1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parser for the MLIR textual form.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "Parser.h"
14 #include "mlir/IR/AffineMap.h"
15 #include "mlir/IR/BuiltinOps.h"
16 #include "mlir/IR/Dialect.h"
17 #include "mlir/IR/Verifier.h"
18 #include "mlir/Parser.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/StringSet.h"
21 #include "llvm/ADT/bit.h"
22 #include "llvm/Support/PrettyStackTrace.h"
23 #include "llvm/Support/SourceMgr.h"
24 #include <algorithm>
25
26 using namespace mlir;
27 using namespace mlir::detail;
28 using llvm::MemoryBuffer;
29 using llvm::SMLoc;
30 using llvm::SourceMgr;
31
32 //===----------------------------------------------------------------------===//
33 // Parser
34 //===----------------------------------------------------------------------===//
35
36 /// Parse a comma separated list of elements that must have at least one entry
37 /// in it.
38 ParseResult
parseCommaSeparatedList(function_ref<ParseResult ()> parseElement)39 Parser::parseCommaSeparatedList(function_ref<ParseResult()> parseElement) {
40 // Non-empty case starts with an element.
41 if (parseElement())
42 return failure();
43
44 // Otherwise we have a list of comma separated elements.
45 while (consumeIf(Token::comma)) {
46 if (parseElement())
47 return failure();
48 }
49 return success();
50 }
51
52 /// Parse a comma-separated list of elements, terminated with an arbitrary
53 /// token. This allows empty lists if allowEmptyList is true.
54 ///
55 /// abstract-list ::= rightToken // if allowEmptyList == true
56 /// abstract-list ::= element (',' element)* rightToken
57 ///
58 ParseResult
parseCommaSeparatedListUntil(Token::Kind rightToken,function_ref<ParseResult ()> parseElement,bool allowEmptyList)59 Parser::parseCommaSeparatedListUntil(Token::Kind rightToken,
60 function_ref<ParseResult()> parseElement,
61 bool allowEmptyList) {
62 // Handle the empty case.
63 if (getToken().is(rightToken)) {
64 if (!allowEmptyList)
65 return emitError("expected list element");
66 consumeToken(rightToken);
67 return success();
68 }
69
70 if (parseCommaSeparatedList(parseElement) ||
71 parseToken(rightToken, "expected ',' or '" +
72 Token::getTokenSpelling(rightToken) + "'"))
73 return failure();
74
75 return success();
76 }
77
emitError(SMLoc loc,const Twine & message)78 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) {
79 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message);
80
81 // If we hit a parse error in response to a lexer error, then the lexer
82 // already reported the error.
83 if (getToken().is(Token::error))
84 diag.abandon();
85 return diag;
86 }
87
88 /// Consume the specified token if present and return success. On failure,
89 /// output a diagnostic and return failure.
parseToken(Token::Kind expectedToken,const Twine & message)90 ParseResult Parser::parseToken(Token::Kind expectedToken,
91 const Twine &message) {
92 if (consumeIf(expectedToken))
93 return success();
94 return emitError(message);
95 }
96
97 //===----------------------------------------------------------------------===//
98 // OperationParser
99 //===----------------------------------------------------------------------===//
100
101 namespace {
102 /// This class provides support for parsing operations and regions of
103 /// operations.
104 class OperationParser : public Parser {
105 public:
OperationParser(ParserState & state,Operation * topLevelOp)106 OperationParser(ParserState &state, Operation *topLevelOp)
107 : Parser(state), opBuilder(topLevelOp->getRegion(0)),
108 topLevelOp(topLevelOp) {
109 // The top level operation starts a new name scope.
110 pushSSANameScope(/*isIsolated=*/true);
111 }
112
113 ~OperationParser();
114
115 /// After parsing is finished, this function must be called to see if there
116 /// are any remaining issues.
117 ParseResult finalize();
118
119 //===--------------------------------------------------------------------===//
120 // SSA Value Handling
121 //===--------------------------------------------------------------------===//
122
123 /// This represents a use of an SSA value in the program. The first two
124 /// entries in the tuple are the name and result number of a reference. The
125 /// third is the location of the reference, which is used in case this ends
126 /// up being a use of an undefined value.
127 struct SSAUseInfo {
128 StringRef name; // Value name, e.g. %42 or %abc
129 unsigned number; // Number, specified with #12
130 SMLoc loc; // Location of first definition or use.
131 };
132
133 /// Push a new SSA name scope to the parser.
134 void pushSSANameScope(bool isIsolated);
135
136 /// Pop the last SSA name scope from the parser.
137 ParseResult popSSANameScope();
138
139 /// Register a definition of a value with the symbol table.
140 ParseResult addDefinition(SSAUseInfo useInfo, Value value);
141
142 /// Parse an optional list of SSA uses into 'results'.
143 ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results);
144
145 /// Parse a single SSA use into 'result'.
146 ParseResult parseSSAUse(SSAUseInfo &result);
147
148 /// Given a reference to an SSA value and its type, return a reference. This
149 /// returns null on failure.
150 Value resolveSSAUse(SSAUseInfo useInfo, Type type);
151
152 ParseResult
153 parseSSADefOrUseAndType(function_ref<ParseResult(SSAUseInfo, Type)> action);
154
155 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results);
156
157 /// Return the location of the value identified by its name and number if it
158 /// has been already reference.
getReferenceLoc(StringRef name,unsigned number)159 Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) {
160 auto &values = isolatedNameScopes.back().values;
161 if (!values.count(name) || number >= values[name].size())
162 return {};
163 if (values[name][number].first)
164 return values[name][number].second;
165 return {};
166 }
167
168 //===--------------------------------------------------------------------===//
169 // Operation Parsing
170 //===--------------------------------------------------------------------===//
171
172 /// Parse an operation instance.
173 ParseResult parseOperation();
174
175 /// Parse a single operation successor.
176 ParseResult parseSuccessor(Block *&dest);
177
178 /// Parse a comma-separated list of operation successors in brackets.
179 ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations);
180
181 /// Parse an operation instance that is in the generic form.
