Register& rs,                                 \
1697                      const Register& rs1,                                \
1698                      const Register& rt,                                 \
1699                      const Register& rt1,                                \
1700                      const MemOperand& src) {                            \
1701     VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics));                          \
1702     USE(rs1, rt1);                                                       \
1703     VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));      \
1704     VIXL_ASSERT(AreEven(rs, rt));                                        \
1705     VIXL_ASSERT(AreConsecutive(rs, rs1));                                \
1706     VIXL_ASSERT(AreConsecutive(rt, rt1));                                \
1707     VIXL_ASSERT(AreSameFormat(rs, rs1, rt, rt1));                        \
1708     LoadStoreExclusive op = rt.Is64Bits() ? OP##_x : OP##_w;             \
1709     Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.GetBaseRegister())); \
1710   }
1711 COMPARE_AND_SWAP_PAIR_LIST(VIXL_DEFINE_ASM_FUNC)
1712 #undef VIXL_DEFINE_ASM_FUNC
1713 
1714 // These macros generate all the variations of the atomic memory operations,
1715 // e.g. ldadd, ldadda, ldaddb, staddl, etc.
1716 // For a full list of the methods with comments, see the assembler header file.
1717 
1718 // clang-format off
1719 #define ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(V, DEF) \
1720   V(DEF, add,  LDADD)                               \
1721   V(DEF, clr,  LDCLR)                               \
1722   V(DEF, eor,  LDEOR)                               \
1723   V(DEF, set,  LDSET)                               \
1724   V(DEF, smax, LDSMAX)                              \
1725   V(DEF, smin, LDSMIN)                              \
1726   V(DEF, umax, LDUMAX)                              \
1727   V(DEF, umin, LDUMIN)
1728 
1729 #define ATOMIC_MEMORY_STORE_MODES(V, NAME, OP) \
1730   V(NAME,     OP##_x,   OP##_w)                \
1731   V(NAME##l,  OP##L_x,  OP##L_w)               \
1732   V(NAME##b,  OP##B,    OP##B)                 \
1733   V(NAME##lb, OP##LB,   OP##LB)                \
1734   V(NAME##h,  OP##H,    OP##H)                 \
1735   V(NAME##lh, OP##LH,   OP##LH)
1736 
1737 #define ATOMIC_MEMORY_LOAD_MODES(V, NAME, OP) \
1738   ATOMIC_MEMORY_STORE_MODES(V, NAME, OP)      \
1739   V(NAME##a,   OP##A_x,  OP##A_w)             \
1740   V(NAME##al,  OP##AL_x, OP##AL_w)            \
1741   V(NAME##ab,  OP##AB,   OP##AB)              \
1742   V(NAME##alb, OP##ALB,  OP##ALB)             \
1743   V(NAME##ah,  OP##AH,   OP##AH)              \
1744   V(NAME##alh, OP##ALH,  OP##ALH)
1745 // clang-format on
1746 
1747 #define DEFINE_ASM_LOAD_FUNC(FN, OP_X, OP_W)                        \
1748   void Assembler::ld##FN(const Register& rs,                        \
1749                          const Register& rt,                        \
1750                          const MemOperand& src) {                   \
1751     VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics));                     \
1752     VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0)); \
1753     AtomicMemoryOp op = rt.Is64Bits() ? OP_X : OP_W;                \
1754     Emit(op | Rs(rs) | Rt(rt) | RnSP(src.GetBaseRegister()));       \
1755   }
1756 #define DEFINE_ASM_STORE_FUNC(FN, OP_X, OP_W)                         \
1757   void Assembler::st##FN(const Register& rs, const MemOperand& src) { \
1758     VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics));                       \
1759     ld##FN(rs, AppropriateZeroRegFor(rs), src);                       \
1760   }
1761 
1762 ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(ATOMIC_MEMORY_LOAD_MODES,
1763                                     DEFINE_ASM_LOAD_FUNC)
1764 ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(ATOMIC_MEMORY_STORE_MODES,
1765                                     DEFINE_ASM_STORE_FUNC)
1766 
1767 #define DEFINE_ASM_SWP_FUNC(FN, OP_X, OP_W)                         \
1768   void Assembler::FN(const Register& rs,                            \
1769                      const Register& rt,                            \
1770                      const MemOperand& src) {                       \
1771     VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics));                     \
1772     VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0)); \
1773     AtomicMemoryOp op = rt.Is64Bits() ? OP_X : OP_W;                \
1774     Emit(op | Rs(rs) | Rt(rt) | RnSP(src.GetBaseRegister()));       \
1775   }
1776 
1777 ATOMIC_MEMORY_LOAD_MODES(DEFINE_ASM_SWP_FUNC, swp, SWP)
1778 
1779 #undef DEFINE_ASM_LOAD_FUNC
1780 #undef DEFINE_ASM_STORE_FUNC
1781 #undef DEFINE_ASM_SWP_FUNC
1782 
1783 
1784 void Assembler::ldaprb(const Register& rt, const MemOperand& src) {
1785   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc));
1786   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1787   AtomicMemoryOp op = LDAPRB;
1788   Emit(op | Rs(xzr) | Rt(rt) | RnSP(src.GetBaseRegister()));
1789 }
1790 
ldapurb(const Register & rt,const MemOperand & src)1791 void Assembler::ldapurb(const Register& rt, const MemOperand& src) {
1792   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc, CPUFeatures::kRCpcImm));
1793   VIXL_ASSERT(src.IsImmediateOffset() && IsImmLSUnscaled(src.GetOffset()));
1794 
1795   Instr base = RnSP(src.GetBaseRegister());
1796   int64_t offset = src.GetOffset();
1797   Emit(LDAPURB | Rt(rt) | base | ImmLS(static_cast<int>(offset)));
1798 }
1799 
ldapursb(const Register & rt,const MemOperand & src)1800 void Assembler::ldapursb(const Register& rt, const MemOperand& src) {
1801   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc, CPUFeatures::kRCpcImm));
1802   VIXL_ASSERT(src.IsImmediateOffset() && IsImmLSUnscaled(src.GetOffset()));
1803 
1804   Instr base = RnSP(src.GetBaseRegister());
1805   int64_t offset = src.GetOffset();
1806   Instr op = rt.Is64Bits() ? LDAPURSB_x : LDAPURSB_w;
1807   Emit(op | Rt(rt) | base | ImmLS(static_cast<int>(offset)));
1808 }
1809 
ldaprh(const Register & rt,const MemOperand & src)1810 void Assembler::ldaprh(const Register& rt, const MemOperand& src) {
1811   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc));
1812   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1813   AtomicMemoryOp op = LDAPRH;
1814   Emit(op | Rs(xzr) | Rt(rt) | RnSP(src.GetBaseRegister()));
1815 }
1816 
ldapurh(const Register & rt,const MemOperand & src)1817 void Assembler::ldapurh(const Register& rt, const MemOperand& src) {
1818   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc, CPUFeatures::kRCpcImm));
1819   VIXL_ASSERT(src.IsImmediateOffset() && IsImmLSUnscaled(src.GetOffset()));
1820 
1821   Instr base = RnSP(src.GetBaseRegister());
1822   int64_t offset = src.GetOffset();
1823   Emit(LDAPURH | Rt(rt) | base | ImmLS(static_cast<int>(offset)));
1824 }
1825 
ldapursh(const Register & rt,const MemOperand & src)1826 void Assembler::ldapursh(const Register& rt, const MemOperand& src) {
1827   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc, CPUFeatures::kRCpcImm));
1828   VIXL_ASSERT(src.IsImmediateOffset() && IsImmLSUnscaled(src.GetOffset()));
1829 
1830   Instr base = RnSP(src.GetBaseRegister());
1831   int64_t offset = src.GetOffset();
1832   LoadStoreRCpcUnscaledOffsetOp op = rt.Is64Bits() ? LDAPURSH_x : LDAPURSH_w;
1833   Emit(op | Rt(rt) | base | ImmLS(static_cast<int>(offset)));
1834 }
1835 
ldapr(const Register & rt,const MemOperand & src)1836 void Assembler::ldapr(const Register& rt, const MemOperand& src) {
1837   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc));
1838   VIXL_ASSERT(src.IsImmediateOffset() && (src.GetOffset() == 0));
1839   AtomicMemoryOp op = rt.Is64Bits() ? LDAPR_x : LDAPR_w;
1840   Emit(op | Rs(xzr) | Rt(rt) | RnSP(src.GetBaseRegister()));
1841 }
1842 
ldapur(const Register & rt,const MemOperand & src)1843 void Assembler::ldapur(const Register& rt, const MemOperand& src) {
1844   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc, CPUFeatures::kRCpcImm));
1845   VIXL_ASSERT(src.IsImmediateOffset() && IsImmLSUnscaled(src.GetOffset()));
1846 
1847   Instr base = RnSP(src.GetBaseRegister());
1848   int64_t offset = src.GetOffset();
1849   LoadStoreRCpcUnscaledOffsetOp op = rt.Is64Bits() ? LDAPUR_x : LDAPUR_w;
1850   Emit(op | Rt(rt) | base | ImmLS(static_cast<int>(offset)));
1851 }
1852 
ldapursw(const Register & rt,const MemOperand & src)1853 void Assembler::ldapursw(const Register& rt, const MemOperand& src) {
1854   VIXL_ASSERT(CPUHas(CPUFeatures::kRCpc, CPUFeatures::kRCpcImm));
1855   VIXL_ASSERT(rt.Is64Bits());
1856   VIXL_ASSERT(src.IsImmediateOffset() && IsImmLSUnscaled(src.GetOffset()));
1857 
1858   Instr base = RnSP(src.GetBaseRegister());
1859   int64_t offset = src.GetOffset();
1860   Emit(LDAPURSW | Rt(rt) | base | ImmLS(static_cast<int>(offset)));
1861 }
1862 
prfm(int op,const MemOperand & address,LoadStoreScalingOption option)1863 void Assembler::prfm(int op,
1864                      const MemOperand& address,
1865                      LoadStoreScalingOption option) {
1866   VIXL_ASSERT(option != RequireUnscaledOffset);
1867   VIXL_ASSERT(option != PreferUnscaledOffset);
1868   Prefetch(op, address, option);
1869 }
1870 
prfm(PrefetchOperation op,const MemOperand & address,LoadStoreScalingOption option)1871 void Assembler::prfm(PrefetchOperation op,
1872                      const MemOperand& address,
1873                      LoadStoreScalingOption option) {
1874   // Passing unnamed values in 'op' is undefined behaviour in C++.
1875   VIXL_ASSERT(IsNamedPrefetchOperation(op));
1876   prfm(static_cast<int>(op), address, option);
1877 }
1878 
1879 
prfum(int op,const MemOperand & address,LoadStoreScalingOption option)1880 void Assembler::prfum(int op,
1881                       const MemOperand& address,
1882                       LoadStoreScalingOption option) {
1883   VIXL_ASSERT(option != RequireScaledOffset);
1884   VIXL_ASSERT(option != PreferScaledOffset);
1885   Prefetch(op, address, option);
1886 }
1887 
prfum(PrefetchOperation op,const MemOperand & address,LoadStoreScalingOption option)1888 void Assembler::prfum(PrefetchOperation op,
1889                       const MemOperand& address,
1890                       LoadStoreScalingOption option) {
1891   // Passing unnamed values in 'op' is undefined behaviour in C++.
1892   VIXL_ASSERT(IsNamedPrefetchOperation(op));
1893   prfum(static_cast<int>(op), address, option);
1894 }
1895 
1896 
prfm(int op,RawLiteral * literal)1897 void Assembler::prfm(int op, RawLiteral* literal) {
1898   prfm(op, static_cast<int>(LinkAndGetWordOffsetTo(literal)));
1899 }
1900 
prfm(PrefetchOperation op,RawLiteral * literal)1901 void Assembler::prfm(PrefetchOperation op, RawLiteral* literal) {
1902   // Passing unnamed values in 'op' is undefined behaviour in C++.
1903   VIXL_ASSERT(IsNamedPrefetchOperation(op));
1904   prfm(static_cast<int>(op), literal);
1905 }
1906 
1907 
sys(int op1,int crn,int crm,int op2,const Register & xt)1908 void Assembler::sys(int op1, int crn, int crm, int op2, const Register& xt) {
1909   VIXL_ASSERT(xt.Is64Bits());
1910   Emit(SYS | ImmSysOp1(op1) | CRn(crn) | CRm(crm) | ImmSysOp2(op2) | Rt(xt));
1911 }
1912 
1913 
sys(int op,const Register & xt)1914 void Assembler::sys(int op, const Register& xt) {
1915   VIXL_ASSERT(xt.Is64Bits());
1916   Emit(SYS | SysOp(op) | Rt(xt));
1917 }
1918 
1919 
dc(DataCacheOp op,const Register & rt)1920 void Assembler::dc(DataCacheOp op, const Register& rt) {
1921   if (op == CVAP) VIXL_ASSERT(CPUHas(CPUFeatures::kDCPoP));
1922   if (op == CVADP) VIXL_ASSERT(CPUHas(CPUFeatures::kDCCVADP));
1923   sys(op, rt);
1924 }
1925 
1926 
ic(InstructionCacheOp op,const Register & rt)1927 void Assembler::ic(InstructionCacheOp op, const Register& rt) {
1928   VIXL_ASSERT(op == IVAU);
1929   sys(op, rt);
1930 }
1931 
1932 
hint(SystemHint code)1933 void Assembler::hint(SystemHint code) { hint(static_cast<int>(code)); }
1934 
1935 
hint(int imm7)1936 void Assembler::hint(int imm7) {
1937   VIXL_ASSERT(IsUint7(imm7));
1938   Emit(HINT | ImmHint(imm7) | Rt(xzr));
1939 }
1940 
1941 
1942 // NEON structure loads and stores.
LoadStoreStructAddrModeField(const MemOperand & addr)1943 Instr Assembler::LoadStoreStructAddrModeField(const MemOperand& addr) {
1944   Instr addr_field = RnSP(addr.GetBaseRegister());
1945 
1946   if (addr.IsPostIndex()) {
1947     VIXL_STATIC_ASSERT(NEONLoadStoreMultiStructPostIndex ==
1948                        static_cast<NEONLoadStoreMultiStructPostIndexOp>(
1949                            NEONLoadStoreSingleStructPostIndex));
1950 
1951     addr_field |= NEONLoadStoreMultiStructPostIndex;
1952     if (addr.GetOffset() == 0) {
1953       addr_field |= RmNot31(addr.GetRegisterOffset());
1954     } else {
1955       // The immediate post index addressing mode is indicated by rm = 31.
1956       // The immediate is implied by the number of vector registers used.
1957       addr_field |= (0x1f << Rm_offset);
1958     }
1959   } else {
1960     VIXL_ASSERT(addr.IsImmediateOffset() && (addr.GetOffset() == 0));
1961   }
1962   return addr_field;
1963 }
1964 
LoadStoreStructVerify(const VRegister & vt,const MemOperand & addr,Instr op)1965 void Assembler::LoadStoreStructVerify(const VRegister& vt,
1966                                       const MemOperand& addr,
1967                                       Instr op) {
1968 #ifdef VIXL_DEBUG
1969   // Assert that addressing mode is either offset (with immediate 0), post
1970   // index by immediate of the size of the register list, or post index by a
1971   // value in a core register.
1972   VIXL_ASSERT(vt.HasSize() && vt.HasLaneSize());
1973   if (addr.IsImmediateOffset()) {
1974     VIXL_ASSERT(addr.GetOffset() == 0);
1975   } else {
1976     int offset = vt.GetSizeInBytes();
1977     switch (op) {
1978       case NEON_LD1_1v:
1979       case NEON_ST1_1v:
1980         offset *= 1;
1981         break;
1982       case NEONLoadStoreSingleStructLoad1:
1983       case NEONLoadStoreSingleStructStore1:
1984       case NEON_LD1R:
1985         offset = (offset / vt.GetLanes()) * 1;
1986         break;
1987 
1988       case NEON_LD1_2v:
1989       case NEON_ST1_2v:
1990       case NEON_LD2:
1991       case NEON_ST2:
1992         offset *= 2;
1993         break;
1994       case NEONLoadStoreSingleStructLoad2:
1995       case NEONLoadStoreSingleStructStore2:
1996       case NEON_LD2R:
1997         offset = (offset / vt.GetLanes()) * 2;
1998         break;
1999 
2000       case NEON_LD1_3v:
2001       case NEON_ST1_3v:
2002       case NEON_LD3:
2003       case NEON_ST3:
2004         offset *= 3;
2005         break;
2006       case NEONLoadStoreSingleStructLoad3:
2007       case NEONLoadStoreSingleStructStore3:
2008       case NEON_LD3R:
2009         offset = (offset / vt.GetLanes()) * 3;
2010         break;
2011 
2012       case NEON_LD1_4v:
2013       case NEON_ST1_4v:
2014       case NEON_LD4:
2015       case NEON_ST4:
2016         offset *= 4;
2017         break;
2018       case NEONLoadStoreSingleStructLoad4:
2019       case NEONLoadStoreSingleStructStore4:
2020       case NEON_LD4R:
2021         offset = (offset / vt.GetLanes()) * 4;
2022         break;
2023       default:
2024         VIXL_UNREACHABLE();
2025     }
2026     VIXL_ASSERT(!addr.GetRegisterOffset().Is(NoReg) ||
2027                 addr.GetOffset() == offset);
2028   }
2029 #else
2030   USE(vt, addr, op);
2031 #endif
2032 }
2033 
LoadStoreStruct(const VRegister & vt,const MemOperand & addr,NEONLoadStoreMultiStructOp op)2034 void Assembler::LoadStoreStruct(const VRegister& vt,
2035                                 const MemOperand& addr,
2036                                 NEONLoadStoreMultiStructOp op) {
2037   LoadStoreStructVerify(vt, addr, op);
2038   VIXL_ASSERT(vt.IsVector() || vt.Is1D());
2039   Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt));
2040 }
2041 
2042 
LoadStoreStructSingleAllLanes(const VRegister & vt,const MemOperand & addr,NEONLoadStoreSingleStructOp op)2043 void Assembler::LoadStoreStructSingleAllLanes(const VRegister& vt,
2044                                               const MemOperand& addr,
2045                                               NEONLoadStoreSingleStructOp op) {
2046   LoadStoreStructVerify(vt, addr, op);
2047   Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt));
2048 }
2049 
2050 
ld1(const VRegister & vt,const MemOperand & src)2051 void Assembler::ld1(const VRegister& vt, const MemOperand& src) {
2052   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2053   LoadStoreStruct(vt, src, NEON_LD1_1v);
2054 }
2055 
2056 
ld1(const VRegister & vt,const VRegister & vt2,const MemOperand & src)2057 void Assembler::ld1(const VRegister& vt,
2058                     const VRegister& vt2,
2059                     const MemOperand& src) {
2060   USE(vt2);
2061   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2062   VIXL_ASSERT(AreSameFormat(vt, vt2));
2063   VIXL_ASSERT(AreConsecutive(vt, vt2));
2064   LoadStoreStruct(vt, src, NEON_LD1_2v);
2065 }
2066 
2067 
ld1(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const MemOperand & src)2068 void Assembler::ld1(const VRegister& vt,
2069                     const VRegister& vt2,
2070                     const VRegister& vt3,
2071                     const MemOperand& src) {
2072   USE(vt2, vt3);
2073   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2074   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
2075   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
2076   LoadStoreStruct(vt, src, NEON_LD1_3v);
2077 }
2078 
2079 
ld1(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const VRegister & vt4,const MemOperand & src)2080 void Assembler::ld1(const VRegister& vt,
2081                     const VRegister& vt2,
2082                     const VRegister& vt3,
2083                     const VRegister& vt4,
2084                     const MemOperand& src) {
2085   USE(vt2, vt3, vt4);
2086   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2087   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
2088   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
2089   LoadStoreStruct(vt, src, NEON_LD1_4v);
2090 }
2091 
2092 
ld2(const VRegister & vt,const VRegister & vt2,const MemOperand & src)2093 void Assembler::ld2(const VRegister& vt,
2094                     const VRegister& vt2,
2095                     const MemOperand& src) {
2096   USE(vt2);
2097   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2098   VIXL_ASSERT(AreSameFormat(vt, vt2));
2099   VIXL_ASSERT(AreConsecutive(vt, vt2));
2100   LoadStoreStruct(vt, src, NEON_LD2);
2101 }
2102 
2103 
ld2(const VRegister & vt,const VRegister & vt2,int lane,const MemOperand & src)2104 void Assembler::ld2(const VRegister& vt,
2105                     const VRegister& vt2,
2106                     int lane,
2107                     const MemOperand& src) {
2108   USE(vt2);
2109   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2110   VIXL_ASSERT(AreSameFormat(vt, vt2));
2111   VIXL_ASSERT(AreConsecutive(vt, vt2));
2112   LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad2);
2113 }
2114 
2115 
ld2r(const VRegister & vt,const VRegister & vt2,const MemOperand & src)2116 void Assembler::ld2r(const VRegister& vt,
2117                      const VRegister& vt2,
2118                      const MemOperand& src) {
2119   USE(vt2);
2120   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2121   VIXL_ASSERT(AreSameFormat(vt, vt2));
2122   VIXL_ASSERT(AreConsecutive(vt, vt2));
2123   LoadStoreStructSingleAllLanes(vt, src, NEON_LD2R);
2124 }
2125 
2126 
ld3(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const MemOperand & src)2127 void Assembler::ld3(const VRegister& vt,
2128                     const VRegister& vt2,
2129                     const VRegister& vt3,
2130                     const MemOperand& src) {
2131   USE(vt2, vt3);
2132   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2133   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
2134   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
2135   LoadStoreStruct(vt, src, NEON_LD3);
2136 }
2137 
2138 
ld3(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,int lane,const MemOperand & src)2139 void Assembler::ld3(const VRegister& vt,
2140                     const VRegister& vt2,
2141                     const VRegister& vt3,
2142                     int lane,
2143                     const MemOperand& src) {
2144   USE(vt2, vt3);
2145   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2146   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
2147   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
2148   LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad3);
2149 }
2150 
2151 
ld3r(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const MemOperand & src)2152 void Assembler::ld3r(const VRegister& vt,
2153                      const VRegister& vt2,
2154                      const VRegister& vt3,
2155                      const MemOperand& src) {
2156   USE(vt2, vt3);
2157   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2158   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
2159   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
2160   LoadStoreStructSingleAllLanes(vt, src, NEON_LD3R);
2161 }
2162 
2163 
ld4(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const VRegister & vt4,const MemOperand & src)2164 void Assembler::ld4(const VRegister& vt,
2165                     const VRegister& vt2,
2166                     const VRegister& vt3,
2167                     const VRegister& vt4,
2168                     const MemOperand& src) {
2169   USE(vt2, vt3, vt4);
2170   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2171   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
2172   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
2173   LoadStoreStruct(vt, src, NEON_LD4);
2174 }
2175 
2176 
ld4(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const VRegister & vt4,int lane,const MemOperand & src)2177 void Assembler::ld4(const VRegister& vt,
2178                     const VRegister& vt2,
2179                     const VRegister& vt3,
2180                     const VRegister& vt4,
2181                     int lane,
2182                     const MemOperand& src) {
2183   USE(vt2, vt3, vt4);
2184   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2185   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
2186   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
2187   LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad4);
2188 }
2189 
2190 
ld4r(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const VRegister & vt4,const MemOperand & src)2191 void Assembler::ld4r(const VRegister& vt,
2192                      const VRegister& vt2,
2193                      const VRegister& vt3,
2194                      const VRegister& vt4,
2195                      const MemOperand& src) {
2196   USE(vt2, vt3, vt4);
2197   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2198   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
2199   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
2200   LoadStoreStructSingleAllLanes(vt, src, NEON_LD4R);
2201 }
2202 
2203 
st1(const VRegister & vt,const MemOperand & src)2204 void Assembler::st1(const VRegister& vt, const MemOperand& src) {
2205   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2206   LoadStoreStruct(vt, src, NEON_ST1_1v);
2207 }
2208 
2209 
st1(const VRegister & vt,const VRegister & vt2,const MemOperand & src)2210 void Assembler::st1(const VRegister& vt,
2211                     const VRegister& vt2,
2212                     const MemOperand& src) {
2213   USE(vt2);
2214   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2215   VIXL_ASSERT(AreSameFormat(vt, vt2));
2216   VIXL_ASSERT(AreConsecutive(vt, vt2));
2217   LoadStoreStruct(vt, src, NEON_ST1_2v);
2218 }
2219 
2220 
st1(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const MemOperand & src)2221 void Assembler::st1(const VRegister& vt,
2222                     const VRegister& vt2,
2223                     const VRegister& vt3,
2224                     const MemOperand& src) {
2225   USE(vt2, vt3);
2226   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2227   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
2228   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
2229   LoadStoreStruct(vt, src, NEON_ST1_3v);
2230 }
2231 
2232 
st1(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const VRegister & vt4,const MemOperand & src)2233 void Assembler::st1(const VRegister& vt,
2234                     const VRegister& vt2,
2235                     const VRegister& vt3,
2236                     const VRegister& vt4,
2237                     const MemOperand& src) {
2238   USE(vt2, vt3, vt4);
2239   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2240   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
2241   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
2242   LoadStoreStruct(vt, src, NEON_ST1_4v);
2243 }
2244 
2245 
st2(const VRegister & vt,const VRegister & vt2,const MemOperand & dst)2246 void Assembler::st2(const VRegister& vt,
2247                     const VRegister& vt2,
2248                     const MemOperand& dst) {
2249   USE(vt2);
2250   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2251   VIXL_ASSERT(AreSameFormat(vt, vt2));
2252   VIXL_ASSERT(AreConsecutive(vt, vt2));
2253   LoadStoreStruct(vt, dst, NEON_ST2);
2254 }
2255 
2256 
st2(const VRegister & vt,const VRegister & vt2,int lane,const MemOperand & dst)2257 void Assembler::st2(const VRegister& vt,
2258                     const VRegister& vt2,
2259                     int lane,
2260                     const MemOperand& dst) {
2261   USE(vt2);
2262   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2263   VIXL_ASSERT(AreSameFormat(vt, vt2));
2264   VIXL_ASSERT(AreConsecutive(vt, vt2));
2265   LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore2);
2266 }
2267 
2268 
st3(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const MemOperand & dst)2269 void Assembler::st3(const VRegister& vt,
2270                     const VRegister& vt2,
2271                     const VRegister& vt3,
2272                     const MemOperand& dst) {
2273   USE(vt2, vt3);
2274   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2275   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
2276   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
2277   LoadStoreStruct(vt, dst, NEON_ST3);
2278 }
2279 
2280 
st3(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,int lane,const MemOperand & dst)2281 void Assembler::st3(const VRegister& vt,
2282                     const VRegister& vt2,
2283                     const VRegister& vt3,
2284                     int lane,
2285                     const MemOperand& dst) {
2286   USE(vt2, vt3);
2287   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2288   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
2289   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
2290   LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore3);
2291 }
2292 
2293 
st4(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const VRegister & vt4,const MemOperand & dst)2294 void Assembler::st4(const VRegister& vt,
2295                     const VRegister& vt2,
2296                     const VRegister& vt3,
2297                     const VRegister& vt4,
2298                     const MemOperand& dst) {
2299   USE(vt2, vt3, vt4);
2300   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2301   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
2302   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
2303   LoadStoreStruct(vt, dst, NEON_ST4);
2304 }
2305 
2306 
st4(const VRegister & vt,const VRegister & vt2,const VRegister & vt3,const VRegister & vt4,int lane,const MemOperand & dst)2307 void Assembler::st4(const VRegister& vt,
2308                     const VRegister& vt2,
2309                     const VRegister& vt3,
2310                     const VRegister& vt4,
2311                     int lane,
2312                     const MemOperand& dst) {
2313   USE(vt2, vt3, vt4);
2314   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2315   VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
2316   VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
2317   LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore4);
2318 }
2319 
2320 
LoadStoreStructSingle(const VRegister & vt,uint32_t lane,const MemOperand & addr,NEONLoadStoreSingleStructOp op)2321 void Assembler::LoadStoreStructSingle(const VRegister& vt,
2322                                       uint32_t lane,
2323                                       const MemOperand& addr,
2324                                       NEONLoadStoreSingleStructOp op) {
2325   LoadStoreStructVerify(vt, addr, op);
2326 
2327   // We support vt arguments of the form vt.VxT() or vt.T(), where x is the
2328   // number of lanes, and T is b, h, s or d.
