1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "brw_fs.h"
29 #include "brw_fs_live_variables.h"
30 #include "brw_vec4.h"
31 #include "brw_cfg.h"
32 #include "brw_shader.h"
33 
34 using namespace brw;
35 
36 /** @file brw_fs_schedule_instructions.cpp
37  *
38  * List scheduling of FS instructions.
39  *
40  * The basic model of the list scheduler is to take a basic block,
41  * compute a DAG of the dependencies (RAW ordering with latency, WAW
42  * ordering with latency, WAR ordering), and make a list of the DAG heads.
43  * Heuristically pick a DAG head, then put all the children that are
44  * now DAG heads into the list of things to schedule.
45  *
46  * The heuristic is the important part.  We're trying to be cheap,
47  * since actually computing the optimal scheduling is NP complete.
48  * What we do is track a "current clock".  When we schedule a node, we
49  * update the earliest-unblocked clock time of its children, and
50  * increment the clock.  Then, when trying to schedule, we just pick
51  * the earliest-unblocked instruction to schedule.
52  *
53  * Note that often there will be many things which could execute
54  * immediately, and there are a range of heuristic options to choose
55  * from in picking among those.
56  */
57 
58 static bool debug = false;
59 
60 class instruction_scheduler;
61 
62 class schedule_node : public exec_node
63 {
64 public:
65    schedule_node(backend_instruction *inst, instruction_scheduler *sched);
66    void set_latency_gen4();
67    void set_latency_gen7(bool is_haswell);
68 
69    backend_instruction *inst;
70    schedule_node **children;
71    int *child_latency;
72    int child_count;
73    int parent_count;
74    int child_array_size;
75    int unblocked_time;
76    int latency;
77 
78    /**
79     * Which iteration of pushing groups of children onto the candidates list
80     * this node was a part of.
81     */
82    unsigned cand_generation;
83 
84    /**
85     * This is the sum of the instruction's latency plus the maximum delay of
86     * its children, or just the issue_time if it's a leaf node.
87     */
88    int delay;
89 
90    /**
91     * Preferred exit node among the (direct or indirect) successors of this
92     * node.  Among the scheduler nodes blocked by this node, this will be the
93     * one that may cause earliest program termination, or NULL if none of the
94     * successors is an exit node.
95     */
96    schedule_node *exit;
97 };
98 
99 /**
100  * Lower bound of the scheduling time after which one of the instructions
101  * blocked by this node may lead to program termination.
102  *
103  * exit_unblocked_time() determines a strict partial ordering relation '«' on
104  * the set of scheduler nodes as follows:
105  *
106  *   n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
107  *
108  * which can be used to heuristically order nodes according to how early they
109  * can unblock an exit node and lead to program termination.
110  */
111 static inline int
exit_unblocked_time(const schedule_node * n)112 exit_unblocked_time(const schedule_node *n)
113 {
114    return n->exit ? n->exit->unblocked_time : INT_MAX;
115 }
116 
117 void
set_latency_gen4()118 schedule_node::set_latency_gen4()
119 {
120    int chans = 8;
121    int math_latency = 22;
122 
123    switch (inst->opcode) {
124    case SHADER_OPCODE_RCP:
125       this->latency = 1 * chans * math_latency;
126       break;
127    case SHADER_OPCODE_RSQ:
128       this->latency = 2 * chans * math_latency;
129       break;
130    case SHADER_OPCODE_INT_QUOTIENT:
131    case SHADER_OPCODE_SQRT:
132    case SHADER_OPCODE_LOG2:
133       /* full precision log.  partial is 2. */
134       this->latency = 3 * chans * math_latency;
135       break;
136    case SHADER_OPCODE_INT_REMAINDER:
137    case SHADER_OPCODE_EXP2:
138       /* full precision.  partial is 3, same throughput. */
139       this->latency = 4 * chans * math_latency;
140       break;
141    case SHADER_OPCODE_POW:
142       this->latency = 8 * chans * math_latency;
143       break;
144    case SHADER_OPCODE_SIN:
145    case SHADER_OPCODE_COS:
146       /* minimum latency, max is 12 rounds. */
147       this->latency = 5 * chans * math_latency;
148       break;
149    default:
150       this->latency = 2;
151       break;
152    }
153 }
154 
155 void
set_latency_gen7(bool is_haswell)156 schedule_node::set_latency_gen7(bool is_haswell)
157 {
158    switch (inst->opcode) {
159    case BRW_OPCODE_MAD:
160       /* 2 cycles
161        *  (since the last two src operands are in different register banks):
162        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
163        *
164        * 3 cycles on IVB, 4 on HSW
165        *  (since the last two src operands are in the same register bank):
166        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
167        *
168        * 18 cycles on IVB, 16 on HSW
169        *  (since the last two src operands are in different register banks):
170        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
171        * mov(8) null   g4<4,5,1>F                     { align16 WE_normal 1Q };
172        *
173        * 20 cycles on IVB, 18 on HSW
174        *  (since the last two src operands are in the same register bank):
175        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
176        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
177        */
178 
179       /* Our register allocator doesn't know about register banks, so use the
180        * higher latency.
181        */
182       latency = is_haswell ? 16 : 18;
183       break;
184 
185    case BRW_OPCODE_LRP:
186       /* 2 cycles
187        *  (since the last two src operands are in different register banks):
188        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
189        *
190        * 3 cycles on IVB, 4 on HSW
191        *  (since the last two src operands are in the same register bank):
192        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
193        *
194        * 16 cycles on IVB, 14 on HSW
195        *  (since the last two src operands are in different register banks):
196        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
197        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
198        *
199        * 16 cycles
200        *  (since the last two src operands are in the same register bank):
201        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
202        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
203        */
204 
205       /* Our register allocator doesn't know about register banks, so use the
206        * higher latency.
207        */
208       latency = 14;
209       break;
210 
211    case SHADER_OPCODE_RCP:
212    case SHADER_OPCODE_RSQ:
213    case SHADER_OPCODE_SQRT:
214    case SHADER_OPCODE_LOG2:
215    case SHADER_OPCODE_EXP2:
216    case SHADER_OPCODE_SIN:
217    case SHADER_OPCODE_COS:
218       /* 2 cycles:
219        * math inv(8) g4<1>F g2<0,1,0>F      null       { align1 WE_normal 1Q };
220        *
221        * 18 cycles:
222        * math inv(8) g4<1>F g2<0,1,0>F      null       { align1 WE_normal 1Q };
223        * mov(8)      null   g4<8,8,1>F                 { align1 WE_normal 1Q };
224        *
225        * Same for exp2, log2, rsq, sqrt, sin, cos.
226        */
227       latency = is_haswell ? 14 : 16;
228       break;
229 
230    case SHADER_OPCODE_POW:
231       /* 2 cycles:
232        * math pow(8) g4<1>F g2<0,1,0>F   g2.1<0,1,0>F  { align1 WE_normal 1Q };
233        *
234        * 26 cycles:
235        * math pow(8) g4<1>F g2<0,1,0>F   g2.1<0,1,0>F  { align1 WE_normal 1Q };
236        * mov(8)      null   g4<8,8,1>F                 { align1 WE_normal 1Q };
237        */
238       latency = is_haswell ? 22 : 24;
239       break;
240 
241    case SHADER_OPCODE_TEX:
242    case SHADER_OPCODE_TXD:
243    case SHADER_OPCODE_TXF:
244    case SHADER_OPCODE_TXF_LZ:
245    case SHADER_OPCODE_TXL:
246    case SHADER_OPCODE_TXL_LZ:
247       /* 18 cycles:
248        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
249        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
250        * send(8) g4<1>UW    g114<8,8,1>F
251        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
252        *
253        * 697 +/-49 cycles (min 610, n=26):
254        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
255        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
256        * send(8) g4<1>UW    g114<8,8,1>F
257        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
258        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
259        *
260        * So the latency on our first texture load of the batchbuffer takes
261        * ~700 cycles, since the caches are cold at that point.
262        *
263        * 840 +/- 92 cycles (min 720, n=25):
264        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
265        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
266        * send(8) g4<1>UW    g114<8,8,1>F
267        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
268        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
269        * send(8) g4<1>UW    g114<8,8,1>F
270        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
271        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
272        *
273        * On the second load, it takes just an extra ~140 cycles, and after
274        * accounting for the 14 cycles of the MOV's latency, that makes ~130.