182 Operation *parseGenericOperation();
183
184 /// Parse an operation instance that is in the generic form and insert it at
185 /// the provided insertion point.
186 Operation *parseGenericOperation(Block *insertBlock,
187 Block::iterator insertPt);
188
189 /// Parse an optional trailing location for the given operation.
190 ///
191 /// trailing-location ::= (`loc` (`(` location `)` | attribute-alias))?
192 ///
193 ParseResult parseTrailingOperationLocation(Operation *op);
194
195 /// This is the structure of a result specifier in the assembly syntax,
196 /// including the name, number of results, and location.
197 using ResultRecord = std::tuple<StringRef, unsigned, SMLoc>;
198
199 /// Parse an operation instance that is in the op-defined custom form.
200 /// resultInfo specifies information about the "%name =" specifiers.
201 Operation *parseCustomOperation(ArrayRef<ResultRecord> resultIDs);
202
203 //===--------------------------------------------------------------------===//
204 // Region Parsing
205 //===--------------------------------------------------------------------===//
206
207 /// Parse a region into 'region' with the provided entry block arguments.
208 /// 'isIsolatedNameScope' indicates if the naming scope of this region is
209 /// isolated from those above.
210 ParseResult parseRegion(Region ®ion,
211 ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments,
212 bool isIsolatedNameScope = false);
213
214 /// Parse a region body into 'region'.
215 ParseResult parseRegionBody(Region ®ion);
216
217 //===--------------------------------------------------------------------===//
218 // Block Parsing
219 //===--------------------------------------------------------------------===//
220
221 /// Parse a new block into 'block'.
222 ParseResult parseBlock(Block *&block);
223
224 /// Parse a list of operations into 'block'.
225 ParseResult parseBlockBody(Block *block);
226
227 /// Parse a (possibly empty) list of block arguments.
228 ParseResult parseOptionalBlockArgList(SmallVectorImpl<BlockArgument> &results,
229 Block *owner);
230
231 /// Get the block with the specified name, creating it if it doesn't
232 /// already exist. The location specified is the point of use, which allows
233 /// us to diagnose references to blocks that are not defined precisely.
234 Block *getBlockNamed(StringRef name, SMLoc loc);
235
236 /// Define the block with the specified name. Returns the Block* or nullptr in
237 /// the case of redefinition.
238 Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing);
239
240 private:
241 /// Returns the info for a block at the current scope for the given name.
getBlockInfoByName(StringRef name)242 std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) {
243 return blocksByName.back()[name];
244 }
245
246 /// Insert a new forward reference to the given block.
insertForwardRef(Block * block,SMLoc loc)247 void insertForwardRef(Block *block, SMLoc loc) {
248 forwardRef.back().try_emplace(block, loc);
249 }
250
251 /// Erase any forward reference to the given block.
eraseForwardRef(Block * block)252 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); }
253
254 /// Record that a definition was added at the current scope.
255 void recordDefinition(StringRef def);
256
257 /// Get the value entry for the given SSA name.
258 SmallVectorImpl<std::pair<Value, SMLoc>> &getSSAValueEntry(StringRef name);
259
260 /// Create a forward reference placeholder value with the given location and
261 /// result type.
262 Value createForwardRefPlaceholder(SMLoc loc, Type type);
263
264 /// Return true if this is a forward reference.
isForwardRefPlaceholder(Value value)265 bool isForwardRefPlaceholder(Value value) {
266 return forwardRefPlaceholders.count(value);
267 }
268
269 /// This struct represents an isolated SSA name scope. This scope may contain
270 /// other nested non-isolated scopes. These scopes are used for operations
271 /// that are known to be isolated to allow for reusing names within their
272 /// regions, even if those names are used above.
273 struct IsolatedSSANameScope {
274 /// Record that a definition was added at the current scope.
recordDefinition__anonbf9cd4220111::OperationParser::IsolatedSSANameScope275 void recordDefinition(StringRef def) {
276 definitionsPerScope.back().insert(def);
277 }
278
279 /// Push a nested name scope.
pushSSANameScope__anonbf9cd4220111::OperationParser::IsolatedSSANameScope280 void pushSSANameScope() { definitionsPerScope.push_back({}); }
281
282 /// Pop a nested name scope.
popSSANameScope__anonbf9cd4220111::OperationParser::IsolatedSSANameScope283 void popSSANameScope() {
284 for (auto &def : definitionsPerScope.pop_back_val())
285 values.erase(def.getKey());
286 }
287
288 /// This keeps track of all of the SSA values we are tracking for each name
289 /// scope, indexed by their name. This has one entry per result number.
290 llvm::StringMap<SmallVector<std::pair<Value, SMLoc>, 1>> values;
291
292 /// This keeps track of all of the values defined by a specific name scope.
293 SmallVector<llvm::StringSet<>, 2> definitionsPerScope;
294 };
295
296 /// A list of isolated name scopes.
297 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes;
298
299 /// This keeps track of the block names as well as the location of the first
300 /// reference for each nested name scope. This is used to diagnose invalid
301 /// block references and memorize them.
302 SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName;
303 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef;
304
305 /// These are all of the placeholders we've made along with the location of
306 /// their first reference, to allow checking for use of undefined values.
307 DenseMap<Value, SMLoc> forwardRefPlaceholders;
308
309 /// A set of operations whose locations reference aliases that have yet to
310 /// be resolved.
311 SmallVector<std::pair<Operation *, Token>, 8> opsWithDeferredLocs;
312
313 /// The builder used when creating parsed operation instances.
314 OpBuilder opBuilder;
315
316 /// The top level operation that holds all of the parsed operations.
317 Operation *topLevelOp;
318 };
319 } // end anonymous namespace
320
~OperationParser()321 OperationParser::~OperationParser() {
322 for (auto &fwd : forwardRefPlaceholders) {
323 // Drop all uses of undefined forward declared reference and destroy
324 // defining operation.