2329   unsigned lane_size = vt.GetLaneSizeInBytes();
2330   VIXL_ASSERT(lane_size > 0);
2331   VIXL_ASSERT(lane < (kQRegSizeInBytes / lane_size));
2332 
2333   // Lane size is encoded in the opcode field. Lane index is encoded in the Q,
2334   // S and size fields.
2335   lane *= lane_size;
2336   if (lane_size == 8) lane++;
2337 
2338   Instr size = (lane << NEONLSSize_offset) & NEONLSSize_mask;
2339   Instr s = (lane << (NEONS_offset - 2)) & NEONS_mask;
2340   Instr q = (lane << (NEONQ_offset - 3)) & NEONQ_mask;
2341 
2342   Instr instr = op;
2343   switch (lane_size) {
2344     case 1:
2345       instr |= NEONLoadStoreSingle_b;
2346       break;
2347     case 2:
2348       instr |= NEONLoadStoreSingle_h;
2349       break;
2350     case 4:
2351       instr |= NEONLoadStoreSingle_s;
2352       break;
2353     default:
2354       VIXL_ASSERT(lane_size == 8);
2355       instr |= NEONLoadStoreSingle_d;
2356   }
2357 
2358   Emit(instr | LoadStoreStructAddrModeField(addr) | q | size | s | Rt(vt));
2359 }
2360 
2361 
ld1(const VRegister & vt,int lane,const MemOperand & src)2362 void Assembler::ld1(const VRegister& vt, int lane, const MemOperand& src) {
2363   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2364   LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad1);
2365 }
2366 
2367 
ld1r(const VRegister & vt,const MemOperand & src)2368 void Assembler::ld1r(const VRegister& vt, const MemOperand& src) {
2369   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2370   LoadStoreStructSingleAllLanes(vt, src, NEON_LD1R);
2371 }
2372 
2373 
st1(const VRegister & vt,int lane,const MemOperand & dst)2374 void Assembler::st1(const VRegister& vt, int lane, const MemOperand& dst) {
2375   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2376   LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore1);
2377 }
2378 
2379 
NEON3DifferentL(const VRegister & vd,const VRegister & vn,const VRegister & vm,NEON3DifferentOp vop)2380 void Assembler::NEON3DifferentL(const VRegister& vd,
2381                                 const VRegister& vn,
2382                                 const VRegister& vm,
2383                                 NEON3DifferentOp vop) {
2384   VIXL_ASSERT(AreSameFormat(vn, vm));
2385   VIXL_ASSERT((vn.Is1H() && vd.Is1S()) || (vn.Is1S() && vd.Is1D()) ||
2386               (vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) ||
2387               (vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H()) ||
2388               (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D()));
2389   Instr format, op = vop;
2390   if (vd.IsScalar()) {
2391     op |= NEON_Q | NEONScalar;
2392     format = SFormat(vn);
2393   } else {
2394     format = VFormat(vn);
2395   }
2396   Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
2397 }
2398 
2399 
NEON3DifferentW(const VRegister & vd,const VRegister & vn,const VRegister & vm,NEON3DifferentOp vop)2400 void Assembler::NEON3DifferentW(const VRegister& vd,
2401                                 const VRegister& vn,
2402                                 const VRegister& vm,
2403                                 NEON3DifferentOp vop) {
2404   VIXL_ASSERT(AreSameFormat(vd, vn));
2405   VIXL_ASSERT((vm.Is8B() && vd.Is8H()) || (vm.Is4H() && vd.Is4S()) ||
2406               (vm.Is2S() && vd.Is2D()) || (vm.Is16B() && vd.Is8H()) ||
2407               (vm.Is8H() && vd.Is4S()) || (vm.Is4S() && vd.Is2D()));
2408   Emit(VFormat(vm) | vop | Rm(vm) | Rn(vn) | Rd(vd));
2409 }
2410 
2411 
NEON3DifferentHN(const VRegister & vd,const VRegister & vn,const VRegister & vm,NEON3DifferentOp vop)2412 void Assembler::NEON3DifferentHN(const VRegister& vd,
2413                                  const VRegister& vn,
2414                                  const VRegister& vm,
2415                                  NEON3DifferentOp vop) {
2416   VIXL_ASSERT(AreSameFormat(vm, vn));
2417   VIXL_ASSERT((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) ||
2418               (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) ||
2419               (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D()));
2420   Emit(VFormat(vd) | vop | Rm(vm) | Rn(vn) | Rd(vd));
2421 }
2422 
2423 
2424 // clang-format off
2425 #define NEON_3DIFF_LONG_LIST(V) \
2426   V(pmull,  NEON_PMULL,  vn.IsVector() && vn.Is8B())                           \
2427   V(pmull2, NEON_PMULL2, vn.IsVector() && vn.Is16B())                          \
2428   V(saddl,  NEON_SADDL,  vn.IsVector() && vn.IsD())                            \
2429   V(saddl2, NEON_SADDL2, vn.IsVector() && vn.IsQ())                            \
2430   V(sabal,  NEON_SABAL,  vn.IsVector() && vn.IsD())                            \
2431   V(sabal2, NEON_SABAL2, vn.IsVector() && vn.IsQ())                            \
2432   V(uabal,  NEON_UABAL,  vn.IsVector() && vn.IsD())                            \
2433   V(uabal2, NEON_UABAL2, vn.IsVector() && vn.IsQ())                            \
2434   V(sabdl,  NEON_SABDL,  vn.IsVector() && vn.IsD())                            \
2435   V(sabdl2, NEON_SABDL2, vn.IsVector() && vn.IsQ())                            \
2436   V(uabdl,  NEON_UABDL,  vn.IsVector() && vn.IsD())                            \
2437   V(uabdl2, NEON_UABDL2, vn.IsVector() && vn.IsQ())                            \
2438   V(smlal,  NEON_SMLAL,  vn.IsVector() && vn.IsD())                            \
2439   V(smlal2, NEON_SMLAL2, vn.IsVector() && vn.IsQ())                            \
2440   V(umlal,  NEON_UMLAL,  vn.IsVector() && vn.IsD())                            \
2441   V(umlal2, NEON_UMLAL2, vn.IsVector() && vn.IsQ())                            \
2442   V(smlsl,  NEON_SMLSL,  vn.IsVector() && vn.IsD())                            \
2443   V(smlsl2, NEON_SMLSL2, vn.IsVector() && vn.IsQ())                            \
2444   V(umlsl,  NEON_UMLSL,  vn.IsVector() && vn.IsD())                            \
2445   V(umlsl2, NEON_UMLSL2, vn.IsVector() && vn.IsQ())                            \
2446   V(smull,  NEON_SMULL,  vn.IsVector() && vn.IsD())                            \
2447   V(smull2, NEON_SMULL2, vn.IsVector() && vn.IsQ())                            \
2448   V(umull,  NEON_UMULL,  vn.IsVector() && vn.IsD())                            \
2449   V(umull2, NEON_UMULL2, vn.IsVector() && vn.IsQ())                            \
2450   V(ssubl,  NEON_SSUBL,  vn.IsVector() && vn.IsD())                            \
2451   V(ssubl2, NEON_SSUBL2, vn.IsVector() && vn.IsQ())                            \
2452   V(uaddl,  NEON_UADDL,  vn.IsVector() && vn.IsD())                            \
2453   V(uaddl2, NEON_UADDL2, vn.IsVector() && vn.IsQ())                            \
2454   V(usubl,  NEON_USUBL,  vn.IsVector() && vn.IsD())                            \
2455   V(usubl2, NEON_USUBL2, vn.IsVector() && vn.IsQ())                            \
2456   V(sqdmlal,  NEON_SQDMLAL,  vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
2457   V(sqdmlal2, NEON_SQDMLAL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
2458   V(sqdmlsl,  NEON_SQDMLSL,  vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
2459   V(sqdmlsl2, NEON_SQDMLSL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
2460   V(sqdmull,  NEON_SQDMULL,  vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
2461   V(sqdmull2, NEON_SQDMULL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
2462 // clang-format on
2463 
2464 
2465 #define VIXL_DEFINE_ASM_FUNC(FN, OP, AS)                   \
2466 void Assembler::FN(const VRegister& vd,               \
2467                    const VRegister& vn,               \
2468                    const VRegister& vm) {             \
2469   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));            \
2470   VIXL_ASSERT(AS);                                    \
2471   NEON3DifferentL(vd, vn, vm, OP);                    \
2472 }
2473 NEON_3DIFF_LONG_LIST(VIXL_DEFINE_ASM_FUNC)
2474 #undef VIXL_DEFINE_ASM_FUNC
2475 
2476 // clang-format off
2477 #define NEON_3DIFF_HN_LIST(V)         \
2478   V(addhn,   NEON_ADDHN,   vd.IsD())  \
2479   V(addhn2,  NEON_ADDHN2,  vd.IsQ())  \
2480   V(raddhn,  NEON_RADDHN,  vd.IsD())  \
2481   V(raddhn2, NEON_RADDHN2, vd.IsQ())  \
2482   V(subhn,   NEON_SUBHN,   vd.IsD())  \
2483   V(subhn2,  NEON_SUBHN2,  vd.IsQ())  \
2484   V(rsubhn,  NEON_RSUBHN,  vd.IsD())  \
2485   V(rsubhn2, NEON_RSUBHN2, vd.IsQ())
2486 // clang-format on
2487 
2488 #define VIXL_DEFINE_ASM_FUNC(FN, OP, AS)     \
2489   void Assembler::FN(const VRegister& vd,    \
2490                      const VRegister& vn,    \
2491                      const VRegister& vm) {  \
2492     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON)); \
2493     VIXL_ASSERT(AS);                         \
2494     NEON3DifferentHN(vd, vn, vm, OP);        \
2495   }
NEON_3DIFF_HN_LIST(VIXL_DEFINE_ASM_FUNC)2496 NEON_3DIFF_HN_LIST(VIXL_DEFINE_ASM_FUNC)
2497 #undef VIXL_DEFINE_ASM_FUNC
2498 
2499 void Assembler::uaddw(const VRegister& vd,
2500                       const VRegister& vn,
2501                       const VRegister& vm) {
2502   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2503   VIXL_ASSERT(vm.IsD());
2504   NEON3DifferentW(vd, vn, vm, NEON_UADDW);
2505 }
2506 
2507 
uaddw2(const VRegister & vd,const VRegister & vn,const VRegister & vm)2508 void Assembler::uaddw2(const VRegister& vd,
2509                        const VRegister& vn,
2510                        const VRegister& vm) {
2511   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2512   VIXL_ASSERT(vm.IsQ());
2513   NEON3DifferentW(vd, vn, vm, NEON_UADDW2);
2514 }
2515 
2516 
saddw(const VRegister & vd,const VRegister & vn,const VRegister & vm)2517 void Assembler::saddw(const VRegister& vd,
2518                       const VRegister& vn,
2519                       const VRegister& vm) {
2520   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2521   VIXL_ASSERT(vm.IsD());
2522   NEON3DifferentW(vd, vn, vm, NEON_SADDW);
2523 }
2524 
2525 
saddw2(const VRegister & vd,const VRegister & vn,const VRegister & vm)2526 void Assembler::saddw2(const VRegister& vd,
2527                        const VRegister& vn,
2528                        const VRegister& vm) {
2529   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2530   VIXL_ASSERT(vm.IsQ());
2531   NEON3DifferentW(vd, vn, vm, NEON_SADDW2);
2532 }
2533 
2534 
usubw(const VRegister & vd,const VRegister & vn,const VRegister & vm)2535 void Assembler::usubw(const VRegister& vd,
2536                       const VRegister& vn,
2537                       const VRegister& vm) {
2538   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2539   VIXL_ASSERT(vm.IsD());
2540   NEON3DifferentW(vd, vn, vm, NEON_USUBW);
2541 }
2542 
2543 
usubw2(const VRegister & vd,const VRegister & vn,const VRegister & vm)2544 void Assembler::usubw2(const VRegister& vd,
2545                        const VRegister& vn,
2546                        const VRegister& vm) {
2547   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2548   VIXL_ASSERT(vm.IsQ());
2549   NEON3DifferentW(vd, vn, vm, NEON_USUBW2);
2550 }
2551 
2552 
ssubw(const VRegister & vd,const VRegister & vn,const VRegister & vm)2553 void Assembler::ssubw(const VRegister& vd,
2554                       const VRegister& vn,
2555                       const VRegister& vm) {
2556   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2557   VIXL_ASSERT(vm.IsD());
2558   NEON3DifferentW(vd, vn, vm, NEON_SSUBW);
2559 }
2560 
2561 
ssubw2(const VRegister & vd,const VRegister & vn,const VRegister & vm)2562 void Assembler::ssubw2(const VRegister& vd,
2563                        const VRegister& vn,
2564                        const VRegister& vm) {
2565   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2566   VIXL_ASSERT(vm.IsQ());
2567   NEON3DifferentW(vd, vn, vm, NEON_SSUBW2);
2568 }
2569 
2570 
mov(const Register & rd,const Register & rm)2571 void Assembler::mov(const Register& rd, const Register& rm) {
2572   // Moves involving the stack pointer are encoded as add immediate with
2573   // second operand of zero. Otherwise, orr with first operand zr is
2574   // used.
2575   if (rd.IsSP() || rm.IsSP()) {
2576     add(rd, rm, 0);
2577   } else {
2578     orr(rd, AppropriateZeroRegFor(rd), rm);
2579   }
2580 }
2581 
xpaclri()2582 void Assembler::xpaclri() {
2583   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2584   Emit(XPACLRI);
2585 }
2586 
pacia1716()2587 void Assembler::pacia1716() {
2588   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2589   Emit(PACIA1716);
2590 }
2591 
pacib1716()2592 void Assembler::pacib1716() {
2593   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2594   Emit(PACIB1716);
2595 }
2596 
autia1716()2597 void Assembler::autia1716() {
2598   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2599   Emit(AUTIA1716);
2600 }
2601 
autib1716()2602 void Assembler::autib1716() {
2603   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2604   Emit(AUTIB1716);
2605 }
2606 
paciaz()2607 void Assembler::paciaz() {
2608   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2609   Emit(PACIAZ);
2610 }
2611 
pacibz()2612 void Assembler::pacibz() {
2613   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2614   Emit(PACIBZ);
2615 }
2616 
autiaz()2617 void Assembler::autiaz() {
2618   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2619   Emit(AUTIAZ);
2620 }
2621 
autibz()2622 void Assembler::autibz() {
2623   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2624   Emit(AUTIBZ);
2625 }
2626 
paciasp()2627 void Assembler::paciasp() {
2628   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2629   Emit(PACIASP);
2630 }
2631 
pacibsp()2632 void Assembler::pacibsp() {
2633   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2634   Emit(PACIBSP);
2635 }
2636 
autiasp()2637 void Assembler::autiasp() {
2638   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2639   Emit(AUTIASP);
2640 }
2641 
autibsp()2642 void Assembler::autibsp() {
2643   VIXL_ASSERT(CPUHas(CPUFeatures::kPAuth));
2644   Emit(AUTIBSP);
2645 }
2646 
bti(BranchTargetIdentifier id)2647 void Assembler::bti(BranchTargetIdentifier id) {
2648   VIXL_ASSERT((id != EmitPACIASP) && (id != EmitPACIBSP));  // Not modes of Bti.
2649   VIXL_ASSERT(id != EmitBTI_none);  // Always generate an instruction.
2650   VIXL_ASSERT(CPUHas(CPUFeatures::kBTI));
2651   hint(static_cast<SystemHint>(id));
2652 }
2653 
mvn(const Register & rd,const Operand & operand)2654 void Assembler::mvn(const Register& rd, const Operand& operand) {
2655   orn(rd, AppropriateZeroRegFor(rd), operand);
2656 }
2657 
2658 
mrs(const Register & xt,SystemRegister sysreg)2659 void Assembler::mrs(const Register& xt, SystemRegister sysreg) {
2660   VIXL_ASSERT(xt.Is64Bits());
2661   VIXL_ASSERT(CPUHas(sysreg));
2662   Emit(MRS | ImmSystemRegister(sysreg) | Rt(xt));
2663 }
2664 
2665 
msr(SystemRegister sysreg,const Register & xt)2666 void Assembler::msr(SystemRegister sysreg, const Register& xt) {
2667   VIXL_ASSERT(xt.Is64Bits());
2668   VIXL_ASSERT(CPUHas(sysreg));
2669   Emit(MSR | Rt(xt) | ImmSystemRegister(sysreg));
2670 }
2671 
2672 
cfinv()2673 void Assembler::cfinv() {
2674   VIXL_ASSERT(CPUHas(CPUFeatures::kFlagM));
2675   Emit(CFINV);
2676 }
2677 
2678 
axflag()2679 void Assembler::axflag() {
2680   VIXL_ASSERT(CPUHas(CPUFeatures::kAXFlag));
2681   Emit(AXFLAG);
2682 }
2683 
2684 
xaflag()2685 void Assembler::xaflag() {
2686   VIXL_ASSERT(CPUHas(CPUFeatures::kAXFlag));
2687   Emit(XAFLAG);
2688 }
2689 
2690 
clrex(int imm4)2691 void Assembler::clrex(int imm4) { Emit(CLREX | CRm(imm4)); }
2692 
2693 
dmb(BarrierDomain domain,BarrierType type)2694 void Assembler::dmb(BarrierDomain domain, BarrierType type) {
2695   Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
2696 }
2697 
2698 
dsb(BarrierDomain domain,BarrierType type)2699 void Assembler::dsb(BarrierDomain domain, BarrierType type) {
2700   Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
2701 }
2702 
2703 
isb()2704 void Assembler::isb() {
2705   Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
2706 }
2707 
esb()2708 void Assembler::esb() {
2709   VIXL_ASSERT(CPUHas(CPUFeatures::kRAS));
2710   hint(ESB);
2711 }
2712 
csdb()2713 void Assembler::csdb() { hint(CSDB); }
2714 
fmov(const VRegister & vd,double imm)2715 void Assembler::fmov(const VRegister& vd, double imm) {
2716   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2717   if (vd.IsScalar()) {
2718     VIXL_ASSERT(vd.Is1D());
2719     Emit(FMOV_d_imm | Rd(vd) | ImmFP64(imm));
2720   } else {
2721     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2722     VIXL_ASSERT(vd.Is2D());
2723     Instr op = NEONModifiedImmediate_MOVI | NEONModifiedImmediateOpBit;
2724     Instr q = NEON_Q;
2725     uint32_t encoded_imm = FP64ToImm8(imm);
2726     Emit(q | op | ImmNEONabcdefgh(encoded_imm) | NEONCmode(0xf) | Rd(vd));
2727   }
2728 }
2729 
2730 
fmov(const VRegister & vd,float imm)2731 void Assembler::fmov(const VRegister& vd, float imm) {
2732   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2733   if (vd.IsScalar()) {
2734     VIXL_ASSERT(vd.Is1S());
2735     Emit(FMOV_s_imm | Rd(vd) | ImmFP32(imm));
2736   } else {
2737     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
2738     VIXL_ASSERT(vd.Is2S() | vd.Is4S());
2739     Instr op = NEONModifiedImmediate_MOVI;
2740     Instr q = vd.Is4S() ? NEON_Q : 0;
2741     uint32_t encoded_imm = FP32ToImm8(imm);
2742     Emit(q | op | ImmNEONabcdefgh(encoded_imm) | NEONCmode(0xf) | Rd(vd));
2743   }
2744 }
2745 
2746 
fmov(const VRegister & vd,Float16 imm)2747 void Assembler::fmov(const VRegister& vd, Float16 imm) {
2748   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2749   if (vd.IsScalar()) {
2750     VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2751     VIXL_ASSERT(vd.Is1H());
2752     Emit(FMOV_h_imm | Rd(vd) | ImmFP16(imm));
2753   } else {
2754     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kNEONHalf));
2755     VIXL_ASSERT(vd.Is4H() | vd.Is8H());
2756     Instr q = vd.Is8H() ? NEON_Q : 0;
2757     uint32_t encoded_imm = FP16ToImm8(imm);
2758     Emit(q | NEONModifiedImmediate_FMOV | ImmNEONabcdefgh(encoded_imm) |
2759          NEONCmode(0xf) | Rd(vd));
2760   }
2761 }
2762 
2763 
fmov(const Register & rd,const VRegister & vn)2764 void Assembler::fmov(const Register& rd, const VRegister& vn) {
2765   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2766   VIXL_ASSERT(vn.Is1H() || vn.Is1S() || vn.Is1D());
2767   VIXL_ASSERT((rd.GetSizeInBits() == vn.GetSizeInBits()) || vn.Is1H());
2768   FPIntegerConvertOp op;
2769   switch (vn.GetSizeInBits()) {
2770     case 16:
2771       VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2772       op = rd.Is64Bits() ? FMOV_xh : FMOV_wh;
2773       break;
2774     case 32:
2775       op = FMOV_ws;
2776       break;
2777     default:
2778       op = FMOV_xd;
2779   }
2780   Emit(op | Rd(rd) | Rn(vn));
2781 }
2782 
2783 
fmov(const VRegister & vd,const Register & rn)2784 void Assembler::fmov(const VRegister& vd, const Register& rn) {
2785   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2786   VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
2787   VIXL_ASSERT((vd.GetSizeInBits() == rn.GetSizeInBits()) || vd.Is1H());
2788   FPIntegerConvertOp op;
2789   switch (vd.GetSizeInBits()) {
2790     case 16:
2791       VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2792       op = rn.Is64Bits() ? FMOV_hx : FMOV_hw;
2793       break;
2794     case 32:
2795       op = FMOV_sw;
2796       break;
2797     default:
2798       op = FMOV_dx;
2799   }
2800   Emit(op | Rd(vd) | Rn(rn));
2801 }
2802 
2803 
fmov(const VRegister & vd,const VRegister & vn)2804 void Assembler::fmov(const VRegister& vd, const VRegister& vn) {
2805   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2806   if (vd.Is1H()) {
2807     VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2808   }
2809   VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
2810   VIXL_ASSERT(vd.IsSameFormat(vn));
2811   Emit(FPType(vd) | FMOV | Rd(vd) | Rn(vn));
2812 }
2813 
2814 
fmov(const VRegister & vd,int index,const Register & rn)2815 void Assembler::fmov(const VRegister& vd, int index, const Register& rn) {
2816   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kFP));
2817   VIXL_ASSERT((index == 1) && vd.Is1D() && rn.IsX());
2818   USE(index);
2819   Emit(FMOV_d1_x | Rd(vd) | Rn(rn));
2820 }
2821 
2822 
fmov(const Register & rd,const VRegister & vn,int index)2823 void Assembler::fmov(const Register& rd, const VRegister& vn, int index) {
2824   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kFP));
2825   VIXL_ASSERT((index == 1) && vn.Is1D() && rd.IsX());
2826   USE(index);
2827   Emit(FMOV_x_d1 | Rd(rd) | Rn(vn));
2828 }
2829 
2830 
fmadd(const VRegister & vd,const VRegister & vn,const VRegister & vm,const VRegister & va)2831 void Assembler::fmadd(const VRegister& vd,
2832                       const VRegister& vn,
2833                       const VRegister& vm,
2834                       const VRegister& va) {
2835   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2836   FPDataProcessing3SourceOp op;
2837   if (vd.Is1H()) {
2838     VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2839     op = FMADD_h;
2840   } else if (vd.Is1S()) {
2841     op = FMADD_s;
2842   } else {
2843     VIXL_ASSERT(vd.Is1D());
2844     op = FMADD_d;
2845   }
2846   FPDataProcessing3Source(vd, vn, vm, va, op);
2847 }
2848 
2849 
fmsub(const VRegister & vd,const VRegister & vn,const VRegister & vm,const VRegister & va)2850 void Assembler::fmsub(const VRegister& vd,
2851                       const VRegister& vn,
2852                       const VRegister& vm,
2853                       const VRegister& va) {
2854   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2855   FPDataProcessing3SourceOp op;
2856   if (vd.Is1H()) {
2857     VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2858     op = FMSUB_h;
2859   } else if (vd.Is1S()) {
2860     op = FMSUB_s;
2861   } else {
2862     VIXL_ASSERT(vd.Is1D());
2863     op = FMSUB_d;
2864   }
2865   FPDataProcessing3Source(vd, vn, vm, va, op);
2866 }
2867 
2868 
fnmadd(const VRegister & vd,const VRegister & vn,const VRegister & vm,const VRegister & va)2869 void Assembler::fnmadd(const VRegister& vd,
2870                        const VRegister& vn,
2871                        const VRegister& vm,
2872                        const VRegister& va) {
2873   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2874   FPDataProcessing3SourceOp op;
2875   if (vd.Is1H()) {
2876     VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2877     op = FNMADD_h;
2878   } else if (vd.Is1S()) {
2879     op = FNMADD_s;
2880   } else {
2881     VIXL_ASSERT(vd.Is1D());
2882     op = FNMADD_d;
2883   }
2884   FPDataProcessing3Source(vd, vn, vm, va, op);
2885 }
2886 
2887 
fnmsub(const VRegister & vd,const VRegister & vn,const VRegister & vm,const VRegister & va)2888 void Assembler::fnmsub(const VRegister& vd,
2889                        const VRegister& vn,
2890                        const VRegister& vm,
2891                        const VRegister& va) {
2892   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2893   FPDataProcessing3SourceOp op;
2894   if (vd.Is1H()) {
2895     VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2896     op = FNMSUB_h;
2897   } else if (vd.Is1S()) {
2898     op = FNMSUB_s;
2899   } else {
2900     VIXL_ASSERT(vd.Is1D());
2901     op = FNMSUB_d;
2902   }
2903   FPDataProcessing3Source(vd, vn, vm, va, op);
2904 }
2905 
2906 
fnmul(const VRegister & vd,const VRegister & vn,const VRegister & vm)2907 void Assembler::fnmul(const VRegister& vd,
2908                       const VRegister& vn,
2909                       const VRegister& vm) {
2910   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2911   VIXL_ASSERT(AreSameSizeAndType(vd, vn, vm));
2912   Instr op;
2913   if (vd.Is1H()) {
2914     VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2915     op = FNMUL_h;
2916   } else if (vd.Is1S()) {
2917     op = FNMUL_s;
2918   } else {
2919     VIXL_ASSERT(vd.Is1D());
2920     op = FNMUL_d;
2921   }
2922   Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
2923 }
2924 
2925 
FPCompareMacro(const VRegister & vn,double value,FPTrapFlags trap)2926 void Assembler::FPCompareMacro(const VRegister& vn,
2927                                double value,
2928                                FPTrapFlags trap) {
2929   USE(value);
2930   // Although the fcmp{e} instructions can strictly only take an immediate
2931   // value of +0.0, we don't need to check for -0.0 because the sign of 0.0
2932   // doesn't affect the result of the comparison.