275        *
276        * 683 +/- 49 cycles (min = 602, n=47):
277        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
278        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
279        * send(8) g4<1>UW    g114<8,8,1>F
280        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
281        * send(8) g50<1>UW   g114<8,8,1>F
282        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
283        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
284        *
285        * The unit appears to be pipelined, since this matches up with the
286        * cache-cold case, despite there being two loads here.  If you replace
287        * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
288        *
289        * So, take some number between the cache-hot 140 cycles and the
290        * cache-cold 700 cycles.  No particular tuning was done on this.
291        *
292        * I haven't done significant testing of the non-TEX opcodes.  TXL at
293        * least looked about the same as TEX.
294        */
295       latency = 200;
296       break;
297 
298    case SHADER_OPCODE_TXS:
299       /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
300        * cycles (n=15):
301        * mov(8)   g114<1>UD  0D                        { align1 WE_normal 1Q };
302        * send(8)  g6<1>UW    g114<8,8,1>F
303        *   sampler (10, 0, 10, 1) mlen 1 rlen 4        { align1 WE_normal 1Q };
304        * mov(16)  g6<1>F     g6<8,8,1>D                { align1 WE_normal 1Q };
305        *
306        *
307        * Two loads was 535 +/- 30 cycles (n=19):
308        * mov(16)   g114<1>UD  0D                       { align1 WE_normal 1H };
309        * send(16)  g6<1>UW    g114<8,8,1>F
310        *   sampler (10, 0, 10, 2) mlen 2 rlen 8        { align1 WE_normal 1H };
311        * mov(16)   g114<1>UD  0D                       { align1 WE_normal 1H };
312        * mov(16)   g6<1>F     g6<8,8,1>D               { align1 WE_normal 1H };
313        * send(16)  g8<1>UW    g114<8,8,1>F
314        *   sampler (10, 0, 10, 2) mlen 2 rlen 8        { align1 WE_normal 1H };
315        * mov(16)   g8<1>F     g8<8,8,1>D               { align1 WE_normal 1H };
316        * add(16)   g6<1>F     g6<8,8,1>F   g8<8,8,1>F  { align1 WE_normal 1H };
317        *
318        * Since the only caches that should matter are just the
319        * instruction/state cache containing the surface state, assume that we
320        * always have hot caches.
321        */
322       latency = 100;
323       break;
324 
325    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
326    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
327    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
328    case VS_OPCODE_PULL_CONSTANT_LOAD:
329       /* testing using varying-index pull constants:
330        *
331        * 16 cycles:
332        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
333        * send(8) g4<1>F  g4<8,8,1>D
334        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
335        *
336        * ~480 cycles:
337        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
338        * send(8) g4<1>F  g4<8,8,1>D
339        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
340        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
341        *
342        * ~620 cycles:
343        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
344        * send(8) g4<1>F  g4<8,8,1>D
345        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
346        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
347        * send(8) g4<1>F  g4<8,8,1>D
348        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
349        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
350        *
351        * So, if it's cache-hot, it's about 140.  If it's cache cold, it's
352        * about 460.  We expect to mostly be cache hot, so pick something more
353        * in that direction.
354        */
355       latency = 200;
356       break;
357 
358    case SHADER_OPCODE_GEN7_SCRATCH_READ:
359       /* Testing a load from offset 0, that had been previously written:
360        *
361        * send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q };
362        * mov(8)  null      g114<8,8,1>F { align1 WE_normal 1Q };
363        *
364        * The cycles spent seemed to be grouped around 40-50 (as low as 38),
365        * then around 140.  Presumably this is cache hit vs miss.
366        */
367       latency = 50;
368       break;
369 
370    case VEC4_OPCODE_UNTYPED_ATOMIC:
371       /* See GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP */
372       latency = 14000;
373       break;
374 
375    case VEC4_OPCODE_UNTYPED_SURFACE_READ:
376    case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
377       /* See also GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ */
378       latency = is_haswell ? 300 : 600;
379       break;
380 
381    case SHADER_OPCODE_SEND:
382       switch (inst->sfid) {
383       case BRW_SFID_SAMPLER: {
384          unsigned msg_type = (inst->desc >> 12) & 0x1f;
385          switch (msg_type) {
386          case GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO:
387          case GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO:
388             /* See also SHADER_OPCODE_TXS */
389             latency = 100;
390             break;
391 
392          default:
393             /* See also SHADER_OPCODE_TEX */
394             latency = 200;
395             break;
396          }
397          break;
398       }
399 
400       case GEN6_SFID_DATAPORT_RENDER_CACHE:
401          switch ((inst->desc >> 14) & 0x1f) {
402          case GEN7_DATAPORT_RC_TYPED_SURFACE_WRITE:
403          case GEN7_DATAPORT_RC_TYPED_SURFACE_READ:
404             /* See also SHADER_OPCODE_TYPED_SURFACE_READ */
405             assert(!is_haswell);
406             latency = 600;
407             break;
408 
409          case GEN7_DATAPORT_RC_TYPED_ATOMIC_OP:
410             /* See also SHADER_OPCODE_TYPED_ATOMIC */
411             assert(!is_haswell);
412             latency = 14000;
413             break;
414 
415          case GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE:
416             /* completely fabricated number */
417             latency = 600;
418             break;
419 
420          default:
421             unreachable("Unknown render cache message");
422          }
423          break;
424 
425       case GEN7_SFID_DATAPORT_DATA_CACHE:
426          switch ((inst->desc >> 14) & 0x1f) {
427          case BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ:
428          case GEN7_DATAPORT_DC_UNALIGNED_OWORD_BLOCK_READ:
429          case GEN6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE:
430             /* We have no data for this but assume it's a little faster than
431              * untyped surface read/write.
432              */
433             latency = 200;
434             break;
435 
436          case GEN7_DATAPORT_DC_DWORD_SCATTERED_READ:
437          case GEN6_DATAPORT_WRITE_MESSAGE_DWORD_SCATTERED_WRITE:
438          case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_READ:
439          case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_WRITE:
440             /* We have no data for this but assume it's roughly the same as
441              * untyped surface read/write.
442              */
443             latency = 300;
444             break;
445 
446          case GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ:
447          case GEN7_DATAPORT_DC_UNTYPED_SURFACE_WRITE:
448             /* Test code:
449              *   mov(8)    g112<1>UD       0x00000000UD       { align1 WE_all 1Q };
450              *   mov(1)    g112.7<1>UD     g1.7<0,1,0>UD      { align1 WE_all };
451              *   mov(8)    g113<1>UD       0x00000000UD       { align1 WE_normal 1Q };
452              *   send(8)   g4<1>UD         g112<8,8,1>UD
453              *             data (38, 6, 5) mlen 2 rlen 1      { align1 WE_normal 1Q };
454              *   .
455              *   . [repeats 8 times]
456              *   .
457              *   mov(8)    g112<1>UD       0x00000000UD       { align1 WE_all 1Q };
458              *   mov(1)    g112.7<1>UD     g1.7<0,1,0>UD      { align1 WE_all };
459              *   mov(8)    g113<1>UD       0x00000000UD       { align1 WE_normal 1Q };
460              *   send(8)   g4<1>UD         g112<8,8,1>UD
461              *             data (38, 6, 5) mlen 2 rlen 1      { align1 WE_normal 1Q };
462              *
463              * Running it 100 times as fragment shader on a 128x128 quad
464              * gives an average latency of 583 cycles per surface read,
465              * standard deviation 0.9%.
466              */
467             assert(!is_haswell);
468             latency = 600;
469             break;
470 
471          case GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP:
472             /* Test code:
473              *   mov(8)    g112<1>ud       0x00000000ud       { align1 WE_all 1Q };
474              *   mov(1)    g112.7<1>ud     g1.7<0,1,0>ud      { align1 WE_all };
475              *   mov(8)    g113<1>ud       0x00000000ud       { align1 WE_normal 1Q };
476              *   send(8)   g4<1>ud         g112<8,8,1>ud
477              *             data (38, 5, 6) mlen 2 rlen 1      { align1 WE_normal 1Q };
478              *
479              * Running it 100 times as fragment shader on a 128x128 quad
480              * gives an average latency of 13867 cycles per atomic op,
481              * standard deviation 3%.  Note that this is a rather
482              * pessimistic estimate, the actual latency in cases with few
483              * collisions between threads and favorable pipelining has been
484              * seen to be reduced by a factor of 100.