325 fwd.first.dropAllUses();
326 fwd.first.getDefiningOp()->destroy();
327 }
328 }
329
330 /// After parsing is finished, this function must be called to see if there are
331 /// any remaining issues.
finalize()332 ParseResult OperationParser::finalize() {
333 // Check for any forward references that are left. If we find any, error
334 // out.
335 if (!forwardRefPlaceholders.empty()) {
336 SmallVector<const char *, 4> errors;
337 // Iteration over the map isn't deterministic, so sort by source location.
338 for (auto entry : forwardRefPlaceholders)
339 errors.push_back(entry.second.getPointer());
340 llvm::array_pod_sort(errors.begin(), errors.end());
341
342 for (auto entry : errors) {
343 auto loc = SMLoc::getFromPointer(entry);
344 emitError(loc, "use of undeclared SSA value name");
345 }
346 return failure();
347 }
348
349 // Resolve the locations of any deferred operations.
350 auto &attributeAliases = getState().symbols.attributeAliasDefinitions;
351 for (std::pair<Operation *, Token> &it : opsWithDeferredLocs) {
352 llvm::SMLoc tokLoc = it.second.getLoc();
353 StringRef identifier = it.second.getSpelling().drop_front();
354 Attribute attr = attributeAliases.lookup(identifier);
355 if (!attr)
356 return emitError(tokLoc) << "operation location alias was never defined";
357
358 LocationAttr locAttr = attr.dyn_cast<LocationAttr>();
359 if (!locAttr)
360 return emitError(tokLoc)
361 << "expected location, but found '" << attr << "'";
362 it.first->setLoc(locAttr);
363 }
364
365 // Pop the top level name scope.
366 return popSSANameScope();
367 }
368
369 //===----------------------------------------------------------------------===//
370 // SSA Value Handling
371 //===----------------------------------------------------------------------===//
372
pushSSANameScope(bool isIsolated)373 void OperationParser::pushSSANameScope(bool isIsolated) {
374 blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>());
375 forwardRef.push_back(DenseMap<Block *, SMLoc>());
376
377 // Push back a new name definition scope.
378 if (isIsolated)
379 isolatedNameScopes.push_back({});
380 isolatedNameScopes.back().pushSSANameScope();
381 }
382
popSSANameScope()383 ParseResult OperationParser::popSSANameScope() {
384 auto forwardRefInCurrentScope = forwardRef.pop_back_val();
385
386 // Verify that all referenced blocks were defined.
387 if (!forwardRefInCurrentScope.empty()) {
388 SmallVector<std::pair<const char *, Block *>, 4> errors;
389 // Iteration over the map isn't deterministic, so sort by source location.
390 for (auto entry : forwardRefInCurrentScope) {
391 errors.push_back({entry.second.getPointer(), entry.first});
392 // Add this block to the top-level region to allow for automatic cleanup.
393 topLevelOp->getRegion(0).push_back(entry.first);
394 }
395 llvm::array_pod_sort(errors.begin(), errors.end());
396
397 for (auto entry : errors) {
398 auto loc = SMLoc::getFromPointer(entry.first);
399 emitError(loc, "reference to an undefined block");
400 }
401 return failure();
402 }
403
404 // Pop the next nested namescope. If there is only one internal namescope,
405 // just pop the isolated scope.
406 auto ¤tNameScope = isolatedNameScopes.back();
407 if (currentNameScope.definitionsPerScope.size() == 1)
408 isolatedNameScopes.pop_back();
409 else
410 currentNameScope.popSSANameScope();
411
412 blocksByName.pop_back();
413 return success();
414 }
415
416 /// Register a definition of a value with the symbol table.
addDefinition(SSAUseInfo useInfo,Value value)417 ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) {
418 auto &entries = getSSAValueEntry(useInfo.name);
419
420 // Make sure there is a slot for this value.
421 if (entries.size() <= useInfo.number)
422 entries.resize(useInfo.number + 1);
423
424 // If we already have an entry for this, check to see if it was a definition
425 // or a forward reference.
426 if (auto existing = entries[useInfo.number].first) {
427 if (!isForwardRefPlaceholder(existing)) {
428 return emitError(useInfo.loc)
429 .append("redefinition of SSA value '", useInfo.name, "'")
430 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second))
431 .append("previously defined here");
432 }
433
434 if (existing.getType() != value.getType()) {
435 return emitError(useInfo.loc)
436 .append("definition of SSA value '", useInfo.name, "#",
437 useInfo.number, "' has type ", value.getType())
438 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second))
439 .append("previously used here with type ", existing.getType());
440 }
441
442 // If it was a forward reference, update everything that used it to use
443 // the actual definition instead, delete the forward ref, and remove it
444 // from our set of forward references we track.
445 existing.replaceAllUsesWith(value);
446 existing.getDefiningOp()->destroy();
447 forwardRefPlaceholders.erase(existing);
448 }
449
450 /// Record this definition for the current scope.
451 entries[useInfo.number] = {value, useInfo.loc};
452 recordDefinition(useInfo.name);
453 return success();
454 }
455
456 /// Parse a (possibly empty) list of SSA operands.
457 ///
458 /// ssa-use-list ::= ssa-use (`,` ssa-use)*
459 /// ssa-use-list-opt ::= ssa-use-list?
460 ///
461 ParseResult
parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> & results)462 OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) {
463 if (getToken().isNot(Token::percent_identifier))
464 return success();
465 return parseCommaSeparatedList([&]() -> ParseResult {
466 SSAUseInfo result;
467 if (parseSSAUse(result))
468 return failure();
469 results.push_back(result);
470 return success();
471 });
472 }
473
474 /// Parse a SSA operand for an operation.
475 ///
476 /// ssa-use ::= ssa-id
477 ///
parseSSAUse(SSAUseInfo & result)478 ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) {
479 result.name = getTokenSpelling();
480 result.number = 0;
481 result.loc = getToken().getLoc();
482 if (parseToken(Token::percent_identifier, "expected SSA operand"))
483 return failure();
484
485 // If we have an attribute ID, it is a result number.