2933   VIXL_ASSERT(value == 0.0);
2934   VIXL_ASSERT(vn.Is1H() || vn.Is1S() || vn.Is1D());
2935   Instr op = (trap == EnableTrap) ? FCMPE_zero : FCMP_zero;
2936   Emit(FPType(vn) | op | Rn(vn));
2937 }
2938 
2939 
FPCompareMacro(const VRegister & vn,const VRegister & vm,FPTrapFlags trap)2940 void Assembler::FPCompareMacro(const VRegister& vn,
2941                                const VRegister& vm,
2942                                FPTrapFlags trap) {
2943   VIXL_ASSERT(vn.Is1H() || vn.Is1S() || vn.Is1D());
2944   VIXL_ASSERT(vn.IsSameSizeAndType(vm));
2945   Instr op = (trap == EnableTrap) ? FCMPE : FCMP;
2946   Emit(FPType(vn) | op | Rm(vm) | Rn(vn));
2947 }
2948 
2949 
fcmp(const VRegister & vn,const VRegister & vm)2950 void Assembler::fcmp(const VRegister& vn, const VRegister& vm) {
2951   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2952   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2953   FPCompareMacro(vn, vm, DisableTrap);
2954 }
2955 
2956 
fcmpe(const VRegister & vn,const VRegister & vm)2957 void Assembler::fcmpe(const VRegister& vn, const VRegister& vm) {
2958   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2959   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2960   FPCompareMacro(vn, vm, EnableTrap);
2961 }
2962 
2963 
fcmp(const VRegister & vn,double value)2964 void Assembler::fcmp(const VRegister& vn, double value) {
2965   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2966   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2967   FPCompareMacro(vn, value, DisableTrap);
2968 }
2969 
2970 
fcmpe(const VRegister & vn,double value)2971 void Assembler::fcmpe(const VRegister& vn, double value) {
2972   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2973   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2974   FPCompareMacro(vn, value, EnableTrap);
2975 }
2976 
2977 
FPCCompareMacro(const VRegister & vn,const VRegister & vm,StatusFlags nzcv,Condition cond,FPTrapFlags trap)2978 void Assembler::FPCCompareMacro(const VRegister& vn,
2979                                 const VRegister& vm,
2980                                 StatusFlags nzcv,
2981                                 Condition cond,
2982                                 FPTrapFlags trap) {
2983   VIXL_ASSERT(vn.Is1H() || vn.Is1S() || vn.Is1D());
2984   VIXL_ASSERT(vn.IsSameSizeAndType(vm));
2985   Instr op = (trap == EnableTrap) ? FCCMPE : FCCMP;
2986   Emit(FPType(vn) | op | Rm(vm) | Cond(cond) | Rn(vn) | Nzcv(nzcv));
2987 }
2988 
fccmp(const VRegister & vn,const VRegister & vm,StatusFlags nzcv,Condition cond)2989 void Assembler::fccmp(const VRegister& vn,
2990                       const VRegister& vm,
2991                       StatusFlags nzcv,
2992                       Condition cond) {
2993   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
2994   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
2995   FPCCompareMacro(vn, vm, nzcv, cond, DisableTrap);
2996 }
2997 
2998 
fccmpe(const VRegister & vn,const VRegister & vm,StatusFlags nzcv,Condition cond)2999 void Assembler::fccmpe(const VRegister& vn,
3000                        const VRegister& vm,
3001                        StatusFlags nzcv,
3002                        Condition cond) {
3003   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
3004   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
3005   FPCCompareMacro(vn, vm, nzcv, cond, EnableTrap);
3006 }
3007 
3008 
fcsel(const VRegister & vd,const VRegister & vn,const VRegister & vm,Condition cond)3009 void Assembler::fcsel(const VRegister& vd,
3010                       const VRegister& vn,
3011                       const VRegister& vm,
3012                       Condition cond) {
3013   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
3014   if (vd.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
3015   VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
3016   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3017   Emit(FPType(vd) | FCSEL | Rm(vm) | Cond(cond) | Rn(vn) | Rd(vd));
3018 }
3019 
3020 
fcvt(const VRegister & vd,const VRegister & vn)3021 void Assembler::fcvt(const VRegister& vd, const VRegister& vn) {
3022   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
3023   FPDataProcessing1SourceOp op;
3024   // The half-precision variants belong to base FP, and do not require kFPHalf.
3025   if (vd.Is1D()) {
3026     VIXL_ASSERT(vn.Is1S() || vn.Is1H());
3027     op = vn.Is1S() ? FCVT_ds : FCVT_dh;
3028   } else if (vd.Is1S()) {
3029     VIXL_ASSERT(vn.Is1D() || vn.Is1H());
3030     op = vn.Is1D() ? FCVT_sd : FCVT_sh;
3031   } else {
3032     VIXL_ASSERT(vd.Is1H());
3033     VIXL_ASSERT(vn.Is1D() || vn.Is1S());
3034     op = vn.Is1D() ? FCVT_hd : FCVT_hs;
3035   }
3036   FPDataProcessing1Source(vd, vn, op);
3037 }
3038 
3039 
fcvtl(const VRegister & vd,const VRegister & vn)3040 void Assembler::fcvtl(const VRegister& vd, const VRegister& vn) {
3041   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3042   VIXL_ASSERT((vd.Is4S() && vn.Is4H()) || (vd.Is2D() && vn.Is2S()));
3043   // The half-precision variants belong to base FP, and do not require kFPHalf.
3044   Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0;
3045   Emit(format | NEON_FCVTL | Rn(vn) | Rd(vd));
3046 }
3047 
3048 
fcvtl2(const VRegister & vd,const VRegister & vn)3049 void Assembler::fcvtl2(const VRegister& vd, const VRegister& vn) {
3050   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3051   VIXL_ASSERT((vd.Is4S() && vn.Is8H()) || (vd.Is2D() && vn.Is4S()));
3052   // The half-precision variants belong to base FP, and do not require kFPHalf.
3053   Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0;
3054   Emit(NEON_Q | format | NEON_FCVTL | Rn(vn) | Rd(vd));
3055 }
3056 
3057 
fcvtn(const VRegister & vd,const VRegister & vn)3058 void Assembler::fcvtn(const VRegister& vd, const VRegister& vn) {
3059   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3060   VIXL_ASSERT((vn.Is4S() && vd.Is4H()) || (vn.Is2D() && vd.Is2S()));
3061   // The half-precision variants belong to base FP, and do not require kFPHalf.
3062   Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0;
3063   Emit(format | NEON_FCVTN | Rn(vn) | Rd(vd));
3064 }
3065 
3066 
fcvtn2(const VRegister & vd,const VRegister & vn)3067 void Assembler::fcvtn2(const VRegister& vd, const VRegister& vn) {
3068   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3069   VIXL_ASSERT((vn.Is4S() && vd.Is8H()) || (vn.Is2D() && vd.Is4S()));
3070   // The half-precision variants belong to base FP, and do not require kFPHalf.
3071   Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0;
3072   Emit(NEON_Q | format | NEON_FCVTN | Rn(vn) | Rd(vd));
3073 }
3074 
3075 
fcvtxn(const VRegister & vd,const VRegister & vn)3076 void Assembler::fcvtxn(const VRegister& vd, const VRegister& vn) {
3077   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3078   Instr format = 1 << NEONSize_offset;
3079   if (vd.IsScalar()) {
3080     VIXL_ASSERT(vd.Is1S() && vn.Is1D());
3081     Emit(format | NEON_FCVTXN_scalar | Rn(vn) | Rd(vd));
3082   } else {
3083     VIXL_ASSERT(vd.Is2S() && vn.Is2D());
3084     Emit(format | NEON_FCVTXN | Rn(vn) | Rd(vd));
3085   }
3086 }
3087 
3088 
fcvtxn2(const VRegister & vd,const VRegister & vn)3089 void Assembler::fcvtxn2(const VRegister& vd, const VRegister& vn) {
3090   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3091   VIXL_ASSERT(vd.Is4S() && vn.Is2D());
3092   Instr format = 1 << NEONSize_offset;
3093   Emit(NEON_Q | format | NEON_FCVTXN | Rn(vn) | Rd(vd));
3094 }
3095 
fjcvtzs(const Register & rd,const VRegister & vn)3096 void Assembler::fjcvtzs(const Register& rd, const VRegister& vn) {
3097   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kJSCVT));
3098   VIXL_ASSERT(rd.IsW() && vn.Is1D());
3099   Emit(FJCVTZS | Rn(vn) | Rd(rd));
3100 }
3101 
3102 
NEONFPConvertToInt(const Register & rd,const VRegister & vn,Instr op)3103 void Assembler::NEONFPConvertToInt(const Register& rd,
3104                                    const VRegister& vn,
3105                                    Instr op) {
3106   Emit(SF(rd) | FPType(vn) | op | Rn(vn) | Rd(rd));
3107 }
3108 
3109 
NEONFPConvertToInt(const VRegister & vd,const VRegister & vn,Instr op)3110 void Assembler::NEONFPConvertToInt(const VRegister& vd,
3111                                    const VRegister& vn,
3112                                    Instr op) {
3113   if (vn.IsScalar()) {
3114     VIXL_ASSERT((vd.Is1S() && vn.Is1S()) || (vd.Is1D() && vn.Is1D()));
3115     op |= NEON_Q | NEONScalar;
3116   }
3117   Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd));
3118 }
3119 
3120 
NEONFP16ConvertToInt(const VRegister & vd,const VRegister & vn,Instr op)3121 void Assembler::NEONFP16ConvertToInt(const VRegister& vd,
3122                                      const VRegister& vn,
3123                                      Instr op) {
3124   VIXL_ASSERT(AreSameFormat(vd, vn));
3125   VIXL_ASSERT(vn.IsLaneSizeH());
3126   if (vn.IsScalar()) {
3127     op |= NEON_Q | NEONScalar;
3128   } else if (vn.Is8H()) {
3129     op |= NEON_Q;
3130   }
3131   Emit(op | Rn(vn) | Rd(vd));
3132 }
3133 
3134 
3135 #define NEON_FP2REGMISC_FCVT_LIST(V) \
3136   V(fcvtnu, NEON_FCVTNU, FCVTNU)     \
3137   V(fcvtns, NEON_FCVTNS, FCVTNS)     \
3138   V(fcvtpu, NEON_FCVTPU, FCVTPU)     \
3139   V(fcvtps, NEON_FCVTPS, FCVTPS)     \
3140   V(fcvtmu, NEON_FCVTMU, FCVTMU)     \
3141   V(fcvtms, NEON_FCVTMS, FCVTMS)     \
3142   V(fcvtau, NEON_FCVTAU, FCVTAU)     \
3143   V(fcvtas, NEON_FCVTAS, FCVTAS)
3144 
3145 #define VIXL_DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP)                 \
3146   void Assembler::FN(const Register& rd, const VRegister& vn) {  \
3147     VIXL_ASSERT(CPUHas(CPUFeatures::kFP));                       \
3148     if (vn.IsH()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));     \
3149     NEONFPConvertToInt(rd, vn, SCA_OP);                          \
3150   }                                                              \
3151   void Assembler::FN(const VRegister& vd, const VRegister& vn) { \
3152     VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));   \
3153     if (vd.IsLaneSizeH()) {                                      \
3154       VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));               \
3155       NEONFP16ConvertToInt(vd, vn, VEC_OP##_H);                  \
3156     } else {                                                     \
3157       NEONFPConvertToInt(vd, vn, VEC_OP);                        \
3158     }                                                            \
3159   }
NEON_FP2REGMISC_FCVT_LIST(VIXL_DEFINE_ASM_FUNC)3160 NEON_FP2REGMISC_FCVT_LIST(VIXL_DEFINE_ASM_FUNC)
3161 #undef VIXL_DEFINE_ASM_FUNC
3162 
3163 
3164 void Assembler::fcvtzs(const Register& rd, const VRegister& vn, int fbits) {
3165   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
3166   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
3167   VIXL_ASSERT(vn.Is1H() || vn.Is1S() || vn.Is1D());
3168   VIXL_ASSERT((fbits >= 0) && (fbits <= rd.GetSizeInBits()));
3169   if (fbits == 0) {
3170     Emit(SF(rd) | FPType(vn) | FCVTZS | Rn(vn) | Rd(rd));
3171   } else {
3172     Emit(SF(rd) | FPType(vn) | FCVTZS_fixed | FPScale(64 - fbits) | Rn(vn) |
3173          Rd(rd));
3174   }
3175 }
3176 
3177 
fcvtzs(const VRegister & vd,const VRegister & vn,int fbits)3178 void Assembler::fcvtzs(const VRegister& vd, const VRegister& vn, int fbits) {
3179   // This form is a NEON scalar FP instruction.
3180   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3181   if (vn.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3182   VIXL_ASSERT(fbits >= 0);
3183   if (fbits == 0) {
3184     if (vd.IsLaneSizeH()) {
3185       NEONFP2RegMiscFP16(vd, vn, NEON_FCVTZS_H);
3186     } else {
3187       NEONFP2RegMisc(vd, vn, NEON_FCVTZS);
3188     }
3189   } else {
3190     VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S() ||
3191                 vd.Is1H() || vd.Is4H() || vd.Is8H());
3192     NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZS_imm);
3193   }
3194 }
3195 
3196 
fcvtzu(const Register & rd,const VRegister & vn,int fbits)3197 void Assembler::fcvtzu(const Register& rd, const VRegister& vn, int fbits) {
3198   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
3199   if (vn.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
3200   VIXL_ASSERT(vn.Is1H() || vn.Is1S() || vn.Is1D());
3201   VIXL_ASSERT((fbits >= 0) && (fbits <= rd.GetSizeInBits()));
3202   if (fbits == 0) {
3203     Emit(SF(rd) | FPType(vn) | FCVTZU | Rn(vn) | Rd(rd));
3204   } else {
3205     Emit(SF(rd) | FPType(vn) | FCVTZU_fixed | FPScale(64 - fbits) | Rn(vn) |
3206          Rd(rd));
3207   }
3208 }
3209 
3210 
fcvtzu(const VRegister & vd,const VRegister & vn,int fbits)3211 void Assembler::fcvtzu(const VRegister& vd, const VRegister& vn, int fbits) {
3212   // This form is a NEON scalar FP instruction.
3213   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3214   if (vn.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3215   VIXL_ASSERT(fbits >= 0);
3216   if (fbits == 0) {
3217     if (vd.IsLaneSizeH()) {
3218       NEONFP2RegMiscFP16(vd, vn, NEON_FCVTZU_H);
3219     } else {
3220       NEONFP2RegMisc(vd, vn, NEON_FCVTZU);
3221     }
3222   } else {
3223     VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S() ||
3224                 vd.Is1H() || vd.Is4H() || vd.Is8H());
3225     NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZU_imm);
3226   }
3227 }
3228 
ucvtf(const VRegister & vd,const VRegister & vn,int fbits)3229 void Assembler::ucvtf(const VRegister& vd, const VRegister& vn, int fbits) {
3230   // This form is a NEON scalar FP instruction.
3231   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3232   if (vn.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3233   VIXL_ASSERT(fbits >= 0);
3234   if (fbits == 0) {
3235     if (vd.IsLaneSizeH()) {
3236       NEONFP2RegMiscFP16(vd, vn, NEON_UCVTF_H);
3237     } else {
3238       NEONFP2RegMisc(vd, vn, NEON_UCVTF);
3239     }
3240   } else {
3241     VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S() ||
3242                 vd.Is1H() || vd.Is4H() || vd.Is8H());
3243     NEONShiftRightImmediate(vd, vn, fbits, NEON_UCVTF_imm);
3244   }
3245 }
3246 
scvtf(const VRegister & vd,const VRegister & vn,int fbits)3247 void Assembler::scvtf(const VRegister& vd, const VRegister& vn, int fbits) {
3248   // This form is a NEON scalar FP instruction.