485              */
486             assert(!is_haswell);
487             latency = 14000;
488             break;
489 
490          default:
491             unreachable("Unknown data cache message");
492          }
493          break;
494 
495       case HSW_SFID_DATAPORT_DATA_CACHE_1:
496          switch ((inst->desc >> 14) & 0x1f) {
497          case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_READ:
498          case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_WRITE:
499          case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_READ:
500          case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_WRITE:
501          case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_WRITE:
502          case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_READ:
503          case GEN8_DATAPORT_DC_PORT1_A64_SCATTERED_WRITE:
504          case GEN9_DATAPORT_DC_PORT1_A64_SCATTERED_READ:
505          case GEN9_DATAPORT_DC_PORT1_A64_OWORD_BLOCK_READ:
506          case GEN9_DATAPORT_DC_PORT1_A64_OWORD_BLOCK_WRITE:
507             /* See also GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ */
508             latency = 300;
509             break;
510 
511          case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP:
512          case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP_SIMD4X2:
513          case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP_SIMD4X2:
514          case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP:
515          case GEN9_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_FLOAT_OP:
516          case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_OP:
517          case GEN9_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_FLOAT_OP:
518             /* See also GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP */
519             latency = 14000;
520             break;
521 
522          default:
523             unreachable("Unknown data cache message");
524          }
525          break;
526 
527       default:
528          unreachable("Unknown SFID");
529       }
530       break;
531 
532    default:
533       /* 2 cycles:
534        * mul(8) g4<1>F g2<0,1,0>F      0.5F            { align1 WE_normal 1Q };
535        *
536        * 16 cycles:
537        * mul(8) g4<1>F g2<0,1,0>F      0.5F            { align1 WE_normal 1Q };
538        * mov(8) null   g4<8,8,1>F                      { align1 WE_normal 1Q };
539        */
540       latency = 14;
541       break;
542    }
543 }
544 
545 class instruction_scheduler {
546 public:
instruction_scheduler(const backend_shader * s,int grf_count,unsigned hw_reg_count,int block_count,instruction_scheduler_mode mode)547    instruction_scheduler(const backend_shader *s, int grf_count,
548                          unsigned hw_reg_count, int block_count,
549                          instruction_scheduler_mode mode):
550       bs(s)
551    {
552       this->mem_ctx = ralloc_context(NULL);
553       this->grf_count = grf_count;
554       this->hw_reg_count = hw_reg_count;
555       this->instructions.make_empty();
556       this->post_reg_alloc = (mode == SCHEDULE_POST);
557       this->mode = mode;
558       this->reg_pressure = 0;
559       this->block_idx = 0;
560       if (!post_reg_alloc) {
561          this->reg_pressure_in = rzalloc_array(mem_ctx, int, block_count);
562 
563          this->livein = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
564          for (int i = 0; i < block_count; i++)
565             this->livein[i] = rzalloc_array(mem_ctx, BITSET_WORD,
566                                             BITSET_WORDS(grf_count));
567 
568          this->liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
569          for (int i = 0; i < block_count; i++)
570             this->liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
571                                              BITSET_WORDS(grf_count));
572 
573          this->hw_liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
574          for (int i = 0; i < block_count; i++)
575             this->hw_liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
576                                                 BITSET_WORDS(hw_reg_count));
577 
578          this->written = rzalloc_array(mem_ctx, bool, grf_count);
579 
580          this->reads_remaining = rzalloc_array(mem_ctx, int, grf_count);
581 
582          this->hw_reads_remaining = rzalloc_array(mem_ctx, int, hw_reg_count);
583       } else {
584          this->reg_pressure_in = NULL;
585          this->livein = NULL;
586          this->liveout = NULL;
587          this->hw_liveout = NULL;
588          this->written = NULL;
589          this->reads_remaining = NULL;
590          this->hw_reads_remaining = NULL;
591       }
592    }
593 
~instruction_scheduler()594    ~instruction_scheduler()
595    {
596       ralloc_free(this->mem_ctx);
597    }
598    void add_barrier_deps(schedule_node *n);
599    void add_dep(schedule_node *before, schedule_node *after, int latency);
600    void add_dep(schedule_node *before, schedule_node *after);
601 
602    void run(cfg_t *cfg);
603    void add_insts_from_block(bblock_t *block);
604    void compute_delays();
605    void compute_exits();
606    virtual void calculate_deps() = 0;
607    virtual schedule_node *choose_instruction_to_schedule() = 0;
608 
609    /**
610     * Returns how many cycles it takes the instruction to issue.
611     *
612     * Instructions in gen hardware are handled one simd4 vector at a time,
613     * with 1 cycle per vector dispatched.  Thus SIMD8 pixel shaders take 2
614     * cycles to dispatch and SIMD16 (compressed) instructions take 4.
615     */
616    virtual int issue_time(backend_instruction *inst) = 0;
617 
618    virtual void count_reads_remaining(backend_instruction *inst) = 0;
619    virtual void setup_liveness(cfg_t *cfg) = 0;
620    virtual void update_register_pressure(backend_instruction *inst) = 0;
621    virtual int get_register_pressure_benefit(backend_instruction *inst) = 0;
622 
623    void schedule_instructions(bblock_t *block);
624 
625    void *mem_ctx;
626 
627    bool post_reg_alloc;
628    int grf_count;
629    unsigned hw_reg_count;
630    int reg_pressure;
631    int block_idx;
632    exec_list instructions;
633    const backend_shader *bs;
634 
635    instruction_scheduler_mode mode;
636 
637    /*
638     * The register pressure at the beginning of each basic block.
639     */
640 
641    int *reg_pressure_in;
642 
643    /*
644     * The virtual GRF's whose range overlaps the beginning of each basic block.
645     */
646 
647    BITSET_WORD **livein;
648 
649    /*
650     * The virtual GRF's whose range overlaps the end of each basic block.
651     */
652 
653    BITSET_WORD **liveout;
654 
655    /*
656     * The hardware GRF's whose range overlaps the end of each basic block.
657     */
658 
659    BITSET_WORD **hw_liveout;
660 
661    /*
662     * Whether we've scheduled a write for this virtual GRF yet.
663     */
664 
665    bool *written;
666 
667    /*
668     * How many reads we haven't scheduled for this virtual GRF yet.
669     */
670 
671    int *reads_remaining;
672 
673    /*
674     * How many reads we haven't scheduled for this hardware GRF yet.
675     */
676 
677    int *hw_reads_remaining;
678 };
679 
680 class fs_instruction_scheduler : public instruction_scheduler
681 {
682 public:
683    fs_instruction_scheduler(const fs_visitor *v, int grf_count, int hw_reg_count,
684                             int block_count,
685                             instruction_scheduler_mode mode);
686    void calculate_deps();
687    bool is_compressed(const fs_inst *inst);
688    schedule_node *choose_instruction_to_schedule();
689    int issue_time(backend_instruction *inst);
690    const fs_visitor *v;
691 
692    void count_reads_remaining(backend_instruction *inst);
693    void setup_liveness(cfg_t *cfg);
694    void update_register_pressure(backend_instruction *inst);
695    int get_register_pressure_benefit(backend_instruction *inst);
696 };
697 
fs_instruction_scheduler(const fs_visitor * v,int grf_count,int hw_reg_count,int block_count,instruction_scheduler_mode mode)698 fs_instruction_scheduler::fs_instruction_scheduler(const fs_visitor *v,
699                                                    int grf_count, int hw_reg_count,
700                                                    int block_count,
701                                                    instruction_scheduler_mode mode)
702    : instruction_scheduler(v, grf_count, hw_reg_count, block_count, mode),
703      v(v)
704 {
705 }
706 
707 static bool
is_src_duplicate(fs_inst * inst,int src)708 is_src_duplicate(fs_inst *inst, int src)
709 {
710    for (int i = 0; i < src; i++)
711      if (inst->src[i].equals(inst->src[src]))
712        return true;
713 
714   return false;
715 }
716 
717 void
count_reads_remaining(backend_instruction * be)718 fs_instruction_scheduler::count_reads_remaining(backend_instruction *be)
719 {
720    fs_inst *inst = (fs_inst *)be;
721 
722    if (!reads_remaining)
723       return;
724 
725    for (int i = 0; i < inst->sources; i++) {
726       if (is_src_duplicate(inst, i))
727          continue;
728 
729       if (inst->src[i].file == VGRF) {
730          reads_remaining[inst->src[i].nr]++;
731       } else if (inst->src[i].file == FIXED_GRF) {
732          if (inst->src[i].nr >= hw_reg_count)
733             continue;
734 
735          for (unsigned j = 0; j < regs_read(inst, i); j++)
736             hw_reads_remaining[inst->src[i].nr + j]++;
737       }
738    }
739 }
740 
741 void
setup_liveness(cfg_t * cfg)742 fs_instruction_scheduler::setup_liveness(cfg_t *cfg)
743 {
744    const fs_live_variables &live = v->live_analysis.require();
745 
746    /* First, compute liveness on a per-GRF level using the in/out sets from
747     * liveness calculation.