486 if (getToken().is(Token::hash_identifier)) {
487 if (auto value = getToken().getHashIdentifierNumber())
488 result.number = value.getValue();
489 else
490 return emitError("invalid SSA value result number");
491 consumeToken(Token::hash_identifier);
492 }
493
494 return success();
495 }
496
497 /// Given an unbound reference to an SSA value and its type, return the value
498 /// it specifies. This returns null on failure.
resolveSSAUse(SSAUseInfo useInfo,Type type)499 Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) {
500 auto &entries = getSSAValueEntry(useInfo.name);
501
502 // If we have already seen a value of this name, return it.
503 if (useInfo.number < entries.size() && entries[useInfo.number].first) {
504 auto result = entries[useInfo.number].first;
505 // Check that the type matches the other uses.
506 if (result.getType() == type)
507 return result;
508
509 emitError(useInfo.loc, "use of value '")
510 .append(useInfo.name,
511 "' expects different type than prior uses: ", type, " vs ",
512 result.getType())
513 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second))
514 .append("prior use here");
515 return nullptr;
516 }
517
518 // Make sure we have enough slots for this.
519 if (entries.size() <= useInfo.number)
520 entries.resize(useInfo.number + 1);
521
522 // If the value has already been defined and this is an overly large result
523 // number, diagnose that.
524 if (entries[0].first && !isForwardRefPlaceholder(entries[0].first))
525 return (emitError(useInfo.loc, "reference to invalid result number"),
526 nullptr);
527
528 // Otherwise, this is a forward reference. Create a placeholder and remember
529 // that we did so.
530 auto result = createForwardRefPlaceholder(useInfo.loc, type);
531 entries[useInfo.number].first = result;
532 entries[useInfo.number].second = useInfo.loc;
533 return result;
534 }
535
536 /// Parse an SSA use with an associated type.
537 ///
538 /// ssa-use-and-type ::= ssa-use `:` type
parseSSADefOrUseAndType(function_ref<ParseResult (SSAUseInfo,Type)> action)539 ParseResult OperationParser::parseSSADefOrUseAndType(
540 function_ref<ParseResult(SSAUseInfo, Type)> action) {
541 SSAUseInfo useInfo;
542 if (parseSSAUse(useInfo) ||
543 parseToken(Token::colon, "expected ':' and type for SSA operand"))
544 return failure();
545
546 auto type = parseType();
547 if (!type)
548 return failure();
549
550 return action(useInfo, type);
551 }
552
553 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then
554 /// followed by a type list.
555 ///
556 /// ssa-use-and-type-list
557 /// ::= ssa-use-list ':' type-list-no-parens
558 ///
parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> & results)559 ParseResult OperationParser::parseOptionalSSAUseAndTypeList(
560 SmallVectorImpl<Value> &results) {
561 SmallVector<SSAUseInfo, 4> valueIDs;
562 if (parseOptionalSSAUseList(valueIDs))
563 return failure();
564
565 // If there were no operands, then there is no colon or type lists.
566 if (valueIDs.empty())
567 return success();
568
569 SmallVector<Type, 4> types;
570 if (parseToken(Token::colon, "expected ':' in operand list") ||
571 parseTypeListNoParens(types))
572 return failure();
573
574 if (valueIDs.size() != types.size())
575 return emitError("expected ")
576 << valueIDs.size() << " types to match operand list";
577
578 results.reserve(valueIDs.size());
579 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) {
580 if (auto value = resolveSSAUse(valueIDs[i], types[i]))
581 results.push_back(value);
582 else
583 return failure();
584 }
585
586 return success();
587 }
588
589 /// Record that a definition was added at the current scope.
recordDefinition(StringRef def)590 void OperationParser::recordDefinition(StringRef def) {
591 isolatedNameScopes.back().recordDefinition(def);
592 }
593
594 /// Get the value entry for the given SSA name.
595 SmallVectorImpl<std::pair<Value, SMLoc>> &
getSSAValueEntry(StringRef name)596 OperationParser::getSSAValueEntry(StringRef name) {
597 return isolatedNameScopes.back().values[name];
598 }
599
600 /// Create and remember a new placeholder for a forward reference.
createForwardRefPlaceholder(SMLoc loc,Type type)601 Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) {
602 // Forward references are always created as operations, because we just need
603 // something with a def/use chain.
604 //
605 // We create these placeholders as having an empty name, which we know
606 // cannot be created through normal user input, allowing us to distinguish
607 // them.
608 auto name = OperationName("placeholder", getContext());
609 auto *op = Operation::create(
610 getEncodedSourceLocation(loc), name, type, /*operands=*/{},
611 /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0);
612 forwardRefPlaceholders[op->getResult(0)] = loc;
613 return op->getResult(0);
614 }
615
616 //===----------------------------------------------------------------------===//
617 // Operation Parsing
618 //===----------------------------------------------------------------------===//
619
620 /// Parse an operation.
621 ///
622 /// operation ::= op-result-list?
623 /// (generic-operation | custom-operation)
624 /// trailing-location?
625 /// generic-operation ::= string-literal `(` ssa-use-list? `)`
626 /// successor-list? (`(` region-list `)`)?
627 /// attribute-dict? `:` function-type
628 /// custom-operation ::= bare-id custom-operation-format
629 /// op-result-list ::= op-result (`,` op-result)* `=`
630 /// op-result ::= ssa-id (`:` integer-literal)
631 ///
parseOperation()632 ParseResult OperationParser::parseOperation() {
633 auto loc = getToken().getLoc();
634 SmallVector<ResultRecord, 1> resultIDs;
635 size_t numExpectedResults = 0;
636 if (getToken().is(Token::percent_identifier)) {
637 // Parse the group of result ids.
638 auto parseNextResult = [&]() -> ParseResult {
639 // Parse the next result id.
640 if (!getToken().is(Token::percent_identifier))
641 return emitError("expected valid ssa identifier");
642
643 Token nameTok = getToken();
644 consumeToken(Token::percent_identifier);
645
646 // If the next token is a ':', we parse the expected result count.