3249   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3250   if (vn.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3251   VIXL_ASSERT(fbits >= 0);
3252   if (fbits == 0) {
3253     if (vd.IsLaneSizeH()) {
3254       NEONFP2RegMiscFP16(vd, vn, NEON_SCVTF_H);
3255     } else {
3256       NEONFP2RegMisc(vd, vn, NEON_SCVTF);
3257     }
3258   } else {
3259     VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S() ||
3260                 vd.Is1H() || vd.Is4H() || vd.Is8H());
3261     NEONShiftRightImmediate(vd, vn, fbits, NEON_SCVTF_imm);
3262   }
3263 }
3264 
3265 
scvtf(const VRegister & vd,const Register & rn,int fbits)3266 void Assembler::scvtf(const VRegister& vd, const Register& rn, int fbits) {
3267   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
3268   if (vd.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
3269   VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
3270   VIXL_ASSERT(fbits >= 0);
3271   if (fbits == 0) {
3272     Emit(SF(rn) | FPType(vd) | SCVTF | Rn(rn) | Rd(vd));
3273   } else {
3274     Emit(SF(rn) | FPType(vd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
3275          Rd(vd));
3276   }
3277 }
3278 
3279 
ucvtf(const VRegister & vd,const Register & rn,int fbits)3280 void Assembler::ucvtf(const VRegister& vd, const Register& rn, int fbits) {
3281   VIXL_ASSERT(CPUHas(CPUFeatures::kFP));
3282   if (vd.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));
3283   VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
3284   VIXL_ASSERT(fbits >= 0);
3285   if (fbits == 0) {
3286     Emit(SF(rn) | FPType(vd) | UCVTF | Rn(rn) | Rd(vd));
3287   } else {
3288     Emit(SF(rn) | FPType(vd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
3289          Rd(vd));
3290   }
3291 }
3292 
3293 
NEON3Same(const VRegister & vd,const VRegister & vn,const VRegister & vm,NEON3SameOp vop)3294 void Assembler::NEON3Same(const VRegister& vd,
3295                           const VRegister& vn,
3296                           const VRegister& vm,
3297                           NEON3SameOp vop) {
3298   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3299   VIXL_ASSERT(vd.IsVector() || !vd.IsQ());
3300 
3301   Instr format, op = vop;
3302   if (vd.IsScalar()) {
3303     op |= NEON_Q | NEONScalar;
3304     format = SFormat(vd);
3305   } else {
3306     format = VFormat(vd);
3307   }
3308 
3309   Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
3310 }
3311 
3312 
NEONFP3Same(const VRegister & vd,const VRegister & vn,const VRegister & vm,Instr op)3313 void Assembler::NEONFP3Same(const VRegister& vd,
3314                             const VRegister& vn,
3315                             const VRegister& vm,
3316                             Instr op) {
3317   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3318   Emit(FPFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
3319 }
3320 
3321 
NEON3SameFP16(const VRegister & vd,const VRegister & vn,const VRegister & vm,Instr op)3322 void Assembler::NEON3SameFP16(const VRegister& vd,
3323                               const VRegister& vn,
3324                               const VRegister& vm,
3325                               Instr op) {
3326   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3327   VIXL_ASSERT(vd.GetLaneSizeInBytes() == kHRegSizeInBytes);
3328   if (vd.Is8H()) op |= NEON_Q;
3329   Emit(op | Rm(vm) | Rn(vn) | Rd(vd));
3330 }
3331 
3332 
3333 // clang-format off
3334 #define NEON_FP2REGMISC_LIST(V)                                        \
3335   V(fabs,    NEON_FABS,    FABS,                FABS_h)                \
3336   V(fneg,    NEON_FNEG,    FNEG,                FNEG_h)                \
3337   V(fsqrt,   NEON_FSQRT,   FSQRT,               FSQRT_h)               \
3338   V(frintn,  NEON_FRINTN,  FRINTN,              FRINTN_h)              \
3339   V(frinta,  NEON_FRINTA,  FRINTA,              FRINTA_h)              \
3340   V(frintp,  NEON_FRINTP,  FRINTP,              FRINTP_h)              \
3341   V(frintm,  NEON_FRINTM,  FRINTM,              FRINTM_h)              \
3342   V(frintx,  NEON_FRINTX,  FRINTX,              FRINTX_h)              \
3343   V(frintz,  NEON_FRINTZ,  FRINTZ,              FRINTZ_h)              \
3344   V(frinti,  NEON_FRINTI,  FRINTI,              FRINTI_h)              \
3345   V(frsqrte, NEON_FRSQRTE, NEON_FRSQRTE_scalar, NEON_FRSQRTE_H_scalar) \
3346   V(frecpe,  NEON_FRECPE,  NEON_FRECPE_scalar,  NEON_FRECPE_H_scalar)
3347 // clang-format on
3348 
3349 #define VIXL_DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP, SCA_OP_H)                   \
3350   void Assembler::FN(const VRegister& vd, const VRegister& vn) {             \
3351     VIXL_ASSERT(CPUHas(CPUFeatures::kFP));                                   \
3352     Instr op;                                                                \
3353     if (vd.IsScalar()) {                                                     \
3354       if (vd.Is1H()) {                                                       \
3355         if ((SCA_OP_H & NEONScalar2RegMiscFP16FMask) ==                      \
3356             NEONScalar2RegMiscFP16Fixed) {                                   \
3357           VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kNEONHalf));   \
3358         } else {                                                             \
3359           VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));                         \
3360         }                                                                    \
3361         op = SCA_OP_H;                                                       \
3362       } else {                                                               \
3363         if ((SCA_OP & NEONScalar2RegMiscFMask) == NEONScalar2RegMiscFixed) { \
3364           VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));                           \
3365         }                                                                    \
3366         VIXL_ASSERT(vd.Is1S() || vd.Is1D());                                 \
3367         op = SCA_OP;                                                         \
3368       }                                                                      \
3369     } else {                                                                 \
3370       VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));                               \
3371       VIXL_ASSERT(vd.Is4H() || vd.Is8H() || vd.Is2S() || vd.Is2D() ||        \
3372                   vd.Is4S());                                                \
3373       if (vd.IsLaneSizeH()) {                                                \
3374         VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));                         \
3375         op = VEC_OP##_H;                                                     \
3376         if (vd.Is8H()) {                                                     \
3377           op |= NEON_Q;                                                      \
3378         }                                                                    \
3379       } else {                                                               \
3380         op = VEC_OP;                                                         \
3381       }                                                                      \
3382     }                                                                        \
3383     if (vd.IsLaneSizeH()) {                                                  \
3384       NEONFP2RegMiscFP16(vd, vn, op);                                        \
3385     } else {                                                                 \
3386       NEONFP2RegMisc(vd, vn, op);                                            \
3387     }                                                                        \
3388   }
3389 NEON_FP2REGMISC_LIST(VIXL_DEFINE_ASM_FUNC)
3390 #undef VIXL_DEFINE_ASM_FUNC
3391 
3392 // clang-format off
3393 #define NEON_FP2REGMISC_V85_LIST(V)       \
3394   V(frint32x,  NEON_FRINT32X,  FRINT32X)  \
3395   V(frint32z,  NEON_FRINT32Z,  FRINT32Z)  \
3396   V(frint64x,  NEON_FRINT64X,  FRINT64X)  \
3397   V(frint64z,  NEON_FRINT64Z,  FRINT64Z)
3398 // clang-format on
3399 
3400 #define VIXL_DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP)                               \
3401   void Assembler::FN(const VRegister& vd, const VRegister& vn) {               \
3402     VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kFrintToFixedSizedInt)); \
3403     Instr op;                                                                  \
3404     if (vd.IsScalar()) {                                                       \
3405       VIXL_ASSERT(vd.Is1S() || vd.Is1D());                                     \
3406       op = SCA_OP;                                                             \
3407     } else {                                                                   \
3408       VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));                                 \
3409       VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S());                        \
3410       op = VEC_OP;                                                             \
3411     }                                                                          \
3412     NEONFP2RegMisc(vd, vn, op);                                                \
3413   }
NEON_FP2REGMISC_V85_LIST(VIXL_DEFINE_ASM_FUNC)3414 NEON_FP2REGMISC_V85_LIST(VIXL_DEFINE_ASM_FUNC)
3415 #undef VIXL_DEFINE_ASM_FUNC
3416 
3417 void Assembler::NEONFP2RegMiscFP16(const VRegister& vd,
3418                                    const VRegister& vn,
3419                                    Instr op) {
3420   VIXL_ASSERT(AreSameFormat(vd, vn));
3421   Emit(op | Rn(vn) | Rd(vd));
3422 }
3423 
3424 
NEONFP2RegMisc(const VRegister & vd,const VRegister & vn,Instr op)3425 void Assembler::NEONFP2RegMisc(const VRegister& vd,
3426                                const VRegister& vn,
3427                                Instr op) {
3428   VIXL_ASSERT(AreSameFormat(vd, vn));
3429   Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd));
3430 }
3431 
3432 
NEON2RegMisc(const VRegister & vd,const VRegister & vn,NEON2RegMiscOp vop,int value)3433 void Assembler::NEON2RegMisc(const VRegister& vd,
3434                              const VRegister& vn,
3435                              NEON2RegMiscOp vop,
3436                              int value) {
3437   VIXL_ASSERT(AreSameFormat(vd, vn));
3438   VIXL_ASSERT(value == 0);
3439   USE(value);
3440 
3441   Instr format, op = vop;
3442   if (vd.IsScalar()) {
3443     op |= NEON_Q | NEONScalar;
3444     format = SFormat(vd);
3445   } else {
3446     format = VFormat(vd);
3447   }
3448 
3449   Emit(format | op | Rn(vn) | Rd(vd));
3450 }
3451 
3452 
cmeq(const VRegister & vd,const VRegister & vn,int value)3453 void Assembler::cmeq(const VRegister& vd, const VRegister& vn, int value) {
3454   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3455   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
3456   NEON2RegMisc(vd, vn, NEON_CMEQ_zero, value);
3457 }
3458 
3459 
cmge(const VRegister & vd,const VRegister & vn,int value)3460 void Assembler::cmge(const VRegister& vd, const VRegister& vn, int value) {
3461   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3462   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
3463   NEON2RegMisc(vd, vn, NEON_CMGE_zero, value);
3464 }
3465 
3466 
cmgt(const VRegister & vd,const VRegister & vn,int value)3467 void Assembler::cmgt(const VRegister& vd, const VRegister& vn, int value) {
3468   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3469   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
3470   NEON2RegMisc(vd, vn, NEON_CMGT_zero, value);
3471 }
3472 
3473 
cmle(const VRegister & vd,const VRegister & vn,int value)3474 void Assembler::cmle(const VRegister& vd, const VRegister& vn, int value) {
3475   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
3476   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3477   NEON2RegMisc(vd, vn, NEON_CMLE_zero, value);
3478 }
3479 
3480 
cmlt(const VRegister & vd,const VRegister & vn,int value)3481 void Assembler::cmlt(const VRegister& vd, const VRegister& vn, int value) {
3482   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3483   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
3484   NEON2RegMisc(vd, vn, NEON_CMLT_zero, value);
3485 }
3486 
3487 
shll(const VRegister & vd,const VRegister & vn,int shift)3488 void Assembler::shll(const VRegister& vd, const VRegister& vn, int shift) {
3489   USE(shift);
3490   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3491   VIXL_ASSERT((vd.Is8H() && vn.Is8B() && shift == 8) ||
3492               (vd.Is4S() && vn.Is4H() && shift == 16) ||
3493               (vd.Is2D() && vn.Is2S() && shift == 32));
3494   Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd));
3495 }
3496 
3497 
shll2(const VRegister & vd,const VRegister & vn,int shift)3498 void Assembler::shll2(const VRegister& vd, const VRegister& vn, int shift) {
3499   USE(shift);
3500   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3501   VIXL_ASSERT((vd.Is8H() && vn.Is16B() && shift == 8) ||
3502               (vd.Is4S() && vn.Is8H() && shift == 16) ||
3503               (vd.Is2D() && vn.Is4S() && shift == 32));
3504   Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd));
3505 }
3506 
3507 
NEONFP2RegMisc(const VRegister & vd,const VRegister & vn,NEON2RegMiscOp vop,double value)3508 void Assembler::NEONFP2RegMisc(const VRegister& vd,
3509                                const VRegister& vn,
3510                                NEON2RegMiscOp vop,
3511                                double value) {
3512   VIXL_ASSERT(AreSameFormat(vd, vn));
3513   VIXL_ASSERT(value == 0.0);
3514   USE(value);
3515 
3516   Instr op = vop;
3517   if (vd.IsScalar()) {
3518     VIXL_ASSERT(vd.Is1S() || vd.Is1D());
3519     op |= NEON_Q | NEONScalar;
3520   } else {
3521     VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S());
3522   }
3523 
3524   Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd));
3525 }
3526 
3527 
NEONFP2RegMiscFP16(const VRegister & vd,const VRegister & vn,NEON2RegMiscFP16Op vop,double value)3528 void Assembler::NEONFP2RegMiscFP16(const VRegister& vd,
3529                                    const VRegister& vn,
3530                                    NEON2RegMiscFP16Op vop,
3531                                    double value) {
3532   VIXL_ASSERT(AreSameFormat(vd, vn));
3533   VIXL_ASSERT(value == 0.0);
3534   USE(value);
3535 
3536   Instr op = vop;
3537   if (vd.IsScalar()) {
3538     VIXL_ASSERT(vd.Is1H());
3539     op |= NEON_Q | NEONScalar;
3540   } else {
3541     VIXL_ASSERT(vd.Is4H() || vd.Is8H());
3542     if (vd.Is8H()) {
3543       op |= NEON_Q;
3544     }
3545   }
3546 
3547   Emit(op | Rn(vn) | Rd(vd));
3548 }
3549 
3550 
fcmeq(const VRegister & vd,const VRegister & vn,double value)3551 void Assembler::fcmeq(const VRegister& vd, const VRegister& vn, double value) {
3552   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3553   if (vd.IsLaneSizeH()) {
3554     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3555     NEONFP2RegMiscFP16(vd, vn, NEON_FCMEQ_H_zero, value);
3556   } else {
3557     NEONFP2RegMisc(vd, vn, NEON_FCMEQ_zero, value);
3558   }
3559 }
3560 
3561 
fcmge(const VRegister & vd,const VRegister & vn,double value)3562 void Assembler::fcmge(const VRegister& vd, const VRegister& vn, double value) {
3563   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3564   if (vd.IsLaneSizeH()) {
3565     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3566     NEONFP2RegMiscFP16(vd, vn, NEON_FCMGE_H_zero, value);
3567   } else {
3568     NEONFP2RegMisc(vd, vn, NEON_FCMGE_zero, value);
3569   }
3570 }
3571 
3572 
fcmgt(const VRegister & vd,const VRegister & vn,double value)3573 void Assembler::fcmgt(const VRegister& vd, const VRegister& vn, double value) {
3574   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3575   if (vd.IsLaneSizeH()) {
3576     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3577     NEONFP2RegMiscFP16(vd, vn, NEON_FCMGT_H_zero, value);
3578   } else {
3579     NEONFP2RegMisc(vd, vn, NEON_FCMGT_zero, value);
3580   }
3581 }
3582 
3583 
fcmle(const VRegister & vd,const VRegister & vn,double value)3584 void Assembler::fcmle(const VRegister& vd, const VRegister& vn, double value) {
3585   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3586   if (vd.IsLaneSizeH()) {
3587     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3588     NEONFP2RegMiscFP16(vd, vn, NEON_FCMLE_H_zero, value);
3589   } else {
3590     NEONFP2RegMisc(vd, vn, NEON_FCMLE_zero, value);
3591   }
3592 }
3593 
3594 
fcmlt(const VRegister & vd,const VRegister & vn,double value)3595 void Assembler::fcmlt(const VRegister& vd, const VRegister& vn, double value) {
3596   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3597   if (vd.IsLaneSizeH()) {
3598     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3599     NEONFP2RegMiscFP16(vd, vn, NEON_FCMLT_H_zero, value);
3600   } else {
3601     NEONFP2RegMisc(vd, vn, NEON_FCMLT_zero, value);
3602   }
3603 }
3604 
3605 
frecpx(const VRegister & vd,const VRegister & vn)3606 void Assembler::frecpx(const VRegister& vd, const VRegister& vn) {
3607   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3608   VIXL_ASSERT(vd.IsScalar());
3609   VIXL_ASSERT(AreSameFormat(vd, vn));
3610   Instr op;
3611   if (vd.Is1H()) {
3612     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3613     op = NEON_FRECPX_H_scalar;
3614   } else {
3615     VIXL_ASSERT(vd.Is1S() || vd.Is1D());
3616     op = NEON_FRECPX_scalar;
3617   }
3618   Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd));
3619 }
3620 
3621 
3622 // clang-format off
3623 #define NEON_3SAME_LIST(V) \
3624   V(add,      NEON_ADD,      vd.IsVector() || vd.Is1D())            \
3625   V(addp,     NEON_ADDP,     vd.IsVector() || vd.Is1D())            \
3626   V(sub,      NEON_SUB,      vd.IsVector() || vd.Is1D())            \
3627   V(cmeq,     NEON_CMEQ,     vd.IsVector() || vd.Is1D())            \
3628   V(cmge,     NEON_CMGE,     vd.IsVector() || vd.Is1D())            \
3629   V(cmgt,     NEON_CMGT,     vd.IsVector() || vd.Is1D())            \
3630   V(cmhi,     NEON_CMHI,     vd.IsVector() || vd.Is1D())            \
3631   V(cmhs,     NEON_CMHS,     vd.IsVector() || vd.Is1D())            \
3632   V(cmtst,    NEON_CMTST,    vd.IsVector() || vd.Is1D())            \
3633   V(sshl,     NEON_SSHL,     vd.IsVector() || vd.Is1D())            \
3634   V(ushl,     NEON_USHL,     vd.IsVector() || vd.Is1D())            \
3635   V(srshl,    NEON_SRSHL,    vd.IsVector() || vd.Is1D())            \
3636   V(urshl,    NEON_URSHL,    vd.IsVector() || vd.Is1D())            \
3637   V(sqdmulh,  NEON_SQDMULH,  vd.IsLaneSizeH() || vd.IsLaneSizeS())  \
3638   V(sqrdmulh, NEON_SQRDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS())  \
3639   V(shadd,    NEON_SHADD,    vd.IsVector() && !vd.IsLaneSizeD())    \
3640   V(uhadd,    NEON_UHADD,    vd.IsVector() && !vd.IsLaneSizeD())    \
3641   V(srhadd,   NEON_SRHADD,   vd.IsVector() && !vd.IsLaneSizeD())    \
3642   V(urhadd,   NEON_URHADD,   vd.IsVector() && !vd.IsLaneSizeD())    \
3643   V(shsub,    NEON_SHSUB,    vd.IsVector() && !vd.IsLaneSizeD())    \
3644   V(uhsub,    NEON_UHSUB,    vd.IsVector() && !vd.IsLaneSizeD())    \
3645   V(smax,     NEON_SMAX,     vd.IsVector() && !vd.IsLaneSizeD())    \
3646   V(smaxp,    NEON_SMAXP,    vd.IsVector() && !vd.IsLaneSizeD())    \
3647   V(smin,     NEON_SMIN,     vd.IsVector() && !vd.IsLaneSizeD())    \
3648   V(sminp,    NEON_SMINP,    vd.IsVector() && !vd.IsLaneSizeD())    \
3649   V(umax,     NEON_UMAX,     vd.IsVector() && !vd.IsLaneSizeD())    \
3650   V(umaxp,    NEON_UMAXP,    vd.IsVector() && !vd.IsLaneSizeD())    \
3651   V(umin,     NEON_UMIN,     vd.IsVector() && !vd.IsLaneSizeD())    \
3652   V(uminp,    NEON_UMINP,    vd.IsVector() && !vd.IsLaneSizeD())    \
3653   V(saba,     NEON_SABA,     vd.IsVector() && !vd.IsLaneSizeD())    \
3654   V(sabd,     NEON_SABD,     vd.IsVector() && !vd.IsLaneSizeD())    \
3655   V(uaba,     NEON_UABA,     vd.IsVector() && !vd.IsLaneSizeD())    \
3656   V(uabd,     NEON_UABD,     vd.IsVector() && !vd.IsLaneSizeD())    \
3657   V(mla,      NEON_MLA,      vd.IsVector() && !vd.IsLaneSizeD())    \
3658   V(mls,      NEON_MLS,      vd.IsVector() && !vd.IsLaneSizeD())    \
3659   V(mul,      NEON_MUL,      vd.IsVector() && !vd.IsLaneSizeD())    \
3660   V(and_,     NEON_AND,      vd.Is8B() || vd.Is16B())               \
3661   V(orr,      NEON_ORR,      vd.Is8B() || vd.Is16B())               \
3662   V(orn,      NEON_ORN,      vd.Is8B() || vd.Is16B())               \
3663   V(eor,      NEON_EOR,      vd.Is8B() || vd.Is16B())               \
3664   V(bic,      NEON_BIC,      vd.Is8B() || vd.Is16B())               \
3665   V(bit,      NEON_BIT,      vd.Is8B() || vd.Is16B())               \
3666   V(bif,      NEON_BIF,      vd.Is8B() || vd.Is16B())               \
3667   V(bsl,      NEON_BSL,      vd.Is8B() || vd.Is16B())               \
3668   V(pmul,     NEON_PMUL,     vd.Is8B() || vd.Is16B())               \
3669   V(uqadd,    NEON_UQADD,    true)                                  \
3670   V(sqadd,    NEON_SQADD,    true)                                  \
3671   V(uqsub,    NEON_UQSUB,    true)                                  \
3672   V(sqsub,    NEON_SQSUB,    true)                                  \
3673   V(sqshl,    NEON_SQSHL,    true)                                  \
3674   V(uqshl,    NEON_UQSHL,    true)                                  \
3675   V(sqrshl,   NEON_SQRSHL,   true)                                  \
3676   V(uqrshl,   NEON_UQRSHL,   true)
3677 // clang-format on
3678 
3679 #define VIXL_DEFINE_ASM_FUNC(FN, OP, AS)     \
3680   void Assembler::FN(const VRegister& vd,    \
3681                      const VRegister& vn,    \
3682                      const VRegister& vm) {  \
3683     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON)); \
3684     VIXL_ASSERT(AS);                         \
3685     NEON3Same(vd, vn, vm, OP);               \
3686   }
3687 NEON_3SAME_LIST(VIXL_DEFINE_ASM_FUNC)
3688 #undef VIXL_DEFINE_ASM_FUNC
3689 
3690 // clang-format off
3691 #define NEON_FP3SAME_OP_LIST(V)                                        \
3692   V(fmulx,   NEON_FMULX,   NEON_FMULX_scalar,   NEON_FMULX_H_scalar)   \
3693   V(frecps,  NEON_FRECPS,  NEON_FRECPS_scalar,  NEON_FRECPS_H_scalar)  \
3694   V(frsqrts, NEON_FRSQRTS, NEON_FRSQRTS_scalar, NEON_FRSQRTS_H_scalar) \
3695   V(fabd,    NEON_FABD,    NEON_FABD_scalar,    NEON_FABD_H_scalar)    \
3696   V(fmla,    NEON_FMLA,    0,                   0)                     \
3697   V(fmls,    NEON_FMLS,    0,                   0)                     \
3698   V(facge,   NEON_FACGE,   NEON_FACGE_scalar,   NEON_FACGE_H_scalar)   \
3699   V(facgt,   NEON_FACGT,   NEON_FACGT_scalar,   NEON_FACGT_H_scalar)   \
3700   V(fcmeq,   NEON_FCMEQ,   NEON_FCMEQ_scalar,   NEON_FCMEQ_H_scalar)   \
3701   V(fcmge,   NEON_FCMGE,   NEON_FCMGE_scalar,   NEON_FCMGE_H_scalar)   \
3702   V(fcmgt,   NEON_FCMGT,   NEON_FCMGT_scalar,   NEON_FCMGT_H_scalar)   \
3703   V(faddp,   NEON_FADDP,   0,                   0)                     \
3704   V(fmaxp,   NEON_FMAXP,   0,                   0)                     \
3705   V(fminp,   NEON_FMINP,   0,                   0)                     \
3706   V(fmaxnmp, NEON_FMAXNMP, 0,                   0)                     \
3707   V(fadd,    NEON_FADD,    FADD,                0)                     \
3708   V(fsub,    NEON_FSUB,    FSUB,                0)                     \
3709   V(fmul,    NEON_FMUL,    FMUL,                0)                     \
3710   V(fdiv,    NEON_FDIV,    FDIV,                0)                     \
3711   V(fmax,    NEON_FMAX,    FMAX,                0)                     \
3712   V(fmin,    NEON_FMIN,    FMIN,                0)                     \
3713   V(fmaxnm,  NEON_FMAXNM,  FMAXNM,              0)                     \
3714   V(fminnm,  NEON_FMINNM,  FMINNM,              0)                     \
3715   V(fminnmp, NEON_FMINNMP, 0,                   0)
3716 // clang-format on
3717 
3718 // TODO: This macro is complicated because it classifies the instructions in the
3719 // macro list above, and treats each case differently. It could be somewhat
3720 // simpler if we were to split the macro, at the cost of some duplication.
3721 #define VIXL_DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP, SCA_OP_H)               \
3722   void Assembler::FN(const VRegister& vd,                                \
3723                      const VRegister& vn,                                \
3724                      const VRegister& vm) {                              \
3725     VIXL_ASSERT(CPUHas(CPUFeatures::kFP));                               \
3726     Instr op;                                                            \
3727     bool is_fp16 = false;                                                \
3728     if ((SCA_OP != 0) && vd.IsScalar()) {                                \
3729       if ((SCA_OP_H != 0) && vd.Is1H()) {                                \
3730         VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kNEONHalf)); \
3731         is_fp16 = true;                                                  \
3732         op = SCA_OP_H;                                                   \
3733       } else {                                                           \
3734         VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());                \
3735         if ((SCA_OP & NEONScalar3SameFMask) == NEONScalar3SameFixed) {   \
3736           VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));                       \
3737           if (vd.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));    \
3738         } else if (vd.Is1H()) {                                          \
3739           VIXL_ASSERT(CPUHas(CPUFeatures::kFPHalf));                     \
3740         }                                                                \
3741         op = SCA_OP;                                                     \
3742       }                                                                  \
3743     } else {                                                             \
3744       VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));                           \
3745       VIXL_ASSERT(vd.IsVector());                                        \
3746       if (vd.Is4H() || vd.Is8H()) {                                      \
3747         VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));                     \
3748         is_fp16 = true;                                                  \
3749         op = VEC_OP##_H;                                                 \
3750       } else {                                                           \
3751         VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S());                \
3752         op = VEC_OP;                                                     \
3753       }                                                                  \
3754     }                                                                    \
3755     if (is_fp16) {                                                       \
3756       NEON3SameFP16(vd, vn, vm, op);                                     \
3757     } else {                                                             \
3758       NEONFP3Same(vd, vn, vm, op);                                       \
3759     }                                                                    \
3760   }
NEON_FP3SAME_OP_LIST(VIXL_DEFINE_ASM_FUNC)3761 NEON_FP3SAME_OP_LIST(VIXL_DEFINE_ASM_FUNC)
3762 #undef VIXL_DEFINE_ASM_FUNC
3763 
3764 
3765 // clang-format off
3766 #define NEON_FHM_LIST(V) \
3767   V(fmlal,   NEON_FMLAL)   \
3768   V(fmlal2,  NEON_FMLAL2)  \
3769   V(fmlsl,   NEON_FMLSL)   \
3770   V(fmlsl2,  NEON_FMLSL2)
3771 // clang-format on
3772 
3773 #define VIXL_DEFINE_ASM_FUNC(FN, VEC_OP)                    \
3774   void Assembler::FN(const VRegister& vd,                   \
3775                      const VRegister& vn,                   \
3776                      const VRegister& vm) {                 \
3777     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON,                  \
3778                        CPUFeatures::kFP,                    \
3779                        CPUFeatures::kNEONHalf,              \
3780                        CPUFeatures::kFHM));                 \
3781     VIXL_ASSERT((vd.Is2S() && vn.Is2H() && vm.Is2H()) ||    \
3782                 (vd.Is4S() && vn.Is4H() && vm.Is4H()));     \
3783     Emit(FPFormat(vd) | VEC_OP | Rm(vm) | Rn(vn) | Rd(vd)); \
3784   }
3785 NEON_FHM_LIST(VIXL_DEFINE_ASM_FUNC)
3786 #undef VIXL_DEFINE_ASM_FUNC
3787 
3788 
3789 void Assembler::addp(const VRegister& vd, const VRegister& vn) {
3790   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3791   VIXL_ASSERT((vd.Is1D() && vn.Is2D()));
3792   Emit(SFormat(vd) | NEON_ADDP_scalar | Rn(vn) | Rd(vd));
3793 }
3794 
3795 
sqrdmlah(const VRegister & vd,const VRegister & vn,const VRegister & vm)3796 void Assembler::sqrdmlah(const VRegister& vd,
3797                          const VRegister& vn,
3798                          const VRegister& vm) {
3799   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kRDM));
3800   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3801   VIXL_ASSERT(vd.IsVector() || !vd.IsQ());
3802 
3803   Instr format, op = NEON_SQRDMLAH;
3804   if (vd.IsScalar()) {
3805     op |= NEON_Q | NEONScalar;
3806     format = SFormat(vd);
3807   } else {
3808     format = VFormat(vd);
3809   }
3810 
3811   Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
3812 }
3813 
3814 
sqrdmlsh(const VRegister & vd,const VRegister & vn,const VRegister & vm)3815 void Assembler::sqrdmlsh(const VRegister& vd,
3816                          const VRegister& vn,
3817                          const VRegister& vm) {
3818   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kRDM));
3819   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3820   VIXL_ASSERT(vd.IsVector() || !vd.IsQ());
3821 
3822   Instr format, op = NEON_SQRDMLSH;
3823   if (vd.IsScalar()) {
3824     op |= NEON_Q | NEONScalar;
3825     format = SFormat(vd);
3826   } else {
3827     format = VFormat(vd);
3828   }
3829 
3830   Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
3831 }
3832 
3833 
sdot(const VRegister & vd,const VRegister & vn,const VRegister & vm)3834 void Assembler::sdot(const VRegister& vd,
3835                      const VRegister& vn,
3836                      const VRegister& vm) {
3837   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kDotProduct));
3838   VIXL_ASSERT(AreSameFormat(vn, vm));
3839   VIXL_ASSERT((vd.Is2S() && vn.Is8B()) || (vd.Is4S() && vn.Is16B()));
3840 
3841   Emit(VFormat(vd) | NEON_SDOT | Rm(vm) | Rn(vn) | Rd(vd));
3842 }
3843 
3844 
udot(const VRegister & vd,const VRegister & vn,const VRegister & vm)3845 void Assembler::udot(const VRegister& vd,
3846                      const VRegister& vn,
3847                      const VRegister& vm) {
3848   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kDotProduct));
3849   VIXL_ASSERT(AreSameFormat(vn, vm));
3850   VIXL_ASSERT((vd.Is2S() && vn.Is8B()) || (vd.Is4S() && vn.Is16B()));
3851 
3852   Emit(VFormat(vd) | NEON_UDOT | Rm(vm) | Rn(vn) | Rd(vd));
3853 }
3854 
3855 
faddp(const VRegister & vd,const VRegister & vn)3856 void Assembler::faddp(const VRegister& vd, const VRegister& vn) {
3857   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3858   VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()) ||
3859               (vd.Is1H() && vn.Is2H()));
3860   if (vd.Is1H()) {
3861     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3862     Emit(NEON_FADDP_h_scalar | Rn(vn) | Rd(vd));
3863   } else {
3864     Emit(FPFormat(vd) | NEON_FADDP_scalar | Rn(vn) | Rd(vd));
3865   }
3866 }
3867 
3868 
fmaxp(const VRegister & vd,const VRegister & vn)3869 void Assembler::fmaxp(const VRegister& vd, const VRegister& vn) {
3870   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3871   VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()) ||
3872               (vd.Is1H() && vn.Is2H()));
3873   if (vd.Is1H()) {
3874     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3875     Emit(NEON_FMAXP_h_scalar | Rn(vn) | Rd(vd));
3876   } else {
3877     Emit(FPFormat(vd) | NEON_FMAXP_scalar | Rn(vn) | Rd(vd));
3878   }
3879 }
3880 
3881 
fminp(const VRegister & vd,const VRegister & vn)3882 void Assembler::fminp(const VRegister& vd, const VRegister& vn) {
3883   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3884   VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()) ||
3885               (vd.Is1H() && vn.Is2H()));
3886   if (vd.Is1H()) {
3887     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3888     Emit(NEON_FMINP_h_scalar | Rn(vn) | Rd(vd));
3889   } else {
3890     Emit(FPFormat(vd) | NEON_FMINP_scalar | Rn(vn) | Rd(vd));
3891   }
3892 }
3893 
3894 
fmaxnmp(const VRegister & vd,const VRegister & vn)3895 void Assembler::fmaxnmp(const VRegister& vd, const VRegister& vn) {
3896   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3897   VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()) ||
3898               (vd.Is1H() && vn.Is2H()));
3899   if (vd.Is1H()) {
3900     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3901     Emit(NEON_FMAXNMP_h_scalar | Rn(vn) | Rd(vd));
3902   } else {
3903     Emit(FPFormat(vd) | NEON_FMAXNMP_scalar | Rn(vn) | Rd(vd));
3904   }
3905 }
3906 
3907 
fminnmp(const VRegister & vd,const VRegister & vn)3908 void Assembler::fminnmp(const VRegister& vd, const VRegister& vn) {
3909   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));
3910   VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()) ||
3911               (vd.Is1H() && vn.Is2H()));
3912   if (vd.Is1H()) {
3913     VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3914     Emit(NEON_FMINNMP_h_scalar | Rn(vn) | Rd(vd));
3915   } else {
3916     Emit(FPFormat(vd) | NEON_FMINNMP_scalar | Rn(vn) | Rd(vd));
3917   }
3918 }
3919 
3920 
3921 // v8.3 complex numbers - floating-point complex multiply accumulate.