748     */
749    for (int block = 0; block < cfg->num_blocks; block++) {
750       for (int i = 0; i < live.num_vars; i++) {
751          if (BITSET_TEST(live.block_data[block].livein, i)) {
752             int vgrf = live.vgrf_from_var[i];
753             if (!BITSET_TEST(livein[block], vgrf)) {
754                reg_pressure_in[block] += v->alloc.sizes[vgrf];
755                BITSET_SET(livein[block], vgrf);
756             }
757          }
758 
759          if (BITSET_TEST(live.block_data[block].liveout, i))
760             BITSET_SET(liveout[block], live.vgrf_from_var[i]);
761       }
762    }
763 
764    /* Now, extend the live in/live out sets for when a range crosses a block
765     * boundary, which matches what our register allocator/interference code
766     * does to account for force_writemask_all and incompatible exec_mask's.
767     */
768    for (int block = 0; block < cfg->num_blocks - 1; block++) {
769       for (int i = 0; i < grf_count; i++) {
770          if (live.vgrf_start[i] <= cfg->blocks[block]->end_ip &&
771              live.vgrf_end[i] >= cfg->blocks[block + 1]->start_ip) {
772             if (!BITSET_TEST(livein[block + 1], i)) {
773                 reg_pressure_in[block + 1] += v->alloc.sizes[i];
774                 BITSET_SET(livein[block + 1], i);
775             }
776 
777             BITSET_SET(liveout[block], i);
778          }
779       }
780    }
781 
782    int payload_last_use_ip[hw_reg_count];
783    v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip);
784 
785    for (unsigned i = 0; i < hw_reg_count; i++) {
786       if (payload_last_use_ip[i] == -1)
787          continue;
788 
789       for (int block = 0; block < cfg->num_blocks; block++) {
790          if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i])
791             reg_pressure_in[block]++;
792 
793          if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i])
794             BITSET_SET(hw_liveout[block], i);
795       }
796    }
797 }
798 
799 void
update_register_pressure(backend_instruction * be)800 fs_instruction_scheduler::update_register_pressure(backend_instruction *be)
801 {
802    fs_inst *inst = (fs_inst *)be;
803 
804    if (!reads_remaining)
805       return;
806 
807    if (inst->dst.file == VGRF) {
808       written[inst->dst.nr] = true;
809    }
810 
811    for (int i = 0; i < inst->sources; i++) {
812       if (is_src_duplicate(inst, i))
813           continue;
814 
815       if (inst->src[i].file == VGRF) {
816          reads_remaining[inst->src[i].nr]--;
817       } else if (inst->src[i].file == FIXED_GRF &&
818                  inst->src[i].nr < hw_reg_count) {
819          for (unsigned off = 0; off < regs_read(inst, i); off++)
820             hw_reads_remaining[inst->src[i].nr + off]--;
821       }
822    }
823 }
824 
825 int
get_register_pressure_benefit(backend_instruction * be)826 fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
827 {
828    fs_inst *inst = (fs_inst *)be;
829    int benefit = 0;
830 
831    if (inst->dst.file == VGRF) {
832       if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
833           !written[inst->dst.nr])
834          benefit -= v->alloc.sizes[inst->dst.nr];
835    }
836 
837    for (int i = 0; i < inst->sources; i++) {
838       if (is_src_duplicate(inst, i))
839          continue;
840 
841       if (inst->src[i].file == VGRF &&
842           !BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
843           reads_remaining[inst->src[i].nr] == 1)
844          benefit += v->alloc.sizes[inst->src[i].nr];
845 
846       if (inst->src[i].file == FIXED_GRF &&
847           inst->src[i].nr < hw_reg_count) {
848          for (unsigned off = 0; off < regs_read(inst, i); off++) {
849             int reg = inst->src[i].nr + off;
850             if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
851                 hw_reads_remaining[reg] == 1) {
852                benefit++;
853             }
854          }
855       }
856    }
857 
858    return benefit;
859 }
860 
861 class vec4_instruction_scheduler : public instruction_scheduler
862 {
863 public:
864    vec4_instruction_scheduler(const vec4_visitor *v, int grf_count);
865    void calculate_deps();
866    schedule_node *choose_instruction_to_schedule();
867    int issue_time(backend_instruction *inst);
868    const vec4_visitor *v;
869 
870    void count_reads_remaining(backend_instruction *inst);
871    void setup_liveness(cfg_t *cfg);
872    void update_register_pressure(backend_instruction *inst);
873    int get_register_pressure_benefit(backend_instruction *inst);
874 };
875 
vec4_instruction_scheduler(const vec4_visitor * v,int grf_count)876 vec4_instruction_scheduler::vec4_instruction_scheduler(const vec4_visitor *v,
877                                                        int grf_count)
878    : instruction_scheduler(v, grf_count, 0, 0, SCHEDULE_POST),
879      v(v)
880 {
881 }
882 
883 void
count_reads_remaining(backend_instruction *)884 vec4_instruction_scheduler::count_reads_remaining(backend_instruction *)
885 {
886 }
887 
888 void
setup_liveness(cfg_t *)889 vec4_instruction_scheduler::setup_liveness(cfg_t *)
890 {
891 }
892 
893 void
update_register_pressure(backend_instruction *)894 vec4_instruction_scheduler::update_register_pressure(backend_instruction *)
895 {
896 }
897 
898 int
get_register_pressure_benefit(backend_instruction *)899 vec4_instruction_scheduler::get_register_pressure_benefit(backend_instruction *)
900 {
901    return 0;
902 }
903 
schedule_node(backend_instruction * inst,instruction_scheduler * sched)904 schedule_node::schedule_node(backend_instruction *inst,
905                              instruction_scheduler *sched)
906 {
907    const struct gen_device_info *devinfo = sched->bs->devinfo;
908 
909    this->inst = inst;
910    this->child_array_size = 0;
911    this->children = NULL;
912    this->child_latency = NULL;
913    this->child_count = 0;
914    this->parent_count = 0;
915    this->unblocked_time = 0;
916    this->cand_generation = 0;
917    this->delay = 0;
918    this->exit = NULL;
919 
920    /* We can't measure Gen6 timings directly but expect them to be much
921     * closer to Gen7 than Gen4.
922     */
923    if (!sched->post_reg_alloc)
924       this->latency = 1;
925    else if (devinfo->gen >= 6)
926       set_latency_gen7(devinfo->is_haswell);
927    else
928       set_latency_gen4();
929 }
930 
931 void
add_insts_from_block(bblock_t * block)932 instruction_scheduler::add_insts_from_block(bblock_t *block)
933 {
934    foreach_inst_in_block(backend_instruction, inst, block) {
935       schedule_node *n = new(mem_ctx) schedule_node(inst, this);
936 
937       instructions.push_tail(n);
938    }
939 }
940 
941 /** Computation of the delay member of each node. */
942 void
compute_delays()943 instruction_scheduler::compute_delays()
944 {
945    foreach_in_list_reverse(schedule_node, n, &instructions) {
946       if (!n->child_count) {
947          n->delay = issue_time(n->inst);
948       } else {
949          for (int i = 0; i < n->child_count; i++) {
950             assert(n->children[i]->delay);
951             n->delay = MAX2(n->delay, n->latency + n->children[i]->delay);
952          }
953       }
954    }
955 }
956 
957 void
compute_exits()958 instruction_scheduler::compute_exits()
959 {
960    /* Calculate a lower bound of the scheduling time of each node in the
961     * graph.  This is analogous to the node's critical path but calculated
962     * from the top instead of from the bottom of the block.