647 size_t expectedSubResults = 1;
648 if (consumeIf(Token::colon)) {
649 // Check that the next token is an integer.
650 if (!getToken().is(Token::integer))
651 return emitError("expected integer number of results");
652
653 // Check that number of results is > 0.
654 auto val = getToken().getUInt64IntegerValue();
655 if (!val.hasValue() || val.getValue() < 1)
656 return emitError("expected named operation to have atleast 1 result");
657 consumeToken(Token::integer);
658 expectedSubResults = *val;
659 }
660
661 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults,
662 nameTok.getLoc());
663 numExpectedResults += expectedSubResults;
664 return success();
665 };
666 if (parseCommaSeparatedList(parseNextResult))
667 return failure();
668
669 if (parseToken(Token::equal, "expected '=' after SSA name"))
670 return failure();
671 }
672
673 Operation *op;
674 if (getToken().is(Token::bare_identifier) || getToken().isKeyword())
675 op = parseCustomOperation(resultIDs);
676 else if (getToken().is(Token::string))
677 op = parseGenericOperation();
678 else
679 return emitError("expected operation name in quotes");
680
681 // If parsing of the basic operation failed, then this whole thing fails.
682 if (!op)
683 return failure();
684
685 // If the operation had a name, register it.
686 if (!resultIDs.empty()) {
687 if (op->getNumResults() == 0)
688 return emitError(loc, "cannot name an operation with no results");
689 if (numExpectedResults != op->getNumResults())
690 return emitError(loc, "operation defines ")
691 << op->getNumResults() << " results but was provided "
692 << numExpectedResults << " to bind";
693
694 // Add definitions for each of the result groups.
695 unsigned opResI = 0;
696 for (ResultRecord &resIt : resultIDs) {
697 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) {
698 if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)},
699 op->getResult(opResI++)))
700 return failure();
701 }
702 }
703 }
704
705 return success();
706 }
707
708 /// Parse a single operation successor.
709 ///
710 /// successor ::= block-id
711 ///
parseSuccessor(Block * & dest)712 ParseResult OperationParser::parseSuccessor(Block *&dest) {
713 // Verify branch is identifier and get the matching block.
714 if (!getToken().is(Token::caret_identifier))
715 return emitError("expected block name");
716 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc());
717 consumeToken();
718 return success();
719 }
720
721 /// Parse a comma-separated list of operation successors in brackets.
722 ///
723 /// successor-list ::= `[` successor (`,` successor )* `]`
724 ///
725 ParseResult
parseSuccessors(SmallVectorImpl<Block * > & destinations)726 OperationParser::parseSuccessors(SmallVectorImpl<Block *> &destinations) {
727 if (parseToken(Token::l_square, "expected '['"))
728 return failure();
729
730 auto parseElt = [this, &destinations] {
731 Block *dest;
732 ParseResult res = parseSuccessor(dest);
733 destinations.push_back(dest);
734 return res;
735 };
736 return parseCommaSeparatedListUntil(Token::r_square, parseElt,
737 /*allowEmptyList=*/false);
738 }
739
740 namespace {
741 // RAII-style guard for cleaning up the regions in the operation state before
742 // deleting them. Within the parser, regions may get deleted if parsing failed,
743 // and other errors may be present, in particular undominated uses. This makes
744 // sure such uses are deleted.
745 struct CleanupOpStateRegions {
~CleanupOpStateRegions__anonbf9cd4220511::CleanupOpStateRegions746 ~CleanupOpStateRegions() {
747 SmallVector<Region *, 4> regionsToClean;
748 regionsToClean.reserve(state.regions.size());
749 for (auto ®ion : state.regions)
750 if (region)
751 for (auto &block : *region)
752 block.dropAllDefinedValueUses();
753 }
754 OperationState &state;
755 };
756 } // namespace
757
parseGenericOperation()758 Operation *OperationParser::parseGenericOperation() {
759 // Get location information for the operation.
760 auto srcLocation = getEncodedSourceLocation(getToken().getLoc());
761
762 std::string name = getToken().getStringValue();
763 if (name.empty())
764 return (emitError("empty operation name is invalid"), nullptr);
765 if (name.find('\0') != StringRef::npos)
766 return (emitError("null character not allowed in operation name"), nullptr);
767
768 consumeToken(Token::string);
769
770 OperationState result(srcLocation, name);
771
772 // Lazy load dialects in the context as needed.
773 if (!result.name.getAbstractOperation()) {
774 StringRef dialectName = StringRef(name).split('.').first;
775 if (!getContext()->getLoadedDialect(dialectName) &&
776 getContext()->getOrLoadDialect(dialectName)) {
777 result.name = OperationName(name, getContext());
778 }
779 }
780
781 // Parse the operand list.
782 SmallVector<SSAUseInfo, 8> operandInfos;
783 if (parseToken(Token::l_paren, "expected '(' to start operand list") ||
784 parseOptionalSSAUseList(operandInfos) ||
785 parseToken(Token::r_paren, "expected ')' to end operand list")) {
786 return nullptr;
787 }
788
789 // Parse the successor list.
790 if (getToken().is(Token::l_square)) {
791 // Check if the operation is a known terminator.
792 const AbstractOperation *abstractOp = result.name.getAbstractOperation();
793 if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator))
794 return emitError("successors in non-terminator"), nullptr;
795
796 SmallVector<Block *, 2> successors;
797 if (parseSuccessors(successors))
798 return nullptr;
799 result.addSuccessors(successors);
800 }
801
802 // Parse the region list.
803 CleanupOpStateRegions guard{result};
804 if (consumeIf(Token::l_paren)) {
805 do {
806 // Create temporary regions with the top level region as parent.