fcmla(const VRegister & vd,const VRegister & vn,const VRegister & vm,int vm_index,int rot)3922 void Assembler::fcmla(const VRegister& vd,
3923                       const VRegister& vn,
3924                       const VRegister& vm,
3925                       int vm_index,
3926                       int rot) {
3927   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON, CPUFeatures::kFcma));
3928   VIXL_ASSERT(vd.IsVector() && AreSameFormat(vd, vn));
3929   VIXL_ASSERT((vm.IsH() && (vd.Is8H() || vd.Is4H())) ||
3930               (vm.IsS() && vd.Is4S()));
3931   if (vd.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3932   int index_num_bits = vd.Is4S() ? 1 : 2;
3933   Emit(VFormat(vd) | Rm(vm) | NEON_FCMLA_byelement |
3934        ImmNEONHLM(vm_index, index_num_bits) | ImmRotFcmlaSca(rot) | Rn(vn) |
3935        Rd(vd));
3936 }
3937 
3938 
fcmla(const VRegister & vd,const VRegister & vn,const VRegister & vm,int rot)3939 void Assembler::fcmla(const VRegister& vd,
3940                       const VRegister& vn,
3941                       const VRegister& vm,
3942                       int rot) {
3943   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON, CPUFeatures::kFcma));
3944   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3945   VIXL_ASSERT(vd.IsVector() && !vd.IsLaneSizeB());
3946   if (vd.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3947   Emit(VFormat(vd) | Rm(vm) | NEON_FCMLA | ImmRotFcmlaVec(rot) | Rn(vn) |
3948        Rd(vd));
3949 }
3950 
3951 
3952 // v8.3 complex numbers - floating-point complex add.
fcadd(const VRegister & vd,const VRegister & vn,const VRegister & vm,int rot)3953 void Assembler::fcadd(const VRegister& vd,
3954                       const VRegister& vn,
3955                       const VRegister& vm,
3956                       int rot) {
3957   VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON, CPUFeatures::kFcma));
3958   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
3959   VIXL_ASSERT(vd.IsVector() && !vd.IsLaneSizeB());
3960   if (vd.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));
3961   Emit(VFormat(vd) | Rm(vm) | NEON_FCADD | ImmRotFcadd(rot) | Rn(vn) | Rd(vd));
3962 }
3963 
3964 
orr(const VRegister & vd,const int imm8,const int left_shift)3965 void Assembler::orr(const VRegister& vd, const int imm8, const int left_shift) {
3966   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3967   NEONModifiedImmShiftLsl(vd, imm8, left_shift, NEONModifiedImmediate_ORR);
3968 }
3969 
3970 
mov(const VRegister & vd,const VRegister & vn)3971 void Assembler::mov(const VRegister& vd, const VRegister& vn) {
3972   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3973   VIXL_ASSERT(AreSameFormat(vd, vn));
3974   if (vd.IsD()) {
3975     orr(vd.V8B(), vn.V8B(), vn.V8B());
3976   } else {
3977     VIXL_ASSERT(vd.IsQ());
3978     orr(vd.V16B(), vn.V16B(), vn.V16B());
3979   }
3980 }
3981 
3982 
bic(const VRegister & vd,const int imm8,const int left_shift)3983 void Assembler::bic(const VRegister& vd, const int imm8, const int left_shift) {
3984   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3985   NEONModifiedImmShiftLsl(vd, imm8, left_shift, NEONModifiedImmediate_BIC);
3986 }
3987 
3988 
movi(const VRegister & vd,const uint64_t imm,Shift shift,const int shift_amount)3989 void Assembler::movi(const VRegister& vd,
3990                      const uint64_t imm,
3991                      Shift shift,
3992                      const int shift_amount) {
3993   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
3994   VIXL_ASSERT((shift == LSL) || (shift == MSL));
3995   if (vd.Is2D() || vd.Is1D()) {
3996     VIXL_ASSERT(shift_amount == 0);
3997     int imm8 = 0;
3998     for (int i = 0; i < 8; ++i) {
3999       int byte = (imm >> (i * 8)) & 0xff;
4000       VIXL_ASSERT((byte == 0) || (byte == 0xff));
4001       if (byte == 0xff) {
4002         imm8 |= (1 << i);
4003       }
4004     }
4005     int q = vd.Is2D() ? NEON_Q : 0;
4006     Emit(q | NEONModImmOp(1) | NEONModifiedImmediate_MOVI |
4007          ImmNEONabcdefgh(imm8) | NEONCmode(0xe) | Rd(vd));
4008   } else if (shift == LSL) {
4009     VIXL_ASSERT(IsUint8(imm));
4010     NEONModifiedImmShiftLsl(vd,
4011                             static_cast<int>(imm),
4012                             shift_amount,
4013                             NEONModifiedImmediate_MOVI);
4014   } else {
4015     VIXL_ASSERT(IsUint8(imm));
4016     NEONModifiedImmShiftMsl(vd,
4017                             static_cast<int>(imm),
4018                             shift_amount,
4019                             NEONModifiedImmediate_MOVI);
4020   }
4021 }
4022 
4023 
mvn(const VRegister & vd,const VRegister & vn)4024 void Assembler::mvn(const VRegister& vd, const VRegister& vn) {
4025   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4026   VIXL_ASSERT(AreSameFormat(vd, vn));
4027   if (vd.IsD()) {
4028     not_(vd.V8B(), vn.V8B());
4029   } else {
4030     VIXL_ASSERT(vd.IsQ());
4031     not_(vd.V16B(), vn.V16B());
4032   }
4033 }
4034 
4035 
mvni(const VRegister & vd,const int imm8,Shift shift,const int shift_amount)4036 void Assembler::mvni(const VRegister& vd,
4037                      const int imm8,
4038                      Shift shift,
4039                      const int shift_amount) {
4040   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4041   VIXL_ASSERT((shift == LSL) || (shift == MSL));
4042   if (shift == LSL) {
4043     NEONModifiedImmShiftLsl(vd, imm8, shift_amount, NEONModifiedImmediate_MVNI);
4044   } else {
4045     NEONModifiedImmShiftMsl(vd, imm8, shift_amount, NEONModifiedImmediate_MVNI);
4046   }
4047 }
4048 
4049 
NEONFPByElement(const VRegister & vd,const VRegister & vn,const VRegister & vm,int vm_index,NEONByIndexedElementOp vop,NEONByIndexedElementOp vop_half)4050 void Assembler::NEONFPByElement(const VRegister& vd,
4051                                 const VRegister& vn,
4052                                 const VRegister& vm,
4053                                 int vm_index,
4054                                 NEONByIndexedElementOp vop,
4055                                 NEONByIndexedElementOp vop_half) {
4056   VIXL_ASSERT(AreSameFormat(vd, vn));
4057   VIXL_ASSERT((vd.Is2S() && vm.Is1S()) || (vd.Is4S() && vm.Is1S()) ||
4058               (vd.Is1S() && vm.Is1S()) || (vd.Is2D() && vm.Is1D()) ||
4059               (vd.Is1D() && vm.Is1D()) || (vd.Is4H() && vm.Is1H()) ||
4060               (vd.Is8H() && vm.Is1H()) || (vd.Is1H() && vm.Is1H()));
4061   VIXL_ASSERT((vm.Is1S() && (vm_index < 4)) || (vm.Is1D() && (vm_index < 2)) ||
4062               (vm.Is1H() && (vm.GetCode() < 16) && (vm_index < 8)));
4063 
4064   Instr op = vop;
4065   int index_num_bits;
4066   if (vm.Is1D()) {
4067     index_num_bits = 1;
4068   } else if (vm.Is1S()) {
4069     index_num_bits = 2;
4070   } else {
4071     index_num_bits = 3;
4072     op = vop_half;
4073   }
4074 
4075   if (vd.IsScalar()) {
4076     op |= NEON_Q | NEONScalar;
4077   }
4078 
4079   if (!vm.Is1H()) {
4080     op |= FPFormat(vd);
4081   } else if (vd.Is8H()) {
4082     op |= NEON_Q;
4083   }
4084 
4085   Emit(op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | Rd(vd));
4086 }
4087 
4088 
NEONByElement(const VRegister & vd,const VRegister & vn,const VRegister & vm,int vm_index,NEONByIndexedElementOp vop)4089 void Assembler::NEONByElement(const VRegister& vd,
4090                               const VRegister& vn,
4091                               const VRegister& vm,
4092                               int vm_index,
4093                               NEONByIndexedElementOp vop) {
4094   VIXL_ASSERT(AreSameFormat(vd, vn));
4095   VIXL_ASSERT((vd.Is4H() && vm.Is1H()) || (vd.Is8H() && vm.Is1H()) ||
4096               (vd.Is1H() && vm.Is1H()) || (vd.Is2S() && vm.Is1S()) ||
4097               (vd.Is4S() && vm.Is1S()) || (vd.Is1S() && vm.Is1S()));
4098   VIXL_ASSERT((vm.Is1H() && (vm.GetCode() < 16) && (vm_index < 8)) ||
4099               (vm.Is1S() && (vm_index < 4)));
4100 
4101   Instr format, op = vop;
4102   int index_num_bits = vm.Is1H() ? 3 : 2;
4103   if (vd.IsScalar()) {
4104     op |= NEONScalar | NEON_Q;
4105     format = SFormat(vn);
4106   } else {
4107     format = VFormat(vn);
4108   }
4109   Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) |
4110        Rd(vd));
4111 }
4112 
4113 
NEONByElementL(const VRegister & vd,const VRegister & vn,const VRegister & vm,int vm_index,NEONByIndexedElementOp vop)4114 void Assembler::NEONByElementL(const VRegister& vd,
4115                                const VRegister& vn,
4116                                const VRegister& vm,
4117                                int vm_index,
4118                                NEONByIndexedElementOp vop) {
4119   VIXL_ASSERT((vd.Is4S() && vn.Is4H() && vm.Is1H()) ||
4120               (vd.Is4S() && vn.Is8H() && vm.Is1H()) ||
4121               (vd.Is1S() && vn.Is1H() && vm.Is1H()) ||
4122               (vd.Is2D() && vn.Is2S() && vm.Is1S()) ||
4123               (vd.Is2D() && vn.Is4S() && vm.Is1S()) ||
4124               (vd.Is1D() && vn.Is1S() && vm.Is1S()));
4125 
4126   VIXL_ASSERT((vm.Is1H() && (vm.GetCode() < 16) && (vm_index < 8)) ||
4127               (vm.Is1S() && (vm_index < 4)));
4128 
4129   Instr format, op = vop;
4130   int index_num_bits = vm.Is1H() ? 3 : 2;
4131   if (vd.IsScalar()) {
4132     op |= NEONScalar | NEON_Q;
4133     format = SFormat(vn);
4134   } else {
4135     format = VFormat(vn);
4136   }
4137   Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) |
4138        Rd(vd));
4139 }
4140 
4141 
sdot(const VRegister & vd,const VRegister & vn,const VRegister & vm,int vm_index)4142 void Assembler::sdot(const VRegister& vd,
4143                      const VRegister& vn,
4144                      const VRegister& vm,
4145                      int vm_index) {
4146   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kDotProduct));
4147   VIXL_ASSERT((vd.Is2S() && vn.Is8B() && vm.Is1S4B()) ||
4148               (vd.Is4S() && vn.Is16B() && vm.Is1S4B()));
4149 
4150   int index_num_bits = 2;
4151   Emit(VFormat(vd) | NEON_SDOT_byelement |
4152        ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | Rd(vd));
4153 }
4154 
4155 
udot(const VRegister & vd,const VRegister & vn,const VRegister & vm,int vm_index)4156 void Assembler::udot(const VRegister& vd,
4157                      const VRegister& vn,
4158                      const VRegister& vm,
4159                      int vm_index) {
4160   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kDotProduct));
4161   VIXL_ASSERT((vd.Is2S() && vn.Is8B() && vm.Is1S4B()) ||
4162               (vd.Is4S() && vn.Is16B() && vm.Is1S4B()));
4163 
4164   int index_num_bits = 2;
4165   Emit(VFormat(vd) | NEON_UDOT_byelement |
4166        ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | Rd(vd));
4167 }
4168 
4169 
4170 // clang-format off
4171 #define NEON_BYELEMENT_LIST(V)                        \
4172   V(mul,      NEON_MUL_byelement,      vn.IsVector()) \
4173   V(mla,      NEON_MLA_byelement,      vn.IsVector()) \
4174   V(mls,      NEON_MLS_byelement,      vn.IsVector()) \
4175   V(sqdmulh,  NEON_SQDMULH_byelement,  true)          \
4176   V(sqrdmulh, NEON_SQRDMULH_byelement, true)          \
4177 // clang-format on
4178 
4179 #define VIXL_DEFINE_ASM_FUNC(FN, OP, AS)                     \
4180   void Assembler::FN(const VRegister& vd,               \
4181                      const VRegister& vn,               \
4182                      const VRegister& vm,               \
4183                      int vm_index) {                    \
4184     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));            \
4185     VIXL_ASSERT(AS);                                    \
4186     NEONByElement(vd, vn, vm, vm_index, OP);            \
4187   }
4188 NEON_BYELEMENT_LIST(VIXL_DEFINE_ASM_FUNC)
4189 #undef VIXL_DEFINE_ASM_FUNC
4190 
4191 
4192 // clang-format off
4193 #define NEON_BYELEMENT_RDM_LIST(V)     \
4194   V(sqrdmlah, NEON_SQRDMLAH_byelement) \
4195   V(sqrdmlsh, NEON_SQRDMLSH_byelement)
4196 // clang-format on
4197 
4198 #define VIXL_DEFINE_ASM_FUNC(FN, OP)                            \
4199   void Assembler::FN(const VRegister& vd,                       \
4200                      const VRegister& vn,                       \
4201                      const VRegister& vm,                       \
4202                      int vm_index) {                            \
4203     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON, CPUFeatures::kRDM)); \
4204     NEONByElement(vd, vn, vm, vm_index, OP);                    \
4205   }
NEON_BYELEMENT_RDM_LIST(VIXL_DEFINE_ASM_FUNC)4206 NEON_BYELEMENT_RDM_LIST(VIXL_DEFINE_ASM_FUNC)
4207 #undef VIXL_DEFINE_ASM_FUNC
4208 
4209 
4210 // clang-format off
4211 #define NEON_FPBYELEMENT_LIST(V) \
4212   V(fmul,  NEON_FMUL_byelement,  NEON_FMUL_H_byelement)  \
4213   V(fmla,  NEON_FMLA_byelement,  NEON_FMLA_H_byelement)  \
4214   V(fmls,  NEON_FMLS_byelement,  NEON_FMLS_H_byelement)  \
4215   V(fmulx, NEON_FMULX_byelement, NEON_FMULX_H_byelement)
4216 // clang-format on
4217 
4218 #define VIXL_DEFINE_ASM_FUNC(FN, OP, OP_H)                             \
4219   void Assembler::FN(const VRegister& vd,                              \
4220                      const VRegister& vn,                              \
4221                      const VRegister& vm,                              \
4222                      int vm_index) {                                   \
4223     VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));         \
4224     if (vd.IsLaneSizeH()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf)); \
4225     NEONFPByElement(vd, vn, vm, vm_index, OP, OP_H);                   \
4226   }
4227 NEON_FPBYELEMENT_LIST(VIXL_DEFINE_ASM_FUNC)
4228 #undef VIXL_DEFINE_ASM_FUNC
4229 
4230 
4231 // clang-format off
4232 #define NEON_BYELEMENT_LONG_LIST(V)                               \
4233   V(sqdmull,  NEON_SQDMULL_byelement, vn.IsScalar() || vn.IsD())  \
4234   V(sqdmull2, NEON_SQDMULL_byelement, vn.IsVector() && vn.IsQ())  \
4235   V(sqdmlal,  NEON_SQDMLAL_byelement, vn.IsScalar() || vn.IsD())  \
4236   V(sqdmlal2, NEON_SQDMLAL_byelement, vn.IsVector() && vn.IsQ())  \
4237   V(sqdmlsl,  NEON_SQDMLSL_byelement, vn.IsScalar() || vn.IsD())  \
4238   V(sqdmlsl2, NEON_SQDMLSL_byelement, vn.IsVector() && vn.IsQ())  \
4239   V(smull,    NEON_SMULL_byelement,   vn.IsVector() && vn.IsD())  \
4240   V(smull2,   NEON_SMULL_byelement,   vn.IsVector() && vn.IsQ())  \
4241   V(umull,    NEON_UMULL_byelement,   vn.IsVector() && vn.IsD())  \
4242   V(umull2,   NEON_UMULL_byelement,   vn.IsVector() && vn.IsQ())  \
4243   V(smlal,    NEON_SMLAL_byelement,   vn.IsVector() && vn.IsD())  \
4244   V(smlal2,   NEON_SMLAL_byelement,   vn.IsVector() && vn.IsQ())  \
4245   V(umlal,    NEON_UMLAL_byelement,   vn.IsVector() && vn.IsD())  \
4246   V(umlal2,   NEON_UMLAL_byelement,   vn.IsVector() && vn.IsQ())  \
4247   V(smlsl,    NEON_SMLSL_byelement,   vn.IsVector() && vn.IsD())  \
4248   V(smlsl2,   NEON_SMLSL_byelement,   vn.IsVector() && vn.IsQ())  \
4249   V(umlsl,    NEON_UMLSL_byelement,   vn.IsVector() && vn.IsD())  \
4250   V(umlsl2,   NEON_UMLSL_byelement,   vn.IsVector() && vn.IsQ())
4251 // clang-format on
4252 
4253 
4254 #define VIXL_DEFINE_ASM_FUNC(FN, OP, AS)      \
4255   void Assembler::FN(const VRegister& vd,     \
4256                      const VRegister& vn,     \
4257                      const VRegister& vm,     \
4258                      int vm_index) {          \
4259     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));  \
4260     VIXL_ASSERT(AS);                          \
4261     NEONByElementL(vd, vn, vm, vm_index, OP); \
4262   }
4263 NEON_BYELEMENT_LONG_LIST(VIXL_DEFINE_ASM_FUNC)
4264 #undef VIXL_DEFINE_ASM_FUNC
4265 
4266 
4267 // clang-format off
4268 #define NEON_BYELEMENT_FHM_LIST(V)    \
4269   V(fmlal, NEON_FMLAL_H_byelement)    \
4270   V(fmlal2, NEON_FMLAL2_H_byelement)  \
4271   V(fmlsl, NEON_FMLSL_H_byelement)    \
4272   V(fmlsl2, NEON_FMLSL2_H_byelement)
4273 // clang-format on
4274 
4275 
4276 #define VIXL_DEFINE_ASM_FUNC(FN, OP)                                   \
4277   void Assembler::FN(const VRegister& vd,                              \
4278                      const VRegister& vn,                              \
4279                      const VRegister& vm,                              \
4280                      int vm_index) {                                   \
4281     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON,                             \
4282                        CPUFeatures::kFP,                               \
4283                        CPUFeatures::kNEONHalf,                         \
4284                        CPUFeatures::kFHM));                            \
4285     VIXL_ASSERT((vd.Is2S() && vn.Is2H()) || (vd.Is4S() && vn.Is4H())); \
4286     VIXL_ASSERT(vm.IsH());                                             \
4287     VIXL_ASSERT((vm_index >= 0) && (vm_index < 8));                    \
4288     /* Vm itself can only be in the bottom 16 registers. */            \
4289     VIXL_ASSERT(vm.GetCode() < 16);                                    \
4290     Emit(FPFormat(vd) | OP | Rd(vd) | Rn(vn) | Rm(vm) |                \
4291          ImmNEONHLM(vm_index, 3));                                     \
4292   }
4293 NEON_BYELEMENT_FHM_LIST(VIXL_DEFINE_ASM_FUNC)
4294 #undef VIXL_DEFINE_ASM_FUNC
4295 
4296 void Assembler::suqadd(const VRegister& vd, const VRegister& vn) {
4297   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4298   NEON2RegMisc(vd, vn, NEON_SUQADD);
4299 }
4300 
4301 
usqadd(const VRegister & vd,const VRegister & vn)4302 void Assembler::usqadd(const VRegister& vd, const VRegister& vn) {
4303   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4304   NEON2RegMisc(vd, vn, NEON_USQADD);
4305 }
4306 
4307 
abs(const VRegister & vd,const VRegister & vn)4308 void Assembler::abs(const VRegister& vd, const VRegister& vn) {
4309   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4310   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4311   NEON2RegMisc(vd, vn, NEON_ABS);
4312 }
4313 
4314 
sqabs(const VRegister & vd,const VRegister & vn)4315 void Assembler::sqabs(const VRegister& vd, const VRegister& vn) {
4316   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4317   NEON2RegMisc(vd, vn, NEON_SQABS);
4318 }
4319 
4320 
neg(const VRegister & vd,const VRegister & vn)4321 void Assembler::neg(const VRegister& vd, const VRegister& vn) {
4322   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4323   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4324   NEON2RegMisc(vd, vn, NEON_NEG);
4325 }
4326 
4327 
sqneg(const VRegister & vd,const VRegister & vn)4328 void Assembler::sqneg(const VRegister& vd, const VRegister& vn) {
4329   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4330   NEON2RegMisc(vd, vn, NEON_SQNEG);
4331 }
4332 
4333 
NEONXtn(const VRegister & vd,const VRegister & vn,NEON2RegMiscOp vop)4334 void Assembler::NEONXtn(const VRegister& vd,
4335                         const VRegister& vn,
4336                         NEON2RegMiscOp vop) {
4337   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4338   Instr format, op = vop;
4339   if (vd.IsScalar()) {
4340     VIXL_ASSERT((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) ||
4341                 (vd.Is1S() && vn.Is1D()));
4342     op |= NEON_Q | NEONScalar;
4343     format = SFormat(vd);
4344   } else {
4345     VIXL_ASSERT((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) ||
4346                 (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) ||
4347                 (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D()));
4348     format = VFormat(vd);
4349   }
4350   Emit(format | op | Rn(vn) | Rd(vd));
4351 }
4352 
4353 
xtn(const VRegister & vd,const VRegister & vn)4354 void Assembler::xtn(const VRegister& vd, const VRegister& vn) {
4355   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4356   VIXL_ASSERT(vd.IsVector() && vd.IsD());
4357   NEONXtn(vd, vn, NEON_XTN);
4358 }
4359 
4360 
xtn2(const VRegister & vd,const VRegister & vn)4361 void Assembler::xtn2(const VRegister& vd, const VRegister& vn) {
4362   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4363   VIXL_ASSERT(vd.IsVector() && vd.IsQ());
4364   NEONXtn(vd, vn, NEON_XTN);
4365 }
4366 
4367 
sqxtn(const VRegister & vd,const VRegister & vn)4368 void Assembler::sqxtn(const VRegister& vd, const VRegister& vn) {
4369   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4370   VIXL_ASSERT(vd.IsScalar() || vd.IsD());
4371   NEONXtn(vd, vn, NEON_SQXTN);
4372 }
4373 
4374 
sqxtn2(const VRegister & vd,const VRegister & vn)4375 void Assembler::sqxtn2(const VRegister& vd, const VRegister& vn) {
4376   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4377   VIXL_ASSERT(vd.IsVector() && vd.IsQ());
4378   NEONXtn(vd, vn, NEON_SQXTN);
4379 }
4380 
4381 
sqxtun(const VRegister & vd,const VRegister & vn)4382 void Assembler::sqxtun(const VRegister& vd, const VRegister& vn) {
4383   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4384   VIXL_ASSERT(vd.IsScalar() || vd.IsD());
4385   NEONXtn(vd, vn, NEON_SQXTUN);
4386 }
4387 
4388 
sqxtun2(const VRegister & vd,const VRegister & vn)4389 void Assembler::sqxtun2(const VRegister& vd, const VRegister& vn) {
4390   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4391   VIXL_ASSERT(vd.IsVector() && vd.IsQ());
4392   NEONXtn(vd, vn, NEON_SQXTUN);
4393 }
4394 
4395 
uqxtn(const VRegister & vd,const VRegister & vn)4396 void Assembler::uqxtn(const VRegister& vd, const VRegister& vn) {
4397   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4398   VIXL_ASSERT(vd.IsScalar() || vd.IsD());
4399   NEONXtn(vd, vn, NEON_UQXTN);
4400 }
4401 
4402 
uqxtn2(const VRegister & vd,const VRegister & vn)4403 void Assembler::uqxtn2(const VRegister& vd, const VRegister& vn) {
4404   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4405   VIXL_ASSERT(vd.IsVector() && vd.IsQ());
4406   NEONXtn(vd, vn, NEON_UQXTN);
4407 }
4408 
4409 
4410 // NEON NOT and RBIT are distinguised by bit 22, the bottom bit of "size".
not_(const VRegister & vd,const VRegister & vn)4411 void Assembler::not_(const VRegister& vd, const VRegister& vn) {
4412   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4413   VIXL_ASSERT(AreSameFormat(vd, vn));
4414   VIXL_ASSERT(vd.Is8B() || vd.Is16B());
4415   Emit(VFormat(vd) | NEON_RBIT_NOT | Rn(vn) | Rd(vd));
4416 }
4417 
4418 
rbit(const VRegister & vd,const VRegister & vn)4419 void Assembler::rbit(const VRegister& vd, const VRegister& vn) {
4420   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4421   VIXL_ASSERT(AreSameFormat(vd, vn));
4422   VIXL_ASSERT(vd.Is8B() || vd.Is16B());
4423   Emit(VFormat(vn) | (1 << NEONSize_offset) | NEON_RBIT_NOT | Rn(vn) | Rd(vd));
4424 }
4425 
4426 
ext(const VRegister & vd,const VRegister & vn,const VRegister & vm,int index)4427 void Assembler::ext(const VRegister& vd,
4428                     const VRegister& vn,
4429                     const VRegister& vm,
4430                     int index) {
4431   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4432   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
4433   VIXL_ASSERT(vd.Is8B() || vd.Is16B());
4434   VIXL_ASSERT((0 <= index) && (index < vd.GetLanes()));
4435   Emit(VFormat(vd) | NEON_EXT | Rm(vm) | ImmNEONExt(index) | Rn(vn) | Rd(vd));
4436 }
4437 
4438 
dup(const VRegister & vd,const VRegister & vn,int vn_index)4439 void Assembler::dup(const VRegister& vd, const VRegister& vn, int vn_index) {
4440   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4441   Instr q, scalar;
4442 
4443   // We support vn arguments of the form vn.VxT() or vn.T(), where x is the
4444   // number of lanes, and T is b, h, s or d.