963     */
964    foreach_in_list(schedule_node, n, &instructions) {
965       for (int i = 0; i < n->child_count; i++) {
966          n->children[i]->unblocked_time =
967             MAX2(n->children[i]->unblocked_time,
968                  n->unblocked_time + issue_time(n->inst) + n->child_latency[i]);
969       }
970    }
971 
972    /* Calculate the exit of each node by induction based on the exit nodes of
973     * its children.  The preferred exit of a node is the one among the exit
974     * nodes of its children which can be unblocked first according to the
975     * optimistic unblocked time estimate calculated above.
976     */
977    foreach_in_list_reverse(schedule_node, n, &instructions) {
978       n->exit = (n->inst->opcode == FS_OPCODE_DISCARD_JUMP ? n : NULL);
979 
980       for (int i = 0; i < n->child_count; i++) {
981          if (exit_unblocked_time(n->children[i]) < exit_unblocked_time(n))
982             n->exit = n->children[i]->exit;
983       }
984    }
985 }
986 
987 /**
988  * Add a dependency between two instruction nodes.
989  *
990  * The @after node will be scheduled after @before.  We will try to
991  * schedule it @latency cycles after @before, but no guarantees there.
992  */
993 void
add_dep(schedule_node * before,schedule_node * after,int latency)994 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
995                                int latency)
996 {
997    if (!before || !after)
998       return;
999 
1000    assert(before != after);
1001 
1002    for (int i = 0; i < before->child_count; i++) {
1003       if (before->children[i] == after) {
1004          before->child_latency[i] = MAX2(before->child_latency[i], latency);
1005          return;
1006       }
1007    }
1008 
1009    if (before->child_array_size <= before->child_count) {
1010       if (before->child_array_size < 16)
1011          before->child_array_size = 16;
1012       else
1013          before->child_array_size *= 2;
1014 
1015       before->children = reralloc(mem_ctx, before->children,
1016                                   schedule_node *,
1017                                   before->child_array_size);
1018       before->child_latency = reralloc(mem_ctx, before->child_latency,
1019                                        int, before->child_array_size);
1020    }
1021 
1022    before->children[before->child_count] = after;
1023    before->child_latency[before->child_count] = latency;
1024    before->child_count++;
1025    after->parent_count++;
1026 }
1027 
1028 void
add_dep(schedule_node * before,schedule_node * after)1029 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
1030 {
1031    if (!before)
1032       return;
1033 
1034    add_dep(before, after, before->latency);
1035 }
1036 
1037 static bool
is_scheduling_barrier(const backend_instruction * inst)1038 is_scheduling_barrier(const backend_instruction *inst)
1039 {
1040    return inst->opcode == FS_OPCODE_PLACEHOLDER_HALT ||
1041           inst->is_control_flow() ||
1042           inst->has_side_effects();
1043 }
1044 
1045 /**
1046  * Sometimes we really want this node to execute after everything that
1047  * was before it and before everything that followed it.  This adds
1048  * the deps to do so.
1049  */
1050 void
add_barrier_deps(schedule_node * n)1051 instruction_scheduler::add_barrier_deps(schedule_node *n)
1052 {
1053    schedule_node *prev = (schedule_node *)n->prev;
1054    schedule_node *next = (schedule_node *)n->next;
1055 
1056    if (prev) {
1057       while (!prev->is_head_sentinel()) {
1058          add_dep(prev, n, 0);
1059          if (is_scheduling_barrier(prev->inst))
1060             break;
1061          prev = (schedule_node *)prev->prev;
1062       }
1063    }
1064 
1065    if (next) {
1066       while (!next->is_tail_sentinel()) {
1067          add_dep(n, next, 0);
1068          if (is_scheduling_barrier(next->inst))
1069             break;
1070          next = (schedule_node *)next->next;
1071       }
1072    }
1073 }
1074 
1075 /* instruction scheduling needs to be aware of when an MRF write
1076  * actually writes 2 MRFs.
1077  */
1078 bool
is_compressed(const fs_inst * inst)1079 fs_instruction_scheduler::is_compressed(const fs_inst *inst)
1080 {
1081    return inst->exec_size == 16;
1082 }
1083 
1084 void
calculate_deps()1085 fs_instruction_scheduler::calculate_deps()
1086 {
1087    /* Pre-register-allocation, this tracks the last write per VGRF offset.
1088     * After register allocation, reg_offsets are gone and we track individual
1089     * GRF registers.
1090     */
1091    schedule_node **last_grf_write;
1092    schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
1093    schedule_node *last_conditional_mod[8] = {};
1094    schedule_node *last_accumulator_write = NULL;
1095    /* Fixed HW registers are assumed to be separate from the virtual
1096     * GRFs, so they can be tracked separately.  We don't really write
1097     * to fixed GRFs much, so don't bother tracking them on a more
1098     * granular level.
1099     */
1100    schedule_node *last_fixed_grf_write = NULL;
1101 
1102    last_grf_write = (schedule_node **)calloc(sizeof(schedule_node *), grf_count * 16);
1103    memset(last_mrf_write, 0, sizeof(last_mrf_write));
1104 
1105    /* top-to-bottom dependencies: RAW and WAW. */
1106    foreach_in_list(schedule_node, n, &instructions) {
1107       fs_inst *inst = (fs_inst *)n->inst;
1108 
1109       if (is_scheduling_barrier(inst))
1110          add_barrier_deps(n);
1111 
1112       /* read-after-write deps. */
1113       for (int i = 0; i < inst->sources; i++) {
1114          if (inst->src[i].file == VGRF) {
1115             if (post_reg_alloc) {
1116                for (unsigned r = 0; r < regs_read(inst, i); r++)
1117                   add_dep(last_grf_write[inst->src[i].nr + r], n);
1118             } else {
1119                for (unsigned r = 0; r < regs_read(inst, i); r++) {
1120                   add_dep(last_grf_write[inst->src[i].nr * 16 +
1121                                          inst->src[i].offset / REG_SIZE + r], n);
1122                }
1123             }
1124          } else if (inst->src[i].file == FIXED_GRF) {
1125             if (post_reg_alloc) {
1126                for (unsigned r = 0; r < regs_read(inst, i); r++)
1127                   add_dep(last_grf_write[inst->src[i].nr + r], n);
1128             } else {
1129                add_dep(last_fixed_grf_write, n);
1130             }
1131          } else if (inst->src[i].is_accumulator()) {
1132             add_dep(last_accumulator_write, n);
1133          } else if (inst->src[i].file == ARF) {
1134             add_barrier_deps(n);
1135          }
1136       }
1137 
1138       if (inst->base_mrf != -1) {
1139          for (int i = 0; i < inst->mlen; i++) {
1140             /* It looks like the MRF regs are released in the send
1141              * instruction once it's sent, not when the result comes
1142              * back.