807 result.regions.emplace_back(new Region(topLevelOp));
808 if (parseRegion(*result.regions.back(), /*entryArguments=*/{}))
809 return nullptr;
810 } while (consumeIf(Token::comma));
811 if (parseToken(Token::r_paren, "expected ')' to end region list"))
812 return nullptr;
813 }
814
815 if (getToken().is(Token::l_brace)) {
816 if (parseAttributeDict(result.attributes))
817 return nullptr;
818 }
819
820 if (parseToken(Token::colon, "expected ':' followed by operation type"))
821 return nullptr;
822
823 auto typeLoc = getToken().getLoc();
824 auto type = parseType();
825 if (!type)
826 return nullptr;
827 auto fnType = type.dyn_cast<FunctionType>();
828 if (!fnType)
829 return (emitError(typeLoc, "expected function type"), nullptr);
830
831 result.addTypes(fnType.getResults());
832
833 // Check that we have the right number of types for the operands.
834 auto operandTypes = fnType.getInputs();
835 if (operandTypes.size() != operandInfos.size()) {
836 auto plural = "s"[operandInfos.size() == 1];
837 return (emitError(typeLoc, "expected ")
838 << operandInfos.size() << " operand type" << plural
839 << " but had " << operandTypes.size(),
840 nullptr);
841 }
842
843 // Resolve all of the operands.
844 for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) {
845 result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i]));
846 if (!result.operands.back())
847 return nullptr;
848 }
849
850 // Create the operation and try to parse a location for it.
851 Operation *op = opBuilder.createOperation(result);
852 if (parseTrailingOperationLocation(op))
853 return nullptr;
854 return op;
855 }
856
parseGenericOperation(Block * insertBlock,Block::iterator insertPt)857 Operation *OperationParser::parseGenericOperation(Block *insertBlock,
858 Block::iterator insertPt) {
859 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder);
860 opBuilder.setInsertionPoint(insertBlock, insertPt);
861 return parseGenericOperation();
862 }
863
864 namespace {
865 class CustomOpAsmParser : public OpAsmParser {
866 public:
CustomOpAsmParser(SMLoc nameLoc,ArrayRef<OperationParser::ResultRecord> resultIDs,const AbstractOperation * opDefinition,OperationParser & parser)867 CustomOpAsmParser(SMLoc nameLoc,
868 ArrayRef<OperationParser::ResultRecord> resultIDs,
869 const AbstractOperation *opDefinition,
870 OperationParser &parser)
871 : nameLoc(nameLoc), resultIDs(resultIDs), opDefinition(opDefinition),
872 parser(parser) {}
873
874 /// Parse an instance of the operation described by 'opDefinition' into the
875 /// provided operation state.
parseOperation(OperationState & opState)876 ParseResult parseOperation(OperationState &opState) {
877 if (opDefinition->parseAssembly(*this, opState))
878 return failure();
879 // Verify that the parsed attributes does not have duplicate attributes.
880 // This can happen if an attribute set during parsing is also specified in
881 // the attribute dictionary in the assembly, or the attribute is set
882 // multiple during parsing.
883 Optional<NamedAttribute> duplicate = opState.attributes.findDuplicate();
884 if (duplicate)
885 return emitError(getNameLoc(), "attribute '")
886 << duplicate->first
887 << "' occurs more than once in the attribute list";
888 return success();
889 }
890
parseGenericOperation(Block * insertBlock,Block::iterator insertPt)891 Operation *parseGenericOperation(Block *insertBlock,
892 Block::iterator insertPt) final {
893 return parser.parseGenericOperation(insertBlock, insertPt);
894 }
895
896 //===--------------------------------------------------------------------===//
897 // Utilities
898 //===--------------------------------------------------------------------===//
899
900 /// Return if any errors were emitted during parsing.
didEmitError() const901 bool didEmitError() const { return emittedError; }
902
903 /// Emit a diagnostic at the specified location and return failure.
emitError(llvm::SMLoc loc,const Twine & message)904 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override {
905 emittedError = true;
906 return parser.emitError(loc, "custom op '" + opDefinition->name.strref() +
907 "' " + message);
908 }
909
getCurrentLocation()910 llvm::SMLoc getCurrentLocation() override {
911 return parser.getToken().getLoc();
912 }
913
getBuilder() const914 Builder &getBuilder() const override { return parser.builder; }
915
916 /// Return the name of the specified result in the specified syntax, as well
917 /// as the subelement in the name. For example, in this operation:
918 ///
919 /// %x, %y:2, %z = foo.op
920 ///
921 /// getResultName(0) == {"x", 0 }
922 /// getResultName(1) == {"y", 0 }
923 /// getResultName(2) == {"y", 1 }
924 /// getResultName(3) == {"z", 0 }
925 std::pair<StringRef, unsigned>
getResultName(unsigned resultNo) const926 getResultName(unsigned resultNo) const override {
927 // Scan for the resultID that contains this result number.
928 for (unsigned nameID = 0, e = resultIDs.size(); nameID != e; ++nameID) {
929 const auto &entry = resultIDs[nameID];
930 if (resultNo < std::get<1>(entry)) {
931 // Don't pass on the leading %.
932 StringRef name = std::get<0>(entry).drop_front();
933 return {name, resultNo};
934 }
935 resultNo -= std::get<1>(entry);
936 }
937
938 // Invalid result number.
939 return {"", ~0U};
940 }
941
942 /// Return the number of declared SSA results. This returns 4 for the foo.op
943 /// example in the comment for getResultName.
getNumResults() const944 size_t getNumResults() const override {
945 size_t count = 0;
946 for (auto &entry : resultIDs)
947 count += std::get<1>(entry);
948 return count;
949 }
950
getNameLoc() const951 llvm::SMLoc getNameLoc() const override { return nameLoc; }
952
953 //===--------------------------------------------------------------------===//
954 // Token Parsing
955 //===--------------------------------------------------------------------===//
956
957 /// Parse a `->` token.
parseArrow()958 ParseResult parseArrow() override {
959 return parser.parseToken(Token::arrow, "expected '->'");
960 }
961
962 /// Parses a `->` if present.
parseOptionalArrow()963 ParseResult parseOptionalArrow() override {
964 return success(parser.consumeIf(Token::arrow));
965 }
966
967 /// Parse a '{' token.