4445   int lane_size = vn.GetLaneSizeInBytes();
4446   NEONFormatField format;
4447   switch (lane_size) {
4448     case 1:
4449       format = NEON_16B;
4450       break;
4451     case 2:
4452       format = NEON_8H;
4453       break;
4454     case 4:
4455       format = NEON_4S;
4456       break;
4457     default:
4458       VIXL_ASSERT(lane_size == 8);
4459       format = NEON_2D;
4460       break;
4461   }
4462 
4463   if (vd.IsScalar()) {
4464     q = NEON_Q;
4465     scalar = NEONScalar;
4466   } else {
4467     VIXL_ASSERT(!vd.Is1D());
4468     q = vd.IsD() ? 0 : NEON_Q;
4469     scalar = 0;
4470   }
4471   Emit(q | scalar | NEON_DUP_ELEMENT | ImmNEON5(format, vn_index) | Rn(vn) |
4472        Rd(vd));
4473 }
4474 
4475 
mov(const VRegister & vd,const VRegister & vn,int vn_index)4476 void Assembler::mov(const VRegister& vd, const VRegister& vn, int vn_index) {
4477   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4478   VIXL_ASSERT(vd.IsScalar());
4479   dup(vd, vn, vn_index);
4480 }
4481 
4482 
dup(const VRegister & vd,const Register & rn)4483 void Assembler::dup(const VRegister& vd, const Register& rn) {
4484   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4485   VIXL_ASSERT(!vd.Is1D());
4486   VIXL_ASSERT(vd.Is2D() == rn.IsX());
4487   int q = vd.IsD() ? 0 : NEON_Q;
4488   Emit(q | NEON_DUP_GENERAL | ImmNEON5(VFormat(vd), 0) | Rn(rn) | Rd(vd));
4489 }
4490 
4491 
ins(const VRegister & vd,int vd_index,const VRegister & vn,int vn_index)4492 void Assembler::ins(const VRegister& vd,
4493                     int vd_index,
4494                     const VRegister& vn,
4495                     int vn_index) {
4496   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4497   VIXL_ASSERT(AreSameFormat(vd, vn));
4498   // We support vd arguments of the form vd.VxT() or vd.T(), where x is the
4499   // number of lanes, and T is b, h, s or d.
4500   int lane_size = vd.GetLaneSizeInBytes();
4501   NEONFormatField format;
4502   switch (lane_size) {
4503     case 1:
4504       format = NEON_16B;
4505       break;
4506     case 2:
4507       format = NEON_8H;
4508       break;
4509     case 4:
4510       format = NEON_4S;
4511       break;
4512     default:
4513       VIXL_ASSERT(lane_size == 8);
4514       format = NEON_2D;
4515       break;
4516   }
4517 
4518   VIXL_ASSERT(
4519       (0 <= vd_index) &&
4520       (vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
4521   VIXL_ASSERT(
4522       (0 <= vn_index) &&
4523       (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
4524   Emit(NEON_INS_ELEMENT | ImmNEON5(format, vd_index) |
4525        ImmNEON4(format, vn_index) | Rn(vn) | Rd(vd));
4526 }
4527 
4528 
mov(const VRegister & vd,int vd_index,const VRegister & vn,int vn_index)4529 void Assembler::mov(const VRegister& vd,
4530                     int vd_index,
4531                     const VRegister& vn,
4532                     int vn_index) {
4533   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4534   ins(vd, vd_index, vn, vn_index);
4535 }
4536 
4537 
ins(const VRegister & vd,int vd_index,const Register & rn)4538 void Assembler::ins(const VRegister& vd, int vd_index, const Register& rn) {
4539   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4540   // We support vd arguments of the form vd.VxT() or vd.T(), where x is the
4541   // number of lanes, and T is b, h, s or d.
4542   int lane_size = vd.GetLaneSizeInBytes();
4543   NEONFormatField format;
4544   switch (lane_size) {
4545     case 1:
4546       format = NEON_16B;
4547       VIXL_ASSERT(rn.IsW());
4548       break;
4549     case 2:
4550       format = NEON_8H;
4551       VIXL_ASSERT(rn.IsW());
4552       break;
4553     case 4:
4554       format = NEON_4S;
4555       VIXL_ASSERT(rn.IsW());
4556       break;
4557     default:
4558       VIXL_ASSERT(lane_size == 8);
4559       VIXL_ASSERT(rn.IsX());
4560       format = NEON_2D;
4561       break;
4562   }
4563 
4564   VIXL_ASSERT(
4565       (0 <= vd_index) &&
4566       (vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
4567   Emit(NEON_INS_GENERAL | ImmNEON5(format, vd_index) | Rn(rn) | Rd(vd));
4568 }
4569 
4570 
mov(const VRegister & vd,int vd_index,const Register & rn)4571 void Assembler::mov(const VRegister& vd, int vd_index, const Register& rn) {
4572   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4573   ins(vd, vd_index, rn);
4574 }
4575 
4576 
umov(const Register & rd,const VRegister & vn,int vn_index)4577 void Assembler::umov(const Register& rd, const VRegister& vn, int vn_index) {
4578   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4579   // We support vn arguments of the form vn.VxT() or vn.T(), where x is the
4580   // number of lanes, and T is b, h, s or d.
4581   int lane_size = vn.GetLaneSizeInBytes();
4582   NEONFormatField format;
4583   Instr q = 0;
4584   switch (lane_size) {
4585     case 1:
4586       format = NEON_16B;
4587       VIXL_ASSERT(rd.IsW());
4588       break;
4589     case 2:
4590       format = NEON_8H;
4591       VIXL_ASSERT(rd.IsW());
4592       break;
4593     case 4:
4594       format = NEON_4S;
4595       VIXL_ASSERT(rd.IsW());
4596       break;
4597     default:
4598       VIXL_ASSERT(lane_size == 8);
4599       VIXL_ASSERT(rd.IsX());
4600       format = NEON_2D;
4601       q = NEON_Q;
4602       break;
4603   }
4604 
4605   VIXL_ASSERT(
4606       (0 <= vn_index) &&
4607       (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
4608   Emit(q | NEON_UMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd));
4609 }
4610 
4611 
mov(const Register & rd,const VRegister & vn,int vn_index)4612 void Assembler::mov(const Register& rd, const VRegister& vn, int vn_index) {
4613   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4614   VIXL_ASSERT(vn.GetSizeInBytes() >= 4);
4615   umov(rd, vn, vn_index);
4616 }
4617 
4618 
smov(const Register & rd,const VRegister & vn,int vn_index)4619 void Assembler::smov(const Register& rd, const VRegister& vn, int vn_index) {
4620   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4621   // We support vn arguments of the form vn.VxT() or vn.T(), where x is the
4622   // number of lanes, and T is b, h, s.
4623   int lane_size = vn.GetLaneSizeInBytes();
4624   NEONFormatField format;
4625   Instr q = 0;
4626   VIXL_ASSERT(lane_size != 8);
4627   switch (lane_size) {
4628     case 1:
4629       format = NEON_16B;
4630       break;
4631     case 2:
4632       format = NEON_8H;
4633       break;
4634     default:
4635       VIXL_ASSERT(lane_size == 4);
4636       VIXL_ASSERT(rd.IsX());
4637       format = NEON_4S;
4638       break;
4639   }
4640   q = rd.IsW() ? 0 : NEON_Q;
4641   VIXL_ASSERT(
4642       (0 <= vn_index) &&
4643       (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
4644   Emit(q | NEON_SMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd));
4645 }
4646 
4647 
cls(const VRegister & vd,const VRegister & vn)4648 void Assembler::cls(const VRegister& vd, const VRegister& vn) {
4649   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4650   VIXL_ASSERT(AreSameFormat(vd, vn));
4651   VIXL_ASSERT(!vd.Is1D() && !vd.Is2D());
4652   Emit(VFormat(vn) | NEON_CLS | Rn(vn) | Rd(vd));
4653 }
4654 
4655 
clz(const VRegister & vd,const VRegister & vn)4656 void Assembler::clz(const VRegister& vd, const VRegister& vn) {
4657   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4658   VIXL_ASSERT(AreSameFormat(vd, vn));
4659   VIXL_ASSERT(!vd.Is1D() && !vd.Is2D());
4660   Emit(VFormat(vn) | NEON_CLZ | Rn(vn) | Rd(vd));
4661 }
4662 
4663 
cnt(const VRegister & vd,const VRegister & vn)4664 void Assembler::cnt(const VRegister& vd, const VRegister& vn) {
4665   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4666   VIXL_ASSERT(AreSameFormat(vd, vn));
4667   VIXL_ASSERT(vd.Is8B() || vd.Is16B());
4668   Emit(VFormat(vn) | NEON_CNT | Rn(vn) | Rd(vd));
4669 }
4670 
4671 
rev16(const VRegister & vd,const VRegister & vn)4672 void Assembler::rev16(const VRegister& vd, const VRegister& vn) {
4673   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4674   VIXL_ASSERT(AreSameFormat(vd, vn));
4675   VIXL_ASSERT(vd.Is8B() || vd.Is16B());
4676   Emit(VFormat(vn) | NEON_REV16 | Rn(vn) | Rd(vd));
4677 }
4678 
4679 
rev32(const VRegister & vd,const VRegister & vn)4680 void Assembler::rev32(const VRegister& vd, const VRegister& vn) {
4681   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4682   VIXL_ASSERT(AreSameFormat(vd, vn));
4683   VIXL_ASSERT(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H());
4684   Emit(VFormat(vn) | NEON_REV32 | Rn(vn) | Rd(vd));
4685 }
4686 
4687 
rev64(const VRegister & vd,const VRegister & vn)4688 void Assembler::rev64(const VRegister& vd, const VRegister& vn) {
4689   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4690   VIXL_ASSERT(AreSameFormat(vd, vn));
4691   VIXL_ASSERT(!vd.Is1D() && !vd.Is2D());
4692   Emit(VFormat(vn) | NEON_REV64 | Rn(vn) | Rd(vd));
4693 }
4694 
4695 
ursqrte(const VRegister & vd,const VRegister & vn)4696 void Assembler::ursqrte(const VRegister& vd, const VRegister& vn) {
4697   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4698   VIXL_ASSERT(AreSameFormat(vd, vn));
4699   VIXL_ASSERT(vd.Is2S() || vd.Is4S());
4700   Emit(VFormat(vn) | NEON_URSQRTE | Rn(vn) | Rd(vd));
4701 }
4702 
4703 
urecpe(const VRegister & vd,const VRegister & vn)4704 void Assembler::urecpe(const VRegister& vd, const VRegister& vn) {
4705   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4706   VIXL_ASSERT(AreSameFormat(vd, vn));
4707   VIXL_ASSERT(vd.Is2S() || vd.Is4S());
4708   Emit(VFormat(vn) | NEON_URECPE | Rn(vn) | Rd(vd));
4709 }
4710 
4711 
NEONAddlp(const VRegister & vd,const VRegister & vn,NEON2RegMiscOp op)4712 void Assembler::NEONAddlp(const VRegister& vd,
4713                           const VRegister& vn,
4714                           NEON2RegMiscOp op) {
4715   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4716   VIXL_ASSERT((op == NEON_SADDLP) || (op == NEON_UADDLP) ||
4717               (op == NEON_SADALP) || (op == NEON_UADALP));
4718 
4719   VIXL_ASSERT((vn.Is8B() && vd.Is4H()) || (vn.Is4H() && vd.Is2S()) ||
4720               (vn.Is2S() && vd.Is1D()) || (vn.Is16B() && vd.Is8H()) ||
4721               (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D()));
4722   Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
4723 }
4724 
4725 
saddlp(const VRegister & vd,const VRegister & vn)4726 void Assembler::saddlp(const VRegister& vd, const VRegister& vn) {
4727   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4728   NEONAddlp(vd, vn, NEON_SADDLP);
4729 }
4730 
4731 
uaddlp(const VRegister & vd,const VRegister & vn)4732 void Assembler::uaddlp(const VRegister& vd, const VRegister& vn) {
4733   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4734   NEONAddlp(vd, vn, NEON_UADDLP);
4735 }
4736 
4737 
sadalp(const VRegister & vd,const VRegister & vn)4738 void Assembler::sadalp(const VRegister& vd, const VRegister& vn) {
4739   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4740   NEONAddlp(vd, vn, NEON_SADALP);
4741 }
4742 
4743 
uadalp(const VRegister & vd,const VRegister & vn)4744 void Assembler::uadalp(const VRegister& vd, const VRegister& vn) {
4745   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4746   NEONAddlp(vd, vn, NEON_UADALP);
4747 }
4748 
4749 
NEONAcrossLanesL(const VRegister & vd,const VRegister & vn,NEONAcrossLanesOp op)4750 void Assembler::NEONAcrossLanesL(const VRegister& vd,
4751                                  const VRegister& vn,
4752                                  NEONAcrossLanesOp op) {
4753   VIXL_ASSERT((vn.Is8B() && vd.Is1H()) || (vn.Is16B() && vd.Is1H()) ||
4754               (vn.Is4H() && vd.Is1S()) || (vn.Is8H() && vd.Is1S()) ||
4755               (vn.Is4S() && vd.Is1D()));
4756   Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
4757 }
4758 
4759 
saddlv(const VRegister & vd,const VRegister & vn)4760 void Assembler::saddlv(const VRegister& vd, const VRegister& vn) {
4761   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4762   NEONAcrossLanesL(vd, vn, NEON_SADDLV);
4763 }
4764 
4765 
uaddlv(const VRegister & vd,const VRegister & vn)4766 void Assembler::uaddlv(const VRegister& vd, const VRegister& vn) {
4767   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4768   NEONAcrossLanesL(vd, vn, NEON_UADDLV);
4769 }
4770 
4771 
NEONAcrossLanes(const VRegister & vd,const VRegister & vn,NEONAcrossLanesOp op,Instr op_half)4772 void Assembler::NEONAcrossLanes(const VRegister& vd,
4773                                 const VRegister& vn,
4774                                 NEONAcrossLanesOp op,
4775                                 Instr op_half) {
4776   VIXL_ASSERT((vn.Is8B() && vd.Is1B()) || (vn.Is16B() && vd.Is1B()) ||
4777               (vn.Is4H() && vd.Is1H()) || (vn.Is8H() && vd.Is1H()) ||
4778               (vn.Is4S() && vd.Is1S()));
4779   if ((op & NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) {
4780     if (vd.Is1H()) {
4781       VIXL_ASSERT(op_half != 0);
4782       Instr vop = op_half;
4783       if (vn.Is8H()) {
4784         vop |= NEON_Q;
4785       }
4786       Emit(vop | Rn(vn) | Rd(vd));
4787     } else {
4788       Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd));
4789     }
4790   } else {
4791     Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
4792   }
4793 }
4794 
4795 // clang-format off
4796 #define NEON_ACROSSLANES_LIST(V)           \
4797   V(addv,    NEON_ADDV)                    \
4798   V(smaxv,   NEON_SMAXV)                   \
4799   V(sminv,   NEON_SMINV)                   \
4800   V(umaxv,   NEON_UMAXV)                   \
4801   V(uminv,   NEON_UMINV)
4802 // clang-format on
4803 
4804 #define VIXL_DEFINE_ASM_FUNC(FN, OP)                             \
4805   void Assembler::FN(const VRegister& vd, const VRegister& vn) { \
4806     VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));                     \
4807     NEONAcrossLanes(vd, vn, OP, 0);                              \
4808   }
4809 NEON_ACROSSLANES_LIST(VIXL_DEFINE_ASM_FUNC)
4810 #undef VIXL_DEFINE_ASM_FUNC
4811 
4812 
4813 // clang-format off
4814 #define NEON_ACROSSLANES_FP_LIST(V)   \
4815   V(fmaxv,   NEON_FMAXV,   NEON_FMAXV_H) \
4816   V(fminv,   NEON_FMINV,   NEON_FMINV_H) \
4817   V(fmaxnmv, NEON_FMAXNMV, NEON_FMAXNMV_H) \
4818   V(fminnmv, NEON_FMINNMV, NEON_FMINNMV_H) \
4819 // clang-format on
4820 
4821 #define VIXL_DEFINE_ASM_FUNC(FN, OP, OP_H)                            \
4822   void Assembler::FN(const VRegister& vd, const VRegister& vn) { \
4823     VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kNEON));   \
4824     if (vd.Is1H()) VIXL_ASSERT(CPUHas(CPUFeatures::kNEONHalf));  \
4825     VIXL_ASSERT(vd.Is1S() || vd.Is1H());                         \
4826     NEONAcrossLanes(vd, vn, OP, OP_H);                           \
4827   }
NEON_ACROSSLANES_FP_LIST(VIXL_DEFINE_ASM_FUNC)4828 NEON_ACROSSLANES_FP_LIST(VIXL_DEFINE_ASM_FUNC)
4829 #undef VIXL_DEFINE_ASM_FUNC
4830 
4831 
4832 void Assembler::NEONPerm(const VRegister& vd,
4833                          const VRegister& vn,
4834                          const VRegister& vm,
4835                          NEONPermOp op) {
4836   VIXL_ASSERT(AreSameFormat(vd, vn, vm));
4837   VIXL_ASSERT(!vd.Is1D());
4838   Emit(VFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
4839 }
4840 
4841 
trn1(const VRegister & vd,const VRegister & vn,const VRegister & vm)4842 void Assembler::trn1(const VRegister& vd,
4843                      const VRegister& vn,
4844                      const VRegister& vm) {
4845   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4846   NEONPerm(vd, vn, vm, NEON_TRN1);
4847 }
4848 
4849 
trn2(const VRegister & vd,const VRegister & vn,const VRegister & vm)4850 void Assembler::trn2(const VRegister& vd,
4851                      const VRegister& vn,
4852                      const VRegister& vm) {
4853   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4854   NEONPerm(vd, vn, vm, NEON_TRN2);
4855 }
4856 
4857 
uzp1(const VRegister & vd,const VRegister & vn,const VRegister & vm)4858 void Assembler::uzp1(const VRegister& vd,
4859                      const VRegister& vn,
4860                      const VRegister& vm) {
4861   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4862   NEONPerm(vd, vn, vm, NEON_UZP1);
4863 }
4864 
4865 
uzp2(const VRegister & vd,const VRegister & vn,const VRegister & vm)4866 void Assembler::uzp2(const VRegister& vd,
4867                      const VRegister& vn,
4868                      const VRegister& vm) {
4869   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4870   NEONPerm(vd, vn, vm, NEON_UZP2);
4871 }
4872 
4873 
zip1(const VRegister & vd,const VRegister & vn,const VRegister & vm)4874 void Assembler::zip1(const VRegister& vd,
4875                      const VRegister& vn,
4876                      const VRegister& vm) {
4877   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4878   NEONPerm(vd, vn, vm, NEON_ZIP1);
4879 }
4880 
4881 
zip2(const VRegister & vd,const VRegister & vn,const VRegister & vm)4882 void Assembler::zip2(const VRegister& vd,
4883                      const VRegister& vn,
4884                      const VRegister& vm) {
4885   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4886   NEONPerm(vd, vn, vm, NEON_ZIP2);
4887 }
4888 
4889 
NEONShiftImmediate(const VRegister & vd,const VRegister & vn,NEONShiftImmediateOp op,int immh_immb)4890 void Assembler::NEONShiftImmediate(const VRegister& vd,
4891                                    const VRegister& vn,
4892                                    NEONShiftImmediateOp op,
4893                                    int immh_immb) {
4894   VIXL_ASSERT(AreSameFormat(vd, vn));
4895   Instr q, scalar;
4896   if (vn.IsScalar()) {
4897     q = NEON_Q;
4898     scalar = NEONScalar;
4899   } else {
4900     q = vd.IsD() ? 0 : NEON_Q;
4901     scalar = 0;
4902   }
4903   Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd));
4904 }
4905 
4906 
NEONShiftLeftImmediate(const VRegister & vd,const VRegister & vn,int shift,NEONShiftImmediateOp op)4907 void Assembler::NEONShiftLeftImmediate(const VRegister& vd,
4908                                        const VRegister& vn,
4909                                        int shift,
4910                                        NEONShiftImmediateOp op) {
4911   int lane_size_in_bits = vn.GetLaneSizeInBits();
4912   VIXL_ASSERT((shift >= 0) && (shift < lane_size_in_bits));
4913   NEONShiftImmediate(vd, vn, op, (lane_size_in_bits + shift) << 16);
4914 }
4915 
4916 
NEONShiftRightImmediate(const VRegister & vd,const VRegister & vn,int shift,NEONShiftImmediateOp op)4917 void Assembler::NEONShiftRightImmediate(const VRegister& vd,
4918                                         const VRegister& vn,
4919                                         int shift,
4920                                         NEONShiftImmediateOp op) {
4921   int lane_size_in_bits = vn.GetLaneSizeInBits();
4922   VIXL_ASSERT((shift >= 1) && (shift <= lane_size_in_bits));
4923   NEONShiftImmediate(vd, vn, op, ((2 * lane_size_in_bits) - shift) << 16);
4924 }
4925 
4926 
NEONShiftImmediateL(const VRegister & vd,const VRegister & vn,int shift,NEONShiftImmediateOp op)4927 void Assembler::NEONShiftImmediateL(const VRegister& vd,
4928                                     const VRegister& vn,
4929                                     int shift,
4930                                     NEONShiftImmediateOp op) {
4931   int lane_size_in_bits = vn.GetLaneSizeInBits();
4932   VIXL_ASSERT((shift >= 0) && (shift < lane_size_in_bits));
4933   int immh_immb = (lane_size_in_bits + shift) << 16;
4934 
4935   VIXL_ASSERT((vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) ||
4936               (vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H()) ||
4937               (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D()));
4938   Instr q;
4939   q = vn.IsD() ? 0 : NEON_Q;
4940   Emit(q | op | immh_immb | Rn(vn) | Rd(vd));
4941 }
4942 
4943 
NEONShiftImmediateN(const VRegister & vd,const VRegister & vn,int shift,NEONShiftImmediateOp op)4944 void Assembler::NEONShiftImmediateN(const VRegister& vd,
4945                                     const VRegister& vn,
4946                                     int shift,
4947                                     NEONShiftImmediateOp op) {
4948   Instr q, scalar;
4949   int lane_size_in_bits = vd.GetLaneSizeInBits();
4950   VIXL_ASSERT((shift >= 1) && (shift <= lane_size_in_bits));
4951   int immh_immb = (2 * lane_size_in_bits - shift) << 16;
4952 
4953   if (vn.IsScalar()) {
4954     VIXL_ASSERT((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) ||
4955                 (vd.Is1S() && vn.Is1D()));
4956     q = NEON_Q;
4957     scalar = NEONScalar;
4958   } else {
4959     VIXL_ASSERT((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) ||
4960                 (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) ||
4961                 (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D()));
4962     scalar = 0;
4963     q = vd.IsD() ? 0 : NEON_Q;
4964   }
4965   Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd));
4966 }
4967 
4968 
shl(const VRegister & vd,const VRegister & vn,int shift)4969 void Assembler::shl(const VRegister& vd, const VRegister& vn, int shift) {
4970   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4971   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4972   NEONShiftLeftImmediate(vd, vn, shift, NEON_SHL);
4973 }
4974 
4975 
sli(const VRegister & vd,const VRegister & vn,int shift)4976 void Assembler::sli(const VRegister& vd, const VRegister& vn, int shift) {
4977   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4978   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
4979   NEONShiftLeftImmediate(vd, vn, shift, NEON_SLI);
4980 }
4981 
4982 
sqshl(const VRegister & vd,const VRegister & vn,int shift)4983 void Assembler::sqshl(const VRegister& vd, const VRegister& vn, int shift) {
4984   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4985   NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHL_imm);
4986 }
4987 
4988 
sqshlu(const VRegister & vd,const VRegister & vn,int shift)4989 void Assembler::sqshlu(const VRegister& vd, const VRegister& vn, int shift) {
4990   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4991   NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHLU);
4992 }
4993 
4994 
uqshl(const VRegister & vd,const VRegister & vn,int shift)4995 void Assembler::uqshl(const VRegister& vd, const VRegister& vn, int shift) {
4996   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
4997   NEONShiftLeftImmediate(vd, vn, shift, NEON_UQSHL_imm);
4998 }
4999 
5000 
sshll(const VRegister & vd,const VRegister & vn,int shift)5001 void Assembler::sshll(const VRegister& vd, const VRegister& vn, int shift) {
5002   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5003   VIXL_ASSERT(vn.IsD());
5004   NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL);
5005 }
5006 
5007 
sshll2(const VRegister & vd,const VRegister & vn,int shift)5008 void Assembler::sshll2(const VRegister& vd, const VRegister& vn, int shift) {
5009   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5010   VIXL_ASSERT(vn.IsQ());
5011   NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL);
5012 }
5013 
5014 
sxtl(const VRegister & vd,const VRegister & vn)5015 void Assembler::sxtl(const VRegister& vd, const VRegister& vn) {
5016   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5017   sshll(vd, vn, 0);
5018 }
5019 
5020 
sxtl2(const VRegister & vd,const VRegister & vn)5021 void Assembler::sxtl2(const VRegister& vd, const VRegister& vn) {
5022   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5023   sshll2(vd, vn, 0);
5024 }
5025 
5026 
ushll(const VRegister & vd,const VRegister & vn,int shift)5027 void Assembler::ushll(const VRegister& vd, const VRegister& vn, int shift) {
5028   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5029   VIXL_ASSERT(vn.IsD());
5030   NEONShiftImmediateL(vd, vn, shift, NEON_USHLL);
5031 }
5032 
5033 
ushll2(const VRegister & vd,const VRegister & vn,int shift)5034 void Assembler::ushll2(const VRegister& vd, const VRegister& vn, int shift) {
5035   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5036   VIXL_ASSERT(vn.IsQ());
5037   NEONShiftImmediateL(vd, vn, shift, NEON_USHLL);
5038 }
5039 
5040 
uxtl(const VRegister & vd,const VRegister & vn)5041 void Assembler::uxtl(const VRegister& vd, const VRegister& vn) {
5042   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5043   ushll(vd, vn, 0);
5044 }
5045 
5046 
uxtl2(const VRegister & vd,const VRegister & vn)5047 void Assembler::uxtl2(const VRegister& vd, const VRegister& vn) {
5048   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5049   ushll2(vd, vn, 0);
5050 }
5051 
5052 