1143              */
1144             add_dep(last_mrf_write[inst->base_mrf + i], n);
1145          }
1146       }
1147 
1148       if (const unsigned mask = inst->flags_read(v->devinfo)) {
1149          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1150 
1151          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1152             if (mask & (1 << i))
1153                add_dep(last_conditional_mod[i], n);
1154          }
1155       }
1156 
1157       if (inst->reads_accumulator_implicitly()) {
1158          add_dep(last_accumulator_write, n);
1159       }
1160 
1161       /* write-after-write deps. */
1162       if (inst->dst.file == VGRF) {
1163          if (post_reg_alloc) {
1164             for (unsigned r = 0; r < regs_written(inst); r++) {
1165                add_dep(last_grf_write[inst->dst.nr + r], n);
1166                last_grf_write[inst->dst.nr + r] = n;
1167             }
1168          } else {
1169             for (unsigned r = 0; r < regs_written(inst); r++) {
1170                add_dep(last_grf_write[inst->dst.nr * 16 +
1171                                       inst->dst.offset / REG_SIZE + r], n);
1172                last_grf_write[inst->dst.nr * 16 +
1173                               inst->dst.offset / REG_SIZE + r] = n;
1174             }
1175          }
1176       } else if (inst->dst.file == MRF) {
1177          int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1178 
1179          add_dep(last_mrf_write[reg], n);
1180          last_mrf_write[reg] = n;
1181          if (is_compressed(inst)) {
1182             if (inst->dst.nr & BRW_MRF_COMPR4)
1183                reg += 4;
1184             else
1185                reg++;
1186             add_dep(last_mrf_write[reg], n);
1187             last_mrf_write[reg] = n;
1188          }
1189       } else if (inst->dst.file == FIXED_GRF) {
1190          if (post_reg_alloc) {
1191             for (unsigned r = 0; r < regs_written(inst); r++)
1192                last_grf_write[inst->dst.nr + r] = n;
1193          } else {
1194             last_fixed_grf_write = n;
1195          }
1196       } else if (inst->dst.is_accumulator()) {
1197          add_dep(last_accumulator_write, n);
1198          last_accumulator_write = n;
1199       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1200          add_barrier_deps(n);
1201       }
1202 
1203       if (inst->mlen > 0 && inst->base_mrf != -1) {
1204          for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
1205             add_dep(last_mrf_write[inst->base_mrf + i], n);
1206             last_mrf_write[inst->base_mrf + i] = n;
1207          }
1208       }
1209 
1210       if (const unsigned mask = inst->flags_written()) {
1211          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1212 
1213          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1214             if (mask & (1 << i)) {
1215                add_dep(last_conditional_mod[i], n, 0);
1216                last_conditional_mod[i] = n;
1217             }
1218          }
1219       }
1220 
1221       if (inst->writes_accumulator_implicitly(v->devinfo) &&
1222           !inst->dst.is_accumulator()) {
1223          add_dep(last_accumulator_write, n);
1224          last_accumulator_write = n;
1225       }
1226    }
1227 
1228    /* bottom-to-top dependencies: WAR */
1229    memset(last_grf_write, 0, sizeof(schedule_node *) * grf_count * 16);
1230    memset(last_mrf_write, 0, sizeof(last_mrf_write));
1231    memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
1232    last_accumulator_write = NULL;
1233    last_fixed_grf_write = NULL;
1234 
1235    foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1236       fs_inst *inst = (fs_inst *)n->inst;
1237 
1238       /* write-after-read deps. */
1239       for (int i = 0; i < inst->sources; i++) {
1240          if (inst->src[i].file == VGRF) {
1241             if (post_reg_alloc) {
1242                for (unsigned r = 0; r < regs_read(inst, i); r++)
1243                   add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1244             } else {
1245                for (unsigned r = 0; r < regs_read(inst, i); r++) {
1246                   add_dep(n, last_grf_write[inst->src[i].nr * 16 +
1247                                             inst->src[i].offset / REG_SIZE + r], 0);
1248                }
1249             }
1250          } else if (inst->src[i].file == FIXED_GRF) {
1251             if (post_reg_alloc) {
1252                for (unsigned r = 0; r < regs_read(inst, i); r++)
1253                   add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1254             } else {
1255                add_dep(n, last_fixed_grf_write, 0);
1256             }
1257          } else if (inst->src[i].is_accumulator()) {
1258             add_dep(n, last_accumulator_write, 0);
1259          } else if (inst->src[i].file == ARF) {
1260             add_barrier_deps(n);
1261          }
1262       }
1263 
1264       if (inst->base_mrf != -1) {
1265          for (int i = 0; i < inst->mlen; i++) {
1266             /* It looks like the MRF regs are released in the send
1267              * instruction once it's sent, not when the result comes
1268              * back.
1269              */
1270             add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1271          }
1272       }
1273 
1274       if (const unsigned mask = inst->flags_read(v->devinfo)) {
1275          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1276 
1277          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1278             if (mask & (1 << i))
1279                add_dep(n, last_conditional_mod[i]);
1280          }
1281       }
1282 
1283       if (inst->reads_accumulator_implicitly()) {
1284          add_dep(n, last_accumulator_write);
1285       }
1286 
1287       /* Update the things this instruction wrote, so earlier reads
1288        * can mark this as WAR dependency.
1289        */
1290       if (inst->dst.file == VGRF) {
1291          if (post_reg_alloc) {
1292             for (unsigned r = 0; r < regs_written(inst); r++)
1293                last_grf_write[inst->dst.nr + r] = n;
1294          } else {
1295             for (unsigned r = 0; r < regs_written(inst); r++) {
1296                last_grf_write[inst->dst.nr * 16 +
1297                               inst->dst.offset / REG_SIZE + r] = n;
1298             }
1299          }
1300       } else if (inst->dst.file == MRF) {
1301          int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1302 
1303          last_mrf_write[reg] = n;
1304 
1305          if (is_compressed(inst)) {
1306             if (inst->dst.nr & BRW_MRF_COMPR4)
1307                reg += 4;
1308             else
1309                reg++;
1310 
1311             last_mrf_write[reg] = n;
1312          }
1313       } else if (inst->dst.file == FIXED_GRF) {
1314          if (post_reg_alloc) {
1315             for (unsigned r = 0; r < regs_written(inst); r++)
1316                last_grf_write[inst->dst.nr + r] = n;
1317          } else {
1318             last_fixed_grf_write = n;
1319          }
1320       } else if (inst->dst.is_accumulator()) {
1321          last_accumulator_write = n;
1322       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1323          add_barrier_deps(n);
1324       }
1325 
1326       if (inst->mlen > 0 && inst->base_mrf != -1) {
1327          for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
1328             last_mrf_write[inst->base_mrf + i] = n;
1329          }
1330       }
1331 
1332       if (const unsigned mask = inst->flags_written()) {
1333          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1334 
1335          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1336             if (mask & (1 << i))
1337                last_conditional_mod[i] = n;
1338          }
1339       }
1340 
1341       if (inst->writes_accumulator_implicitly(v->devinfo)) {
1342          last_accumulator_write = n;
1343       }
1344    }
1345 
1346    free(last_grf_write);
1347 }
1348 
1349 void
calculate_deps()1350 vec4_instruction_scheduler::calculate_deps()
1351 {
1352    schedule_node *last_grf_write[grf_count];
1353    schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
1354    schedule_node *last_conditional_mod = NULL;
1355    schedule_node *last_accumulator_write = NULL;
1356    /* Fixed HW registers are assumed to be separate from the virtual
1357     * GRFs, so they can be tracked separately.  We don't really write
1358     * to fixed GRFs much, so don't bother tracking them on a more
1359     * granular level.
1360     */
1361    schedule_node *last_fixed_grf_write = NULL;
1362 
1363    memset(last_grf_write, 0, sizeof(last_grf_write));
1364    memset(last_mrf_write, 0, sizeof(last_mrf_write));
1365 
1366    /* top-to-bottom dependencies: RAW and WAW. */
1367    foreach_in_list(schedule_node, n, &instructions) {
1368       vec4_instruction *inst = (vec4_instruction *)n->inst;
1369 
1370       if (is_scheduling_barrier(inst))
1371          add_barrier_deps(n);
1372 
1373       /* read-after-write deps. */
1374       for (int i = 0; i < 3; i++) {
1375          if (inst->src[i].file == VGRF) {
1376             for (unsigned j = 0; j < regs_read(inst, i); ++j)
1377                add_dep(last_grf_write[inst->src[i].nr + j], n);
1378          } else if (inst->src[i].file == FIXED_GRF) {
1379             add_dep(last_fixed_grf_write, n);
1380          } else if (inst->src[i].is_accumulator()) {
1381             assert(last_accumulator_write);
1382             add_dep(last_accumulator_write, n);
1383          } else if (inst->src[i].file == ARF) {
1384             add_barrier_deps(n);
1385          }
1386       }
1387 
1388       if (inst->reads_g0_implicitly())
1389          add_dep(last_fixed_grf_write, n);
1390 
1391       if (!inst->is_send_from_grf()) {
1392          for (int i = 0; i < inst->mlen; i++) {
1393             /* It looks like the MRF regs are released in the send
1394              * instruction once it's sent, not when the result comes
1395              * back.