parseLBrace()968 ParseResult parseLBrace() override {
969 return parser.parseToken(Token::l_brace, "expected '{'");
970 }
971
972 /// Parse a '{' token if present
parseOptionalLBrace()973 ParseResult parseOptionalLBrace() override {
974 return success(parser.consumeIf(Token::l_brace));
975 }
976
977 /// Parse a `}` token.
parseRBrace()978 ParseResult parseRBrace() override {
979 return parser.parseToken(Token::r_brace, "expected '}'");
980 }
981
982 /// Parse a `}` token if present
parseOptionalRBrace()983 ParseResult parseOptionalRBrace() override {
984 return success(parser.consumeIf(Token::r_brace));
985 }
986
987 /// Parse a `:` token.
parseColon()988 ParseResult parseColon() override {
989 return parser.parseToken(Token::colon, "expected ':'");
990 }
991
992 /// Parse a `:` token if present.
parseOptionalColon()993 ParseResult parseOptionalColon() override {
994 return success(parser.consumeIf(Token::colon));
995 }
996
997 /// Parse a `,` token.
parseComma()998 ParseResult parseComma() override {
999 return parser.parseToken(Token::comma, "expected ','");
1000 }
1001
1002 /// Parse a `,` token if present.
parseOptionalComma()1003 ParseResult parseOptionalComma() override {
1004 return success(parser.consumeIf(Token::comma));
1005 }
1006
1007 /// Parses a `...` if present.
parseOptionalEllipsis()1008 ParseResult parseOptionalEllipsis() override {
1009 return success(parser.consumeIf(Token::ellipsis));
1010 }
1011
1012 /// Parse a `=` token.
parseEqual()1013 ParseResult parseEqual() override {
1014 return parser.parseToken(Token::equal, "expected '='");
1015 }
1016
1017 /// Parse a `=` token if present.
parseOptionalEqual()1018 ParseResult parseOptionalEqual() override {
1019 return success(parser.consumeIf(Token::equal));
1020 }
1021
1022 /// Parse a '<' token.
parseLess()1023 ParseResult parseLess() override {
1024 return parser.parseToken(Token::less, "expected '<'");
1025 }
1026
1027 /// Parse a '<' token if present.
parseOptionalLess()1028 ParseResult parseOptionalLess() override {
1029 return success(parser.consumeIf(Token::less));
1030 }
1031
1032 /// Parse a '>' token.
parseGreater()1033 ParseResult parseGreater() override {
1034 return parser.parseToken(Token::greater, "expected '>'");
1035 }
1036
1037 /// Parse a '>' token if present.
parseOptionalGreater()1038 ParseResult parseOptionalGreater() override {
1039 return success(parser.consumeIf(Token::greater));
1040 }
1041
1042 /// Parse a `(` token.
parseLParen()1043 ParseResult parseLParen() override {
1044 return parser.parseToken(Token::l_paren, "expected '('");
1045 }
1046
1047 /// Parses a '(' if present.
parseOptionalLParen()1048 ParseResult parseOptionalLParen() override {
1049 return success(parser.consumeIf(Token::l_paren));
1050 }
1051
1052 /// Parse a `)` token.
parseRParen()1053 ParseResult parseRParen() override {
1054 return parser.parseToken(Token::r_paren, "expected ')'");
1055 }
1056
1057 /// Parses a ')' if present.
parseOptionalRParen()1058 ParseResult parseOptionalRParen() override {
1059 return success(parser.consumeIf(Token::r_paren));
1060 }
1061
1062 /// Parse a `[` token.
parseLSquare()1063 ParseResult parseLSquare() override {
1064 return parser.parseToken(Token::l_square, "expected '['");
1065 }
1066
1067 /// Parses a '[' if present.
parseOptionalLSquare()1068 ParseResult parseOptionalLSquare() override {
1069 return success(parser.consumeIf(Token::l_square));
1070 }
1071
1072 /// Parse a `]` token.
parseRSquare()1073 ParseResult parseRSquare() override {
1074 return parser.parseToken(Token::r_square, "expected ']'");
1075 }
1076
1077 /// Parses a ']' if present.
parseOptionalRSquare()1078 ParseResult parseOptionalRSquare() override {
1079 return success(parser.consumeIf(Token::r_square));
1080 }
1081
1082 /// Parses a '?' token.
parseQuestion()1083 ParseResult parseQuestion() override {
1084 return parser.parseToken(Token::question, "expected '?'");
1085 }
1086
1087 /// Parses a '?' token if present.
parseOptionalQuestion()1088 ParseResult parseOptionalQuestion() override {
1089 return success(parser.consumeIf(Token::question));
1090 }
1091
1092 /// Parses a '+' token.
parsePlus()1093 ParseResult parsePlus() override {
1094 return parser.parseToken(Token::plus, "expected '+'");
1095 }
1096
1097 /// Parses a '+' token if present.
parseOptionalPlus()1098 ParseResult parseOptionalPlus() override {
1099 return success(parser.consumeIf(Token::plus));
1100 }
1101
1102 /// Parses a '*' token.
parseStar()1103 ParseResult parseStar() override {
1104 return parser.parseToken(Token::star, "expected '*'");
1105 }
1106
1107 /// Parses a '*' token if present.
parseOptionalStar()1108 ParseResult parseOptionalStar() override {
1109 return success(parser.consumeIf(Token::star));
1110 }
1111
1112 //===--------------------------------------------------------------------===//
1113 // Attribute Parsing
1114 //===--------------------------------------------------------------------===//
1115
1116 /// Parse an arbitrary attribute of a given type and return it in result.
parseAttribute(Attribute & result,Type type)1117 ParseResult parseAttribute(Attribute &result, Type type) override {
1118 result = parser.parseAttribute(type);
1119 return success(static_cast<bool>(result));
1120 }
1121
1122 /// Parse an optional attribute.