sri(const VRegister & vd,const VRegister & vn,int shift)5053 void Assembler::sri(const VRegister& vd, const VRegister& vn, int shift) {
5054   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5055   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
5056   NEONShiftRightImmediate(vd, vn, shift, NEON_SRI);
5057 }
5058 
5059 
sshr(const VRegister & vd,const VRegister & vn,int shift)5060 void Assembler::sshr(const VRegister& vd, const VRegister& vn, int shift) {
5061   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5062   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
5063   NEONShiftRightImmediate(vd, vn, shift, NEON_SSHR);
5064 }
5065 
5066 
ushr(const VRegister & vd,const VRegister & vn,int shift)5067 void Assembler::ushr(const VRegister& vd, const VRegister& vn, int shift) {
5068   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5069   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
5070   NEONShiftRightImmediate(vd, vn, shift, NEON_USHR);
5071 }
5072 
5073 
srshr(const VRegister & vd,const VRegister & vn,int shift)5074 void Assembler::srshr(const VRegister& vd, const VRegister& vn, int shift) {
5075   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5076   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
5077   NEONShiftRightImmediate(vd, vn, shift, NEON_SRSHR);
5078 }
5079 
5080 
urshr(const VRegister & vd,const VRegister & vn,int shift)5081 void Assembler::urshr(const VRegister& vd, const VRegister& vn, int shift) {
5082   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5083   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
5084   NEONShiftRightImmediate(vd, vn, shift, NEON_URSHR);
5085 }
5086 
5087 
ssra(const VRegister & vd,const VRegister & vn,int shift)5088 void Assembler::ssra(const VRegister& vd, const VRegister& vn, int shift) {
5089   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5090   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
5091   NEONShiftRightImmediate(vd, vn, shift, NEON_SSRA);
5092 }
5093 
5094 
usra(const VRegister & vd,const VRegister & vn,int shift)5095 void Assembler::usra(const VRegister& vd, const VRegister& vn, int shift) {
5096   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5097   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
5098   NEONShiftRightImmediate(vd, vn, shift, NEON_USRA);
5099 }
5100 
5101 
srsra(const VRegister & vd,const VRegister & vn,int shift)5102 void Assembler::srsra(const VRegister& vd, const VRegister& vn, int shift) {
5103   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5104   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
5105   NEONShiftRightImmediate(vd, vn, shift, NEON_SRSRA);
5106 }
5107 
5108 
ursra(const VRegister & vd,const VRegister & vn,int shift)5109 void Assembler::ursra(const VRegister& vd, const VRegister& vn, int shift) {
5110   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5111   VIXL_ASSERT(vd.IsVector() || vd.Is1D());
5112   NEONShiftRightImmediate(vd, vn, shift, NEON_URSRA);
5113 }
5114 
5115 
shrn(const VRegister & vd,const VRegister & vn,int shift)5116 void Assembler::shrn(const VRegister& vd, const VRegister& vn, int shift) {
5117   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5118   VIXL_ASSERT(vn.IsVector() && vd.IsD());
5119   NEONShiftImmediateN(vd, vn, shift, NEON_SHRN);
5120 }
5121 
5122 
shrn2(const VRegister & vd,const VRegister & vn,int shift)5123 void Assembler::shrn2(const VRegister& vd, const VRegister& vn, int shift) {
5124   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5125   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
5126   NEONShiftImmediateN(vd, vn, shift, NEON_SHRN);
5127 }
5128 
5129 
rshrn(const VRegister & vd,const VRegister & vn,int shift)5130 void Assembler::rshrn(const VRegister& vd, const VRegister& vn, int shift) {
5131   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5132   VIXL_ASSERT(vn.IsVector() && vd.IsD());
5133   NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN);
5134 }
5135 
5136 
rshrn2(const VRegister & vd,const VRegister & vn,int shift)5137 void Assembler::rshrn2(const VRegister& vd, const VRegister& vn, int shift) {
5138   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5139   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
5140   NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN);
5141 }
5142 
5143 
sqshrn(const VRegister & vd,const VRegister & vn,int shift)5144 void Assembler::sqshrn(const VRegister& vd, const VRegister& vn, int shift) {
5145   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5146   VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
5147   NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN);
5148 }
5149 
5150 
sqshrn2(const VRegister & vd,const VRegister & vn,int shift)5151 void Assembler::sqshrn2(const VRegister& vd, const VRegister& vn, int shift) {
5152   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5153   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
5154   NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN);
5155 }
5156 
5157 
sqrshrn(const VRegister & vd,const VRegister & vn,int shift)5158 void Assembler::sqrshrn(const VRegister& vd, const VRegister& vn, int shift) {
5159   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5160   VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
5161   NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN);
5162 }
5163 
5164 
sqrshrn2(const VRegister & vd,const VRegister & vn,int shift)5165 void Assembler::sqrshrn2(const VRegister& vd, const VRegister& vn, int shift) {
5166   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5167   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
5168   NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN);
5169 }
5170 
5171 
sqshrun(const VRegister & vd,const VRegister & vn,int shift)5172 void Assembler::sqshrun(const VRegister& vd, const VRegister& vn, int shift) {
5173   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5174   VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
5175   NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN);
5176 }
5177 
5178 
sqshrun2(const VRegister & vd,const VRegister & vn,int shift)5179 void Assembler::sqshrun2(const VRegister& vd, const VRegister& vn, int shift) {
5180   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5181   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
5182   NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN);
5183 }
5184 
5185 
sqrshrun(const VRegister & vd,const VRegister & vn,int shift)5186 void Assembler::sqrshrun(const VRegister& vd, const VRegister& vn, int shift) {
5187   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5188   VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
5189   NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN);
5190 }
5191 
5192 
sqrshrun2(const VRegister & vd,const VRegister & vn,int shift)5193 void Assembler::sqrshrun2(const VRegister& vd, const VRegister& vn, int shift) {
5194   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5195   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
5196   NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN);
5197 }
5198 
5199 
uqshrn(const VRegister & vd,const VRegister & vn,int shift)5200 void Assembler::uqshrn(const VRegister& vd, const VRegister& vn, int shift) {
5201   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5202   VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
5203   NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN);
5204 }
5205 
5206 
uqshrn2(const VRegister & vd,const VRegister & vn,int shift)5207 void Assembler::uqshrn2(const VRegister& vd, const VRegister& vn, int shift) {
5208   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5209   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
5210   NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN);
5211 }
5212 
5213 
uqrshrn(const VRegister & vd,const VRegister & vn,int shift)5214 void Assembler::uqrshrn(const VRegister& vd, const VRegister& vn, int shift) {
5215   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5216   VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
5217   NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN);
5218 }
5219 
5220 
uqrshrn2(const VRegister & vd,const VRegister & vn,int shift)5221 void Assembler::uqrshrn2(const VRegister& vd, const VRegister& vn, int shift) {
5222   VIXL_ASSERT(CPUHas(CPUFeatures::kNEON));
5223   VIXL_ASSERT(vn.IsVector() && vd.IsQ());
5224   NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN);
5225 }
5226 
5227 
5228 // Note:
5229 // For all ToImm instructions below, a difference in case
5230 // for the same letter indicates a negated bit.
5231 // If b is 1, then B is 0.
FP16ToImm8(Float16 imm)5232 uint32_t Assembler::FP16ToImm8(Float16 imm) {
5233   VIXL_ASSERT(IsImmFP16(imm));
5234   // Half: aBbb.cdef.gh00.0000 (16 bits)
5235   uint16_t bits = Float16ToRawbits(imm);
5236   // bit7: a000.0000
5237   uint16_t bit7 = ((bits >> 15) & 0x1) << 7;
5238   // bit6: 0b00.0000
5239   uint16_t bit6 = ((bits >> 13) & 0x1) << 6;
5240   // bit5_to_0: 00cd.efgh
5241   uint16_t bit5_to_0 = (bits >> 6) & 0x3f;
5242   uint32_t result = static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
5243   return result;
5244 }
5245 
5246 
ImmFP16(Float16 imm)5247 Instr Assembler::ImmFP16(Float16 imm) {
5248   return FP16ToImm8(imm) << ImmFP_offset;
5249 }
5250 
5251 
FP32ToImm8(float imm)5252 uint32_t Assembler::FP32ToImm8(float imm) {
5253   VIXL_ASSERT(IsImmFP32(imm));
5254   // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
5255   uint32_t bits = FloatToRawbits(imm);
5256   // bit7: a000.0000
5257   uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
5258   // bit6: 0b00.0000
5259   uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
5260   // bit5_to_0: 00cd.efgh
5261   uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
5262 
5263   return bit7 | bit6 | bit5_to_0;
5264 }
5265 
5266 
ImmFP32(float imm)5267 Instr Assembler::ImmFP32(float imm) { return FP32ToImm8(imm) << ImmFP_offset; }
5268 
5269 
FP64ToImm8(double imm)5270 uint32_t Assembler::FP64ToImm8(double imm) {
5271   VIXL_ASSERT(IsImmFP64(imm));
5272   // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
5273   //       0000.0000.0000.0000.0000.0000.0000.0000
5274   uint64_t bits = DoubleToRawbits(imm);
5275   // bit7: a000.0000
5276   uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
5277   // bit6: 0b00.0000
5278   uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
5279   // bit5_to_0: 00cd.efgh
5280   uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
5281 
5282   return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
5283 }
5284 
5285 
ImmFP64(double imm)5286 Instr Assembler::ImmFP64(double imm) { return FP64ToImm8(imm) << ImmFP_offset; }
5287 
5288 
5289 // Code generation helpers.
MoveWide(const Register & rd,uint64_t imm,int shift,MoveWideImmediateOp mov_op)5290 void Assembler::MoveWide(const Register& rd,
5291                          uint64_t imm,
5292                          int shift,
5293                          MoveWideImmediateOp mov_op) {
5294   // Ignore the top 32 bits of an immediate if we're moving to a W register.
5295   if (rd.Is32Bits()) {
5296     // Check that the top 32 bits are zero (a positive 32-bit number) or top
5297     // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
5298     VIXL_ASSERT(((imm >> kWRegSize) == 0) ||
5299                 ((imm >> (kWRegSize - 1)) == 0x1ffffffff));
5300     imm &= kWRegMask;
5301   }
5302 
5303   if (shift >= 0) {
5304     // Explicit shift specified.
5305     VIXL_ASSERT((shift == 0) || (shift == 16) || (shift == 32) ||
5306                 (shift == 48));
5307     VIXL_ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16));
5308     shift /= 16;
5309   } else {
5310     // Calculate a new immediate and shift combination to encode the immediate
5311     // argument.
5312     VIXL_ASSERT(shift == -1);
5313     shift = 0;
5314     if ((imm & 0xffffffffffff0000) == 0) {
5315       // Nothing to do.
5316     } else if ((imm & 0xffffffff0000ffff) == 0) {
5317       imm >>= 16;
5318       shift = 1;
5319     } else if ((imm & 0xffff0000ffffffff) == 0) {
5320       VIXL_ASSERT(rd.Is64Bits());
5321       imm >>= 32;
5322       shift = 2;
5323     } else if ((imm & 0x0000ffffffffffff) == 0) {
5324       VIXL_ASSERT(rd.Is64Bits());
5325       imm >>= 48;
5326       shift = 3;
5327     }
5328   }
5329 
5330   VIXL_ASSERT(IsUint16(imm));
5331 
5332   Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) | ImmMoveWide(imm) |
5333        ShiftMoveWide(shift));
5334 }
5335 
5336 
AddSub(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubOp op)5337 void Assembler::AddSub(const Register& rd,
5338                        const Register& rn,
5339                        const Operand& operand,
5340                        FlagsUpdate S,
5341                        AddSubOp op) {
5342   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
5343   if (operand.IsImmediate()) {
5344     int64_t immediate = operand.GetImmediate();
5345     VIXL_ASSERT(IsImmAddSub(immediate));
5346     Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
5347     Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
5348          ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn));
5349   } else if (operand.IsShiftedRegister()) {
5350     VIXL_ASSERT(operand.GetRegister().GetSizeInBits() == rd.GetSizeInBits());
5351     VIXL_ASSERT(operand.GetShift() != ROR);
5352 
5353     // For instructions of the form:
5354     //   add/sub   wsp, <Wn>, <Wm> [, LSL #0-3 ]
5355     //   add/sub   <Wd>, wsp, <Wm> [, LSL #0-3 ]
5356     //   add/sub   wsp, wsp, <Wm> [, LSL #0-3 ]
5357     //   adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
5358     // or their 64-bit register equivalents, convert the operand from shifted to
5359     // extended register mode, and emit an add/sub extended instruction.
5360     if (rn.IsSP() || rd.IsSP()) {
5361       VIXL_ASSERT(!(rd.IsSP() && (S == SetFlags)));
5362       DataProcExtendedRegister(rd,
5363                                rn,
5364                                operand.ToExtendedRegister(),
5365                                S,
5366                                AddSubExtendedFixed | op);
5367     } else {
5368       DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
5369     }
5370   } else {
5371     VIXL_ASSERT(operand.IsExtendedRegister());
5372     DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
5373   }
5374 }
5375 
5376 
AddSubWithCarry(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubWithCarryOp op)5377 void Assembler::AddSubWithCarry(const Register& rd,
5378                                 const Register& rn,
5379                                 const Operand& operand,
5380                                 FlagsUpdate S,
5381                                 AddSubWithCarryOp op) {
5382   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
5383   VIXL_ASSERT(rd.GetSizeInBits() == operand.GetRegister().GetSizeInBits());
5384   VIXL_ASSERT(operand.IsShiftedRegister() && (operand.GetShiftAmount() == 0));
5385   Emit(SF(rd) | op | Flags(S) | Rm(operand.GetRegister()) | Rn(rn) | Rd(rd));
5386 }
5387 
5388 
hlt(int code)5389 void Assembler::hlt(int code) {
5390   VIXL_ASSERT(IsUint16(code));
5391   Emit(HLT | ImmException(code));
5392 }
5393 
5394 
brk(int code)5395 void Assembler::brk(int code) {
5396   VIXL_ASSERT(IsUint16(code));
5397   Emit(BRK | ImmException(code));
5398 }
5399 
5400 
svc(int code)5401 void Assembler::svc(int code) { Emit(SVC | ImmException(code)); }
5402 
udf(int code)5403 void Assembler::udf(int code) { Emit(UDF | ImmUdf(code)); }
5404 
5405 
5406 // TODO(all): The third parameter should be passed by reference but gcc 4.8.2
5407 // reports a bogus uninitialised warning then.
Logical(const Register & rd,const Register & rn,const Operand operand,LogicalOp op)5408 void Assembler::Logical(const Register& rd,
5409                         const Register& rn,
5410                         const Operand operand,
5411                         LogicalOp op) {
5412   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
5413   if (operand.IsImmediate()) {
5414     int64_t immediate = operand.GetImmediate();
5415     unsigned reg_size = rd.GetSizeInBits();
5416 
5417     VIXL_ASSERT(immediate != 0);
5418     VIXL_ASSERT(immediate != -1);
5419     VIXL_ASSERT(rd.Is64Bits() || IsUint32(immediate));
5420 
5421     // If the operation is NOT, invert the operation and immediate.
5422     if ((op & NOT) == NOT) {
5423       op = static_cast<LogicalOp>(op & ~NOT);
5424       immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
5425     }
5426 
5427     unsigned n, imm_s, imm_r;
5428     if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
5429       // Immediate can be encoded in the instruction.
5430       LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
5431     } else {
5432       // This case is handled in the macro assembler.
5433       VIXL_UNREACHABLE();
5434     }
5435   } else {
5436     VIXL_ASSERT(operand.IsShiftedRegister());
5437     VIXL_ASSERT(operand.GetRegister().GetSizeInBits() == rd.GetSizeInBits());
5438     Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
5439     DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
5440   }
5441 }
5442 
5443 
LogicalImmediate(const Register & rd,const Register & rn,unsigned n,unsigned imm_s,unsigned imm_r,LogicalOp op)5444 void Assembler::LogicalImmediate(const Register& rd,
5445                                  const Register& rn,
5446                                  unsigned n,
5447                                  unsigned imm_s,
5448                                  unsigned imm_r,
5449                                  LogicalOp op) {
5450   unsigned reg_size = rd.GetSizeInBits();
5451   Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
5452   Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
5453        ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
5454        Rn(rn));
5455 }
5456 
5457 
ConditionalCompare(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond,ConditionalCompareOp op)5458 void Assembler::ConditionalCompare(const Register& rn,
5459                                    const Operand& operand,
5460                                    StatusFlags nzcv,
5461                                    Condition cond,
5462                                    ConditionalCompareOp op) {
5463   Instr ccmpop;
5464   if (operand.IsImmediate()) {
5465     int64_t immediate = operand.GetImmediate();
5466     VIXL_ASSERT(IsImmConditionalCompare(immediate));
5467     ccmpop = ConditionalCompareImmediateFixed | op |
5468              ImmCondCmp(static_cast<unsigned>(immediate));
5469   } else {
5470     VIXL_ASSERT(operand.IsShiftedRegister() && (operand.GetShiftAmount() == 0));
5471     ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.GetRegister());
5472   }
5473   Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
5474 }
5475 
5476 
DataProcessing1Source(const Register & rd,const Register & rn,DataProcessing1SourceOp op)5477 void Assembler::DataProcessing1Source(const Register& rd,
5478                                       const Register& rn,
5479                                       DataProcessing1SourceOp op) {
5480   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
5481   Emit(SF(rn) | op | Rn(rn) | Rd(rd));
5482 }
5483 
5484 
FPDataProcessing1Source(const VRegister & vd,const VRegister & vn,FPDataProcessing1SourceOp op)5485 void Assembler::FPDataProcessing1Source(const VRegister& vd,
5486                                         const VRegister& vn,
5487                                         FPDataProcessing1SourceOp op) {
5488   VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
5489   Emit(FPType(vn) | op | Rn(vn) | Rd(vd));
5490 }
5491 
5492 
FPDataProcessing3Source(const VRegister & vd,const VRegister & vn,const VRegister & vm,const VRegister & va,FPDataProcessing3SourceOp op)5493 void Assembler::FPDataProcessing3Source(const VRegister& vd,
5494                                         const VRegister& vn,
5495                                         const VRegister& vm,
5496                                         const VRegister& va,
5497                                         FPDataProcessing3SourceOp op) {
5498   VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
5499   VIXL_ASSERT(AreSameSizeAndType(vd, vn, vm, va));
5500   Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd) | Ra(va));
5501 }
5502 
5503 
NEONModifiedImmShiftLsl(const VRegister & vd,const int imm8,const int left_shift,NEONModifiedImmediateOp op)5504 void Assembler::NEONModifiedImmShiftLsl(const VRegister& vd,
5505                                         const int imm8,
5506                                         const int left_shift,
5507                                         NEONModifiedImmediateOp op) {
5508   VIXL_ASSERT(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H() || vd.Is2S() ||
5509               vd.Is4S());
5510   VIXL_ASSERT((left_shift == 0) || (left_shift == 8) || (left_shift == 16) ||
5511               (left_shift == 24));
5512   VIXL_ASSERT(IsUint8(imm8));
5513 
5514   int cmode_1, cmode_2, cmode_3;
5515   if (vd.Is8B() || vd.Is16B()) {
5516     VIXL_ASSERT(op == NEONModifiedImmediate_MOVI);
5517     cmode_1 = 1;
5518     cmode_2 = 1;
5519     cmode_3 = 1;
5520   } else {
5521     cmode_1 = (left_shift >> 3) & 1;
5522     cmode_2 = left_shift >> 4;
5523     cmode_3 = 0;
5524     if (vd.Is4H() || vd.Is8H()) {
5525       VIXL_ASSERT((left_shift == 0) || (left_shift == 8));
5526       cmode_3 = 1;
5527     }
5528   }
5529   int cmode = (cmode_3 << 3) | (cmode_2 << 2) | (cmode_1 << 1);
5530 
5531   int q = vd.IsQ() ? NEON_Q : 0;
5532 
5533   Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd));
5534 }
5535 
5536 
NEONModifiedImmShiftMsl(const VRegister & vd,const int imm8,const int shift_amount,NEONModifiedImmediateOp op)5537 void Assembler::NEONModifiedImmShiftMsl(const VRegister& vd,
5538                                         const int imm8,
5539                                         const int shift_amount,
5540                                         NEONModifiedImmediateOp op) {
5541   VIXL_ASSERT(vd.Is2S() || vd.Is4S());
5542   VIXL_ASSERT((shift_amount == 8) || (shift_amount == 16));
5543   VIXL_ASSERT(IsUint8(imm8));
5544 
5545   int cmode_0 = (shift_amount >> 4) & 1;
5546   int cmode = 0xc | cmode_0;
5547 
5548   int q = vd.IsQ() ? NEON_Q : 0;
5549 
5550   Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd));
5551 }
5552 
5553 
EmitShift(const Register & rd,const Register & rn,Shift shift,unsigned shift_amount)5554 void Assembler::EmitShift(const Register& rd,
5555                           const Register& rn,
5556                           Shift shift,
5557                           unsigned shift_amount) {
5558   switch (shift) {
5559     case LSL:
5560       lsl(rd, rn, shift_amount);
5561       break;
5562     case LSR:
5563       lsr(rd, rn, shift_amount);
5564       break;
5565     case ASR:
5566       asr(rd, rn, shift_amount);
5567       break;
5568     case ROR:
5569       ror(rd, rn, shift_amount);
5570       break;
5571     default:
5572       VIXL_UNREACHABLE();
5573   }
5574 }
5575 
5576 
EmitExtendShift(const Register & rd,const Register & rn,Extend extend,unsigned left_shift)5577 void Assembler::EmitExtendShift(const Register& rd,
5578                                 const Register& rn,
5579                                 Extend extend,
5580                                 unsigned left_shift) {
5581   VIXL_ASSERT(rd.GetSizeInBits() >= rn.GetSizeInBits());
5582   unsigned reg_size = rd.GetSizeInBits();
5583   // Use the correct size of register.
5584   Register rn_ = Register(rn.GetCode(), rd.GetSizeInBits());
5585   // Bits extracted are high_bit:0.
5586   unsigned high_bit = (8 << (extend & 0x3)) - 1;
5587   // Number of bits left in the result that are not introduced by the shift.
5588   unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
5589 
5590   if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
5591     switch (extend) {
5592       case UXTB:
5593       case UXTH:
5594       case UXTW:
5595         ubfm(rd, rn_, non_shift_bits, high_bit);
5596         break;
5597       case SXTB:
5598       case SXTH:
5599       case SXTW:
5600         sbfm(rd, rn_, non_shift_bits, high_bit);
5601         break;
5602       case UXTX:
5603       case SXTX: {
5604         VIXL_ASSERT(rn.GetSizeInBits() == kXRegSize);
5605         // Nothing to extend. Just shift.
5606         lsl(rd, rn_, left_shift);
5607         break;
5608       }
5609       default:
5610         VIXL_UNREACHABLE();
5611     }
5612   } else {
5613     // No need to extend as the extended bits would be shifted away.