1396              */
1397             add_dep(last_mrf_write[inst->base_mrf + i], n);
1398          }
1399       }
1400 
1401       if (inst->reads_flag()) {
1402          assert(last_conditional_mod);
1403          add_dep(last_conditional_mod, n);
1404       }
1405 
1406       if (inst->reads_accumulator_implicitly()) {
1407          assert(last_accumulator_write);
1408          add_dep(last_accumulator_write, n);
1409       }
1410 
1411       /* write-after-write deps. */
1412       if (inst->dst.file == VGRF) {
1413          for (unsigned j = 0; j < regs_written(inst); ++j) {
1414             add_dep(last_grf_write[inst->dst.nr + j], n);
1415             last_grf_write[inst->dst.nr + j] = n;
1416          }
1417       } else if (inst->dst.file == MRF) {
1418          add_dep(last_mrf_write[inst->dst.nr], n);
1419          last_mrf_write[inst->dst.nr] = n;
1420      } else if (inst->dst.file == FIXED_GRF) {
1421          last_fixed_grf_write = n;
1422       } else if (inst->dst.is_accumulator()) {
1423          add_dep(last_accumulator_write, n);
1424          last_accumulator_write = n;
1425       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1426          add_barrier_deps(n);
1427       }
1428 
1429       if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1430          for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
1431             add_dep(last_mrf_write[inst->base_mrf + i], n);
1432             last_mrf_write[inst->base_mrf + i] = n;
1433          }
1434       }
1435 
1436       if (inst->writes_flag()) {
1437          add_dep(last_conditional_mod, n, 0);
1438          last_conditional_mod = n;
1439       }
1440 
1441       if (inst->writes_accumulator_implicitly(v->devinfo) &&
1442           !inst->dst.is_accumulator()) {
1443          add_dep(last_accumulator_write, n);
1444          last_accumulator_write = n;
1445       }
1446    }
1447 
1448    /* bottom-to-top dependencies: WAR */
1449    memset(last_grf_write, 0, sizeof(last_grf_write));
1450    memset(last_mrf_write, 0, sizeof(last_mrf_write));
1451    last_conditional_mod = NULL;
1452    last_accumulator_write = NULL;
1453    last_fixed_grf_write = NULL;
1454 
1455    foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1456       vec4_instruction *inst = (vec4_instruction *)n->inst;
1457 
1458       /* write-after-read deps. */
1459       for (int i = 0; i < 3; i++) {
1460          if (inst->src[i].file == VGRF) {
1461             for (unsigned j = 0; j < regs_read(inst, i); ++j)
1462                add_dep(n, last_grf_write[inst->src[i].nr + j]);
1463          } else if (inst->src[i].file == FIXED_GRF) {
1464             add_dep(n, last_fixed_grf_write);
1465          } else if (inst->src[i].is_accumulator()) {
1466             add_dep(n, last_accumulator_write);
1467          } else if (inst->src[i].file == ARF) {
1468             add_barrier_deps(n);
1469          }
1470       }
1471 
1472       if (!inst->is_send_from_grf()) {
1473          for (int i = 0; i < inst->mlen; i++) {
1474             /* It looks like the MRF regs are released in the send
1475              * instruction once it's sent, not when the result comes
1476              * back.
1477              */
1478             add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1479          }
1480       }
1481 
1482       if (inst->reads_flag()) {
1483          add_dep(n, last_conditional_mod);
1484       }
1485 
1486       if (inst->reads_accumulator_implicitly()) {
1487          add_dep(n, last_accumulator_write);
1488       }
1489 
1490       /* Update the things this instruction wrote, so earlier reads
1491        * can mark this as WAR dependency.
1492        */
1493       if (inst->dst.file == VGRF) {
1494          for (unsigned j = 0; j < regs_written(inst); ++j)
1495             last_grf_write[inst->dst.nr + j] = n;
1496       } else if (inst->dst.file == MRF) {
1497          last_mrf_write[inst->dst.nr] = n;
1498       } else if (inst->dst.file == FIXED_GRF) {
1499          last_fixed_grf_write = n;
1500       } else if (inst->dst.is_accumulator()) {
1501          last_accumulator_write = n;
1502       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1503          add_barrier_deps(n);
1504       }
1505 
1506       if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1507          for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
1508             last_mrf_write[inst->base_mrf + i] = n;
1509          }
1510       }
1511 
1512       if (inst->writes_flag()) {
1513          last_conditional_mod = n;
1514       }
1515 
1516       if (inst->writes_accumulator_implicitly(v->devinfo)) {
1517          last_accumulator_write = n;
1518       }
1519    }
1520 }
1521 
1522 schedule_node *
choose_instruction_to_schedule()1523 fs_instruction_scheduler::choose_instruction_to_schedule()
1524 {
1525    schedule_node *chosen = NULL;
1526 
1527    if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
1528       int chosen_time = 0;
1529 
1530       /* Of the instructions ready to execute or the closest to being ready,
1531        * choose the one most likely to unblock an early program exit, or
1532        * otherwise the oldest one.
1533        */
1534       foreach_in_list(schedule_node, n, &instructions) {
1535          if (!chosen ||
1536              exit_unblocked_time(n) < exit_unblocked_time(chosen) ||
1537              (exit_unblocked_time(n) == exit_unblocked_time(chosen) &&
1538               n->unblocked_time < chosen_time)) {
1539             chosen = n;
1540             chosen_time = n->unblocked_time;
1541          }
1542       }
1543    } else {
1544       /* Before register allocation, we don't care about the latencies of
1545        * instructions.  All we care about is reducing live intervals of
1546        * variables so that we can avoid register spilling, or get SIMD16
1547        * shaders which naturally do a better job of hiding instruction
1548        * latency.
1549        */
1550       foreach_in_list(schedule_node, n, &instructions) {
1551          fs_inst *inst = (fs_inst *)n->inst;
1552 
1553          if (!chosen) {
1554             chosen = n;
1555             continue;
1556          }
1557 
1558          /* Most important: If we can definitely reduce register pressure, do
1559           * so immediately.
1560           */
1561          int register_pressure_benefit = get_register_pressure_benefit(n->inst);
1562          int chosen_register_pressure_benefit =
1563             get_register_pressure_benefit(chosen->inst);
1564 
1565          if (register_pressure_benefit > 0 &&
1566              register_pressure_benefit > chosen_register_pressure_benefit) {
1567             chosen = n;
1568             continue;
1569          } else if (chosen_register_pressure_benefit > 0 &&
1570                     (register_pressure_benefit <
1571                      chosen_register_pressure_benefit)) {
1572             continue;
1573          }
1574 
1575          if (mode == SCHEDULE_PRE_LIFO) {
1576             /* Prefer instructions that recently became available for
1577              * scheduling.  These are the things that are most likely to
1578              * (eventually) make a variable dead and reduce register pressure.
1579              * Typical register pressure estimates don't work for us because
1580              * most of our pressure comes from texturing, where no single
1581              * instruction to schedule will make a vec4 value dead.
1582              */
1583             if (n->cand_generation > chosen->cand_generation) {
1584                chosen = n;
1585                continue;
1586             } else if (n->cand_generation < chosen->cand_generation) {
1587                continue;
1588             }
1589 
1590             /* On MRF-using chips, prefer non-SEND instructions.  If we don't
1591              * do this, then because we prefer instructions that just became
1592              * candidates, we'll end up in a pattern of scheduling a SEND,
1593              * then the MRFs for the next SEND, then the next SEND, then the
1594              * MRFs, etc., without ever consuming the results of a send.
1595              */
1596             if (v->devinfo->gen < 7) {
1597                fs_inst *chosen_inst = (fs_inst *)chosen->inst;
1598 
1599                /* We use size_written > 4 * exec_size as our test for the kind
1600                 * of send instruction to avoid -- only sends generate many
1601                 * regs, and a single-result send is probably actually reducing
1602                 * register pressure.