5614     lsl(rd, rn_, left_shift);
5615   }
5616 }
5617 
5618 
DataProcShiftedRegister(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,Instr op)5619 void Assembler::DataProcShiftedRegister(const Register& rd,
5620                                         const Register& rn,
5621                                         const Operand& operand,
5622                                         FlagsUpdate S,
5623                                         Instr op) {
5624   VIXL_ASSERT(operand.IsShiftedRegister());
5625   VIXL_ASSERT(rn.Is64Bits() ||
5626               (rn.Is32Bits() && IsUint5(operand.GetShiftAmount())));
5627   Emit(SF(rd) | op | Flags(S) | ShiftDP(operand.GetShift()) |
5628        ImmDPShift(operand.GetShiftAmount()) | Rm(operand.GetRegister()) |
5629        Rn(rn) | Rd(rd));
5630 }
5631 
5632 
DataProcExtendedRegister(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,Instr op)5633 void Assembler::DataProcExtendedRegister(const Register& rd,
5634                                          const Register& rn,
5635                                          const Operand& operand,
5636                                          FlagsUpdate S,
5637                                          Instr op) {
5638   Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
5639   Emit(SF(rd) | op | Flags(S) | Rm(operand.GetRegister()) |
5640        ExtendMode(operand.GetExtend()) |
5641        ImmExtendShift(operand.GetShiftAmount()) | dest_reg | RnSP(rn));
5642 }
5643 
5644 
LoadStoreMemOperand(const MemOperand & addr,unsigned access_size_in_bytes_log2,LoadStoreScalingOption option)5645 Instr Assembler::LoadStoreMemOperand(const MemOperand& addr,
5646                                      unsigned access_size_in_bytes_log2,
5647                                      LoadStoreScalingOption option) {
5648   Instr base = RnSP(addr.GetBaseRegister());
5649   int64_t offset = addr.GetOffset();
5650 
5651   if (addr.IsImmediateOffset()) {
5652     bool prefer_unscaled =
5653         (option == PreferUnscaledOffset) || (option == RequireUnscaledOffset);
5654     if (prefer_unscaled && IsImmLSUnscaled(offset)) {
5655       // Use the unscaled addressing mode.
5656       return base | LoadStoreUnscaledOffsetFixed | ImmLS(offset);
5657     }
5658 
5659     if ((option != RequireUnscaledOffset) &&
5660         IsImmLSScaled(offset, access_size_in_bytes_log2)) {
5661       // We need `offset` to be positive for the shift to be well-defined.
5662       // IsImmLSScaled should check this.
5663       VIXL_ASSERT(offset >= 0);
5664       // Use the scaled addressing mode.
5665       return base | LoadStoreUnsignedOffsetFixed |
5666              ImmLSUnsigned(offset >> access_size_in_bytes_log2);
5667     }
5668 
5669     if ((option != RequireScaledOffset) && IsImmLSUnscaled(offset)) {
5670       // Use the unscaled addressing mode.
5671       return base | LoadStoreUnscaledOffsetFixed | ImmLS(offset);
5672     }
5673   }
5674 
5675   // All remaining addressing modes are register-offset, pre-indexed or
5676   // post-indexed modes.
5677   VIXL_ASSERT((option != RequireUnscaledOffset) &&
5678               (option != RequireScaledOffset));
5679 
5680   if (addr.IsRegisterOffset()) {
5681     Extend ext = addr.GetExtend();
5682     Shift shift = addr.GetShift();
5683     unsigned shift_amount = addr.GetShiftAmount();
5684 
5685     // LSL is encoded in the option field as UXTX.
5686     if (shift == LSL) {
5687       ext = UXTX;
5688     }
5689 
5690     // Shifts are encoded in one bit, indicating a left shift by the memory
5691     // access size.
5692     VIXL_ASSERT((shift_amount == 0) || (shift_amount == access_size_in_bytes_log2));
5693     return base | LoadStoreRegisterOffsetFixed | Rm(addr.GetRegisterOffset()) |
5694            ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0);
5695   }
5696 
5697   if (addr.IsPreIndex() && IsImmLSUnscaled(offset)) {
5698     return base | LoadStorePreIndexFixed | ImmLS(offset);
5699   }
5700 
5701   if (addr.IsPostIndex() && IsImmLSUnscaled(offset)) {
5702     return base | LoadStorePostIndexFixed | ImmLS(offset);
5703   }
5704 
5705   // If this point is reached, the MemOperand (addr) cannot be encoded.
5706   VIXL_UNREACHABLE();
5707   return 0;
5708 }
5709 
5710 
LoadStore(const CPURegister & rt,const MemOperand & addr,LoadStoreOp op,LoadStoreScalingOption option)5711 void Assembler::LoadStore(const CPURegister& rt,
5712                           const MemOperand& addr,
5713                           LoadStoreOp op,
5714                           LoadStoreScalingOption option) {
5715   VIXL_ASSERT(CPUHas(rt));
5716   Emit(op | Rt(rt) | LoadStoreMemOperand(addr, CalcLSDataSize(op), option));
5717 }
5718 
LoadStorePAC(const Register & xt,const MemOperand & addr,LoadStorePACOp op)5719 void Assembler::LoadStorePAC(const Register& xt,
5720                              const MemOperand& addr,
5721                              LoadStorePACOp op) {
5722   VIXL_ASSERT(xt.Is64Bits());
5723   VIXL_ASSERT(addr.IsImmediateOffset() || addr.IsPreIndex());
5724 
5725   Instr pac_op = op;
5726   if (addr.IsPreIndex()) {
5727     pac_op |= LoadStorePACPreBit;
5728   }
5729 
5730   Instr base = RnSP(addr.GetBaseRegister());
5731   int64_t offset = addr.GetOffset();
5732 
5733   Emit(pac_op | Rt(xt) | base | ImmLSPAC(static_cast<int>(offset)));
5734 }
5735 
5736 
Prefetch(int op,const MemOperand & addr,LoadStoreScalingOption option)5737 void Assembler::Prefetch(int op,
5738                          const MemOperand& addr,
5739                          LoadStoreScalingOption option) {
5740   VIXL_ASSERT(addr.IsRegisterOffset() || addr.IsImmediateOffset());
5741 
5742   Instr prfop = ImmPrefetchOperation(op);
5743   Emit(PRFM | prfop | LoadStoreMemOperand(addr, kXRegSizeInBytesLog2, option));
5744 }
5745 
Prefetch(PrefetchOperation op,const MemOperand & addr,LoadStoreScalingOption option)5746 void Assembler::Prefetch(PrefetchOperation op,
5747                          const MemOperand& addr,
5748                          LoadStoreScalingOption option) {
5749   // Passing unnamed values in 'op' is undefined behaviour in C++.
5750   VIXL_ASSERT(IsNamedPrefetchOperation(op));
5751   Prefetch(static_cast<int>(op), addr, option);
5752 }
5753 
5754 
IsImmAddSub(int64_t immediate)5755 bool Assembler::IsImmAddSub(int64_t immediate) {
5756   return IsUint12(immediate) ||
5757          (IsUint12(immediate >> 12) && ((immediate & 0xfff) == 0));
5758 }
5759 
5760 
IsImmConditionalCompare(int64_t immediate)5761 bool Assembler::IsImmConditionalCompare(int64_t immediate) {
5762   return IsUint5(immediate);
5763 }
5764 
5765 
IsImmFP16(Float16 imm)5766 bool Assembler::IsImmFP16(Float16 imm) {
5767   // Valid values will have the form:
5768   // aBbb.cdef.gh00.000
5769   uint16_t bits = Float16ToRawbits(imm);
5770   // bits[6..0] are cleared.
5771   if ((bits & 0x3f) != 0) {
5772     return false;
5773   }
5774 
5775   // bits[13..12] are all set or all cleared.
5776   uint16_t b_pattern = (bits >> 12) & 0x03;
5777   if (b_pattern != 0 && b_pattern != 0x03) {
5778     return false;
5779   }
5780 
5781   // bit[15] and bit[14] are opposite.
5782   if (((bits ^ (bits << 1)) & 0x4000) == 0) {
5783     return false;
5784   }
5785 
5786   return true;
5787 }
5788 
5789 
IsImmFP32(float imm)5790 bool Assembler::IsImmFP32(float imm) {
5791   // Valid values will have the form:
5792   // aBbb.bbbc.defg.h000.0000.0000.0000.0000
5793   uint32_t bits = FloatToRawbits(imm);
5794   // bits[19..0] are cleared.
5795   if ((bits & 0x7ffff) != 0) {
5796     return false;
5797   }
5798 
5799   // bits[29..25] are all set or all cleared.
5800   uint32_t b_pattern = (bits >> 16) & 0x3e00;
5801   if (b_pattern != 0 && b_pattern != 0x3e00) {
5802     return false;
5803   }
5804 
5805   // bit[30] and bit[29] are opposite.
5806   if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
5807     return false;
5808   }
5809 
5810   return true;
5811 }
5812 
5813 
IsImmFP64(double imm)5814 bool Assembler::IsImmFP64(double imm) {
5815   // Valid values will have the form:
5816   // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
5817   // 0000.0000.0000.0000.0000.0000.0000.0000
5818   uint64_t bits = DoubleToRawbits(imm);
5819   // bits[47..0] are cleared.
5820   if ((bits & 0x0000ffffffffffff) != 0) {
5821     return false;
5822   }
5823 
5824   // bits[61..54] are all set or all cleared.
5825   uint32_t b_pattern = (bits >> 48) & 0x3fc0;
5826   if ((b_pattern != 0) && (b_pattern != 0x3fc0)) {
5827     return false;
5828   }
5829 
5830   // bit[62] and bit[61] are opposite.
5831   if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) {
5832     return false;
5833   }
5834 
5835   return true;
5836 }
5837 
5838 
IsImmLSPair(int64_t offset,unsigned access_size_in_bytes_log2)5839 bool Assembler::IsImmLSPair(int64_t offset, unsigned access_size_in_bytes_log2) {
5840   VIXL_ASSERT(access_size_in_bytes_log2 <= kQRegSizeInBytesLog2);
5841   return IsMultiple(offset, 1 << access_size_in_bytes_log2) &&
5842          IsInt7(offset / (1 << access_size_in_bytes_log2));
5843 }
5844 
5845 
IsImmLSScaled(int64_t offset,unsigned access_size_in_bytes_log2)5846 bool Assembler::IsImmLSScaled(int64_t offset, unsigned access_size_in_bytes_log2) {
5847   VIXL_ASSERT(access_size_in_bytes_log2 <= kQRegSizeInBytesLog2);
5848   return IsMultiple(offset, 1 << access_size_in_bytes_log2) &&
5849          IsUint12(offset / (1 << access_size_in_bytes_log2));
5850 }
5851 
5852 
IsImmLSUnscaled(int64_t offset)5853 bool Assembler::IsImmLSUnscaled(int64_t offset) { return IsInt9(offset); }
5854 
5855 
5856 // The movn instruction can generate immediates containing an arbitrary 16-bit
5857 // value, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
IsImmMovn(uint64_t imm,unsigned reg_size)5858 bool Assembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
5859   return IsImmMovz(~imm, reg_size);
5860 }
5861 
5862 
5863 // The movz instruction can generate immediates containing an arbitrary 16-bit
5864 // value, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
IsImmMovz(uint64_t imm,unsigned reg_size)5865 bool Assembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
5866   VIXL_ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize));
5867   return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
5868 }
5869 
5870 
5871 // Test if a given value can be encoded in the immediate field of a logical
5872 // instruction.
5873 // If it can be encoded, the function returns true, and values pointed to by n,
5874 // imm_s and imm_r are updated with immediates encoded in the format required
5875 // by the corresponding fields in the logical instruction.
5876 // If it can not be encoded, the function returns false, and the values pointed
5877 // to by n, imm_s and imm_r are undefined.
IsImmLogical(uint64_t value,unsigned width,unsigned * n,unsigned * imm_s,unsigned * imm_r)5878 bool Assembler::IsImmLogical(uint64_t value,
5879                              unsigned width,
5880                              unsigned* n,
5881                              unsigned* imm_s,
5882                              unsigned* imm_r) {
5883   VIXL_ASSERT((width == kBRegSize) || (width == kHRegSize) ||
5884               (width == kSRegSize) || (width == kDRegSize));
5885 
5886   bool negate = false;
5887 
5888   // Logical immediates are encoded using parameters n, imm_s and imm_r using
5889   // the following table:
5890   //
5891   //    N   imms    immr    size        S             R
5892   //    1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
5893   //    0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
5894   //    0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
5895   //    0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
5896   //    0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
5897   //    0  11110s  xxxxxr     2    UInt(s)       UInt(r)
5898   // (s bits must not be all set)
5899   //
5900   // A pattern is constructed of size bits, where the least significant S+1 bits
5901   // are set. The pattern is rotated right by R, and repeated across a 32 or
5902   // 64-bit value, depending on destination register width.
5903   //
5904   // Put another way: the basic format of a logical immediate is a single
5905   // contiguous stretch of 1 bits, repeated across the whole word at intervals
5906   // given by a power of 2. To identify them quickly, we first locate the
5907   // lowest stretch of 1 bits, then the next 1 bit above that; that combination
5908   // is different for every logical immediate, so it gives us all the
5909   // information we need to identify the only logical immediate that our input
5910   // could be, and then we simply check if that's the value we actually have.
5911   //
5912   // (The rotation parameter does give the possibility of the stretch of 1 bits
5913   // going 'round the end' of the word. To deal with that, we observe that in
5914   // any situation where that happens the bitwise NOT of the value is also a
5915   // valid logical immediate. So we simply invert the input whenever its low bit
5916   // is set, and then we know that the rotated case can't arise.)
5917 
5918   if (value & 1) {
5919     // If the low bit is 1, negate the value, and set a flag to remember that we
5920     // did (so that we can adjust the return values appropriately).
5921     negate = true;
5922     value = ~value;
5923   }
5924 
5925   if (width <= kWRegSize) {
5926     // To handle 8/16/32-bit logical immediates, the very easiest thing is to repeat
5927     // the input value to fill a 64-bit word. The correct encoding of that as a
5928     // logical immediate will also be the correct encoding of the value.
5929 
5930     // Avoid making the assumption that the most-significant 56/48/32 bits are zero by
5931     // shifting the value left and duplicating it.
5932     for (unsigned bits = width; bits <= kWRegSize; bits *= 2) {
5933       value <<= bits;
5934       uint64_t mask = (UINT64_C(1) << bits) - 1;
5935       value |= ((value >> bits) & mask);
5936     }
5937   }
5938 
5939   // The basic analysis idea: imagine our input word looks like this.
5940   //
5941   //    0011111000111110001111100011111000111110001111100011111000111110
5942   //                                                          c  b    a
5943   //                                                          |<--d-->|
5944   //
5945   // We find the lowest set bit (as an actual power-of-2 value, not its index)
5946   // and call it a. Then we add a to our original number, which wipes out the
5947   // bottommost stretch of set bits and replaces it with a 1 carried into the
5948   // next zero bit. Then we look for the new lowest set bit, which is in
5949   // position b, and subtract it, so now our number is just like the original
5950   // but with the lowest stretch of set bits completely gone. Now we find the
5951   // lowest set bit again, which is position c in the diagram above. Then we'll
5952   // measure the distance d between bit positions a and c (using CLZ), and that
5953   // tells us that the only valid logical immediate that could possibly be equal
5954   // to this number is the one in which a stretch of bits running from a to just
5955   // below b is replicated every d bits.
5956   uint64_t a = LowestSetBit(value);
5957   uint64_t value_plus_a = value + a;
5958   uint64_t b = LowestSetBit(value_plus_a);
5959   uint64_t value_plus_a_minus_b = value_plus_a - b;
5960   uint64_t c = LowestSetBit(value_plus_a_minus_b);
5961 
5962   int d, clz_a, out_n;
5963   uint64_t mask;
5964 
5965   if (c != 0) {
5966     // The general case, in which there is more than one stretch of set bits.
5967     // Compute the repeat distance d, and set up a bitmask covering the basic
5968     // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
5969     // of these cases the N bit of the output will be zero.
5970     clz_a = CountLeadingZeros(a, kXRegSize);
5971     int clz_c = CountLeadingZeros(c, kXRegSize);
5972     d = clz_a - clz_c;
5973     mask = ((UINT64_C(1) << d) - 1);
5974     out_n = 0;
5975   } else {
5976     // Handle degenerate cases.
5977     //
5978     // If any of those 'find lowest set bit' operations didn't find a set bit at
5979     // all, then the word will have been zero thereafter, so in particular the
5980     // last lowest_set_bit operation will have returned zero. So we can test for
5981     // all the special case conditions in one go by seeing if c is zero.
5982     if (a == 0) {
5983       // The input was zero (or all 1 bits, which will come to here too after we
5984       // inverted it at the start of the function), for which we just return
5985       // false.
5986       return false;
5987     } else {
5988       // Otherwise, if c was zero but a was not, then there's just one stretch
5989       // of set bits in our word, meaning that we have the trivial case of
5990       // d == 64 and only one 'repetition'. Set up all the same variables as in
5991       // the general case above, and set the N bit in the output.
5992       clz_a = CountLeadingZeros(a, kXRegSize);
5993       d = 64;
5994       mask = ~UINT64_C(0);
5995       out_n = 1;
5996     }
5997   }
5998 
5999   // If the repeat period d is not a power of two, it can't be encoded.
6000   if (!IsPowerOf2(d)) {
6001     return false;
6002   }
6003 
6004   if (((b - a) & ~mask) != 0) {
6005     // If the bit stretch (b - a) does not fit within the mask derived from the
6006     // repeat period, then fail.
6007     return false;
6008   }
6009 
6010   // The only possible option is b - a repeated every d bits. Now we're going to
6011   // actually construct the valid logical immediate derived from that
6012   // specification, and see if it equals our original input.
6013   //
6014   // To repeat a value every d bits, we multiply it by a number of the form
6015   // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
6016   // be derived using a table lookup on CLZ(d).
6017   static const uint64_t multipliers[] = {
6018       0x0000000000000001UL,
6019       0x0000000100000001UL,
6020       0x0001000100010001UL,
6021       0x0101010101010101UL,
6022       0x1111111111111111UL,
6023       0x5555555555555555UL,
6024   };
6025   uint64_t multiplier = multipliers[CountLeadingZeros(d, kXRegSize) - 57];
6026   uint64_t candidate = (b - a) * multiplier;
6027 
6028   if (value != candidate) {
6029     // The candidate pattern doesn't match our input value, so fail.
6030     return false;
6031   }
6032 
6033   // We have a match! This is a valid logical immediate, so now we have to
6034   // construct the bits and pieces of the instruction encoding that generates
6035   // it.
6036 
6037   // Count the set bits in our basic stretch. The special case of clz(0) == -1
6038   // makes the answer come out right for stretches that reach the very top of
6039   // the word (e.g. numbers like 0xffffc00000000000).
6040   int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSize);
6041   int s = clz_a - clz_b;
6042 
6043   // Decide how many bits to rotate right by, to put the low bit of that basic
6044   // stretch in position a.
6045   int r;
6046   if (negate) {
6047     // If we inverted the input right at the start of this function, here's
6048     // where we compensate: the number of set bits becomes the number of clear
6049     // bits, and the rotation count is based on position b rather than position
6050     // a (since b is the location of the 'lowest' 1 bit after inversion).
6051     s = d - s;
6052     r = (clz_b + 1) & (d - 1);
6053   } else {
6054     r = (clz_a + 1) & (d - 1);
6055   }
6056 
6057   // Now we're done, except for having to encode the S output in such a way that
6058   // it gives both the number of set bits and the length of the repeated
6059   // segment. The s field is encoded like this:
6060   //
6061   //     imms    size        S
6062   //    ssssss    64    UInt(ssssss)
6063   //    0sssss    32    UInt(sssss)
6064   //    10ssss    16    UInt(ssss)
6065   //    110sss     8    UInt(sss)
6066   //    1110ss     4    UInt(ss)
6067   //    11110s     2    UInt(s)
6068   //
6069   // So we 'or' (2 * -d) with our computed s to form imms.
6070   if ((n != NULL) || (imm_s != NULL) || (imm_r != NULL)) {
6071     *n = out_n;
6072     *imm_s = ((2 * -d) | (s - 1)) & 0x3f;
6073     *imm_r = r;
6074   }
6075 
6076   return true;
6077 }
6078 
6079 
LoadOpFor(const CPURegister & rt)6080 LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
6081   VIXL_ASSERT(rt.IsValid());
6082   if (rt.IsRegister()) {
6083     return rt.Is64Bits() ? LDR_x : LDR_w;
6084   } else {
6085     VIXL_ASSERT(rt.IsVRegister());
6086     switch (rt.GetSizeInBits()) {
6087       case kBRegSize:
6088         return LDR_b;
6089       case kHRegSize:
6090         return LDR_h;
6091       case kSRegSize:
6092         return LDR_s;
6093       case kDRegSize:
6094         return LDR_d;
6095       default:
6096         VIXL_ASSERT(rt.IsQ());
6097         return LDR_q;
6098     }
6099   }
6100 }
6101 
6102 
StoreOpFor(const CPURegister & rt)6103 LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
6104   VIXL_ASSERT(rt.IsValid());
6105   if (rt.IsRegister()) {
6106     return rt.Is64Bits() ? STR_x : STR_w;
6107   } else {
6108     VIXL_ASSERT(rt.IsVRegister());
6109     switch (rt.GetSizeInBits()) {
6110       case kBRegSize:
6111         return STR_b;
6112       case kHRegSize:
6113         return STR_h;
6114       case kSRegSize:
6115         return STR_s;
6116       case kDRegSize:
6117         return STR_d;
6118       default:
6119         VIXL_ASSERT(rt.IsQ());
6120         return STR_q;
6121     }
6122   }
6123 }
6124 
6125 
StorePairOpFor(const CPURegister & rt,const CPURegister & rt2)6126 LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
6127                                           const CPURegister& rt2) {
6128   VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
6129   USE(rt2);
6130   if (rt.IsRegister()) {
6131     return rt.Is64Bits() ? STP_x : STP_w;
6132   } else {
6133     VIXL_ASSERT(rt.IsVRegister());
6134     switch (rt.GetSizeInBytes()) {
6135       case kSRegSizeInBytes:
6136         return STP_s;
6137       case kDRegSizeInBytes:
6138         return STP_d;
6139       default:
6140         VIXL_ASSERT(rt.IsQ());
6141         return STP_q;
6142     }
6143   }
6144 }
6145 
6146 
LoadPairOpFor(const CPURegister & rt,const CPURegister & rt2)6147 LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
6148                                          const CPURegister& rt2) {
6149   VIXL_ASSERT((STP_w | LoadStorePairLBit) == LDP_w);
6150   return static_cast<LoadStorePairOp>(StorePairOpFor(rt, rt2) |
6151                                       LoadStorePairLBit);
6152 }
6153 
6154 
StorePairNonTemporalOpFor(const CPURegister & rt,const CPURegister & rt2)6155 LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor(
6156     const CPURegister& rt, const CPURegister& rt2) {
6157   VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
6158   USE(rt2);
6159   if (rt.IsRegister()) {
6160     return rt.Is64Bits() ? STNP_x : STNP_w;
6161   } else {
6162     VIXL_ASSERT(rt.IsVRegister());
6163     switch (rt.GetSizeInBytes()) {
6164       case kSRegSizeInBytes:
6165         return STNP_s;
6166       case kDRegSizeInBytes:
6167         return STNP_d;
6168       default:
6169         VIXL_ASSERT(rt.IsQ());
6170         return STNP_q;
6171     }
6172   }
6173 }
6174 
6175 
LoadPairNonTemporalOpFor(const CPURegister & rt,const CPURegister & rt2)6176 LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor(
6177     const CPURegister& rt, const CPURegister& rt2) {
6178   VIXL_ASSERT((STNP_w | LoadStorePairNonTemporalLBit) == LDNP_w);
6179   return static_cast<LoadStorePairNonTemporalOp>(
6180       StorePairNonTemporalOpFor(rt, rt2) | LoadStorePairNonTemporalLBit);
6181 }
6182 
6183 
LoadLiteralOpFor(const CPURegister & rt)6184 LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
6185   if (rt.IsRegister()) {
6186     return rt.IsX() ? LDR_x_lit : LDR_w_lit;
6187   } else {
6188     VIXL_ASSERT(rt.IsVRegister());
6189     switch (rt.GetSizeInBytes()) {
6190       case kSRegSizeInBytes:
6191         return LDR_s_lit;
6192       case kDRegSizeInBytes:
6193         return LDR_d_lit;
6194       default:
6195         VIXL_ASSERT(rt.IsQ());
6196         return LDR_q_lit;
6197     }
6198   }
6199 }
6200 
6201 
CPUHas(const CPURegister & rt) const6202 bool Assembler::CPUHas(const CPURegister& rt) const {
6203   // Core registers are available without any particular CPU features.
6204   if (rt.IsRegister()) return true;
6205   VIXL_ASSERT(rt.IsVRegister());
6206   // The architecture does not allow FP and NEON to be implemented separately,
6207   // but we can crudely categorise them based on register size, since FP only
6208   // uses D, S and (occasionally) H registers.
6209   if (rt.IsH() || rt.IsS() || rt.IsD()) {
6210     return CPUHas(CPUFeatures::kFP) || CPUHas(CPUFeatures::kNEON);
6211   }
6212   VIXL_ASSERT(rt.IsB() || rt.IsQ());
6213   return CPUHas(CPUFeatures::kNEON);
6214 }
6215 
6216 
CPUHas(const CPURegister & rt,const CPURegister & rt2) const6217 bool Assembler::CPUHas(const CPURegister& rt, const CPURegister& rt2) const {
6218   // This is currently only used for loads and stores, where rt and rt2 must
6219   // have the same size and type. We could extend this to cover other cases if
6220   // necessary, but for now we can avoid checking both registers.
6221   VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
6222   USE(rt2);
6223   return CPUHas(rt);
6224 }
6225 
6226 
CPUHas(SystemRegister sysreg) const6227 bool Assembler::CPUHas(SystemRegister sysreg) const {
6228   switch (sysreg) {
6229     case RNDR:
6230     case RNDRRS:
6231       return CPUHas(CPUFeatures::kRNG);
6232     case FPCR:
6233     case NZCV:
6234       break;
6235   }
6236   return true;
6237 }
6238 
6239 
6240 }  // namespace aarch64
6241 }  // namespace vixl
6242