1603                 */
1604                if (inst->size_written <= 4 * inst->exec_size &&
1605                    chosen_inst->size_written > 4 * chosen_inst->exec_size) {
1606                   chosen = n;
1607                   continue;
1608                } else if (inst->size_written > chosen_inst->size_written) {
1609                   continue;
1610                }
1611             }
1612          }
1613 
1614          /* For instructions pushed on the cands list at the same time, prefer
1615           * the one with the highest delay to the end of the program.  This is
1616           * most likely to have its values able to be consumed first (such as
1617           * for a large tree of lowered ubo loads, which appear reversed in
1618           * the instruction stream with respect to when they can be consumed).
1619           */
1620          if (n->delay > chosen->delay) {
1621             chosen = n;
1622             continue;
1623          } else if (n->delay < chosen->delay) {
1624             continue;
1625          }
1626 
1627          /* Prefer the node most likely to unblock an early program exit.
1628           */
1629          if (exit_unblocked_time(n) < exit_unblocked_time(chosen)) {
1630             chosen = n;
1631             continue;
1632          } else if (exit_unblocked_time(n) > exit_unblocked_time(chosen)) {
1633             continue;
1634          }
1635 
1636          /* If all other metrics are equal, we prefer the first instruction in
1637           * the list (program execution).
1638           */
1639       }
1640    }
1641 
1642    return chosen;
1643 }
1644 
1645 schedule_node *
choose_instruction_to_schedule()1646 vec4_instruction_scheduler::choose_instruction_to_schedule()
1647 {
1648    schedule_node *chosen = NULL;
1649    int chosen_time = 0;
1650 
1651    /* Of the instructions ready to execute or the closest to being ready,
1652     * choose the oldest one.
1653     */
1654    foreach_in_list(schedule_node, n, &instructions) {
1655       if (!chosen || n->unblocked_time < chosen_time) {
1656          chosen = n;
1657          chosen_time = n->unblocked_time;
1658       }
1659    }
1660 
1661    return chosen;
1662 }
1663 
1664 int
issue_time(backend_instruction * inst0)1665 fs_instruction_scheduler::issue_time(backend_instruction *inst0)
1666 {
1667    const fs_inst *inst = static_cast<fs_inst *>(inst0);
1668    const unsigned overhead = v->grf_used && has_bank_conflict(v->devinfo, inst) ?
1669       DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE) : 0;
1670    if (is_compressed(inst))
1671       return 4 + overhead;
1672    else
1673       return 2 + overhead;
1674 }
1675 
1676 int
issue_time(backend_instruction *)1677 vec4_instruction_scheduler::issue_time(backend_instruction *)
1678 {
1679    /* We always execute as two vec4s in parallel. */
1680    return 2;
1681 }
1682 
1683 void
schedule_instructions(bblock_t * block)1684 instruction_scheduler::schedule_instructions(bblock_t *block)
1685 {
1686    const struct gen_device_info *devinfo = bs->devinfo;
1687    int time = 0;
1688    int instructions_to_schedule = block->end_ip - block->start_ip + 1;
1689 
1690    if (!post_reg_alloc)
1691       reg_pressure = reg_pressure_in[block->num];
1692    block_idx = block->num;
1693 
1694    /* Remove non-DAG heads from the list. */
1695    foreach_in_list_safe(schedule_node, n, &instructions) {
1696       if (n->parent_count != 0)
1697          n->remove();
1698    }
1699 
1700    unsigned cand_generation = 1;
1701    while (!instructions.is_empty()) {
1702       schedule_node *chosen = choose_instruction_to_schedule();
1703 
1704       /* Schedule this instruction. */
1705       assert(chosen);
1706       chosen->remove();
1707       chosen->inst->exec_node::remove();
1708       block->instructions.push_tail(chosen->inst);
1709       instructions_to_schedule--;
1710 
1711       if (!post_reg_alloc) {
1712          reg_pressure -= get_register_pressure_benefit(chosen->inst);
1713          update_register_pressure(chosen->inst);
1714       }
1715 
1716       /* If we expected a delay for scheduling, then bump the clock to reflect
1717        * that.  In reality, the hardware will switch to another hyperthread
1718        * and may not return to dispatching our thread for a while even after
1719        * we're unblocked.  After this, we have the time when the chosen
1720        * instruction will start executing.
1721        */
1722       time = MAX2(time, chosen->unblocked_time);
1723 
1724       /* Update the clock for how soon an instruction could start after the
1725        * chosen one.
1726        */
1727       time += issue_time(chosen->inst);
1728 
1729       if (debug) {
1730          fprintf(stderr, "clock %4d, scheduled: ", time);
1731          bs->dump_instruction(chosen->inst);
1732          if (!post_reg_alloc)
1733             fprintf(stderr, "(register pressure %d)\n", reg_pressure);
1734       }
1735 
1736       /* Now that we've scheduled a new instruction, some of its
1737        * children can be promoted to the list of instructions ready to
1738        * be scheduled.  Update the children's unblocked time for this
1739        * DAG edge as we do so.
1740        */
1741       for (int i = chosen->child_count - 1; i >= 0; i--) {
1742          schedule_node *child = chosen->children[i];
1743 
1744          child->unblocked_time = MAX2(child->unblocked_time,
1745                                       time + chosen->child_latency[i]);
1746 
1747          if (debug) {
1748             fprintf(stderr, "\tchild %d, %d parents: ", i, child->parent_count);
1749             bs->dump_instruction(child->inst);
1750          }
1751 
1752          child->cand_generation = cand_generation;
1753          child->parent_count--;
1754          if (child->parent_count == 0) {
1755             if (debug) {
1756                fprintf(stderr, "\t\tnow available\n");
1757             }
1758             instructions.push_head(child);
1759          }
1760       }
1761       cand_generation++;
1762 
1763       /* Shared resource: the mathbox.  There's one mathbox per EU on Gen6+
1764        * but it's more limited pre-gen6, so if we send something off to it then
1765        * the next math instruction isn't going to make progress until the first
1766        * is done.
1767        */
1768       if (devinfo->gen < 6 && chosen->inst->is_math()) {
1769          foreach_in_list(schedule_node, n, &instructions) {
1770             if (n->inst->is_math())
1771                n->unblocked_time = MAX2(n->unblocked_time,
1772                                         time + chosen->latency);
1773          }
1774       }
1775    }
1776 
1777    assert(instructions_to_schedule == 0);
1778 }
1779 
1780 void
run(cfg_t * cfg)1781 instruction_scheduler::run(cfg_t *cfg)
1782 {
1783    if (debug && !post_reg_alloc) {
1784       fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
1785               post_reg_alloc);
1786          bs->dump_instructions();
1787    }
1788 
1789    if (!post_reg_alloc)
1790       setup_liveness(cfg);
1791 
1792    foreach_block(block, cfg) {
1793       if (reads_remaining) {
1794          memset(reads_remaining, 0,
1795                 grf_count * sizeof(*reads_remaining));
1796          memset(hw_reads_remaining, 0,
1797                 hw_reg_count * sizeof(*hw_reads_remaining));
1798          memset(written, 0, grf_count * sizeof(*written));
1799 
1800          foreach_inst_in_block(fs_inst, inst, block)
1801             count_reads_remaining(inst);
1802       }
1803 
1804       add_insts_from_block(block);
1805 
1806       calculate_deps();
1807 
1808       compute_delays();
1809       compute_exits();
1810 
1811       schedule_instructions(block);
1812    }
1813 
1814    if (debug && !post_reg_alloc) {
1815       fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
1816               post_reg_alloc);
1817       bs->dump_instructions();
1818    }
1819 }
1820 
1821 void
schedule_instructions(instruction_scheduler_mode mode)1822 fs_visitor::schedule_instructions(instruction_scheduler_mode mode)
1823 {
1824    int grf_count;
1825    if (mode == SCHEDULE_POST)
1826       grf_count = grf_used;
1827    else
1828       grf_count = alloc.count;
1829 
1830    fs_instruction_scheduler sched(this, grf_count, first_non_payload_grf,
1831                                   cfg->num_blocks, mode);
1832    sched.run(cfg);
1833 
1834    invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1835 }
1836 
1837 void
opt_schedule_instructions()1838 vec4_visitor::opt_schedule_instructions()
1839 {
1840    vec4_instruction_scheduler sched(this, prog_data->total_grf);
1841    sched.run(cfg);
1842 
1843    invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1844 }
1845