1123 template <typename AttrT>
1124 OptionalParseResult
parseOptionalAttributeAndAddToList(AttrT & result,Type type,StringRef attrName,NamedAttrList & attrs)1125 parseOptionalAttributeAndAddToList(AttrT &result, Type type,
1126 StringRef attrName, NamedAttrList &attrs) {
1127 OptionalParseResult parseResult =
1128 parser.parseOptionalAttribute(result, type);
1129 if (parseResult.hasValue() && succeeded(*parseResult))
1130 attrs.push_back(parser.builder.getNamedAttr(attrName, result));
1131 return parseResult;
1132 }
parseOptionalAttribute(Attribute & result,Type type,StringRef attrName,NamedAttrList & attrs)1133 OptionalParseResult parseOptionalAttribute(Attribute &result, Type type,
1134 StringRef attrName,
1135 NamedAttrList &attrs) override {
1136 return parseOptionalAttributeAndAddToList(result, type, attrName, attrs);
1137 }
parseOptionalAttribute(ArrayAttr & result,Type type,StringRef attrName,NamedAttrList & attrs)1138 OptionalParseResult parseOptionalAttribute(ArrayAttr &result, Type type,
1139 StringRef attrName,
1140 NamedAttrList &attrs) override {
1141 return parseOptionalAttributeAndAddToList(result, type, attrName, attrs);
1142 }
parseOptionalAttribute(StringAttr & result,Type type,StringRef attrName,NamedAttrList & attrs)1143 OptionalParseResult parseOptionalAttribute(StringAttr &result, Type type,
1144 StringRef attrName,
1145 NamedAttrList &attrs) override {
1146 return parseOptionalAttributeAndAddToList(result, type, attrName, attrs);
1147 }
1148
1149 /// Parse a named dictionary into 'result' if it is present.
parseOptionalAttrDict(NamedAttrList & result)1150 ParseResult parseOptionalAttrDict(NamedAttrList &result) override {
1151 if (parser.getToken().isNot(Token::l_brace))
1152 return success();
1153 return parser.parseAttributeDict(result);
1154 }
1155
1156 /// Parse a named dictionary into 'result' if the `attributes` keyword is
1157 /// present.
parseOptionalAttrDictWithKeyword(NamedAttrList & result)1158 ParseResult parseOptionalAttrDictWithKeyword(NamedAttrList &result) override {
1159 if (failed(parseOptionalKeyword("attributes")))
1160 return success();
1161 return parser.parseAttributeDict(result);
1162 }
1163
1164 /// Parse an affine map instance into 'map'.
parseAffineMap(AffineMap & map)1165 ParseResult parseAffineMap(AffineMap &map) override {
1166 return parser.parseAffineMapReference(map);
1167 }
1168
1169 /// Parse an integer set instance into 'set'.
printIntegerSet(IntegerSet & set)1170 ParseResult printIntegerSet(IntegerSet &set) override {
1171 return parser.parseIntegerSetReference(set);
1172 }
1173
1174 //===--------------------------------------------------------------------===//
1175 // Identifier Parsing
1176 //===--------------------------------------------------------------------===//
1177
1178 /// Returns true if the current token corresponds to a keyword.
isCurrentTokenAKeyword() const1179 bool isCurrentTokenAKeyword() const {
1180 return parser.getToken().is(Token::bare_identifier) ||
1181 parser.getToken().isKeyword();
1182 }
1183
1184 /// Parse the given keyword if present.
parseOptionalKeyword(StringRef keyword)1185 ParseResult parseOptionalKeyword(StringRef keyword) override {
1186 // Check that the current token has the same spelling.
1187 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword)
1188 return failure();
1189 parser.consumeToken();
1190 return success();
1191 }
1192
1193 /// Parse a keyword, if present, into 'keyword'.
parseOptionalKeyword(StringRef * keyword)1194 ParseResult parseOptionalKeyword(StringRef *keyword) override {
1195 // Check that the current token is a keyword.
1196 if (!isCurrentTokenAKeyword())
1197 return failure();
1198
1199 *keyword = parser.getTokenSpelling();
1200 parser.consumeToken();
1201 return success();
1202 }
1203
1204 /// Parse a keyword if it is one of the 'allowedKeywords'.
1205 ParseResult
parseOptionalKeyword(StringRef * keyword,ArrayRef<StringRef> allowedKeywords)1206 parseOptionalKeyword(StringRef *keyword,
1207 ArrayRef<StringRef> allowedKeywords) override {
1208 // Check that the current token is a keyword.
1209 if (!isCurrentTokenAKeyword())
1210 return failure();
1211
1212 StringRef currentKeyword = parser.getTokenSpelling();
1213 if (llvm::is_contained(allowedKeywords, currentKeyword)) {
1214 *keyword = currentKeyword;
1215 parser.consumeToken();
1216 return success();
1217 }
1218
1219 return failure();
1220 }
1221
1222 /// Parse an optional @-identifier and store it (without the '@' symbol) in a
1223 /// string attribute named 'attrName'.
parseOptionalSymbolName(StringAttr & result,StringRef attrName,NamedAttrList & attrs)1224 ParseResult parseOptionalSymbolName(StringAttr &result, StringRef attrName,
1225 NamedAttrList &attrs) override {
1226 Token atToken = parser.getToken();
1227 if (atToken.isNot(Token::at_identifier))
1228 return failure();
1229
1230 result = getBuilder().getStringAttr(atToken.getSymbolReference());
1231 attrs.push_back(getBuilder().getNamedAttr(attrName, result));
1232 parser.consumeToken();
1233 return success();
1234 }
1235
1236 //===--------------------------------------------------------------------===//
1237 // Operand Parsing
1238 //===--------------------------------------------------------------------===//
1239
1240 /// Parse a single operand.
parseOperand(OperandType & result)1241 ParseResult parseOperand(OperandType &result) override {
1242 OperationParser::SSAUseInfo useInfo;
1243 if (parser.parseSSAUse(useInfo))
1244 return failure();
1245
1246 result = {useInfo.loc, useInfo.name, useInfo.number};
1247 return success();
1248 }
1249
1250 /// Parse a single operand if present.
parseOptionalOperand(OperandType & result)1251 OptionalParseResult parseOptionalOperand(OperandType &result) override {
1252 if (parser.getToken().is(Token::percent_identifier))
1253 return parseOperand(result);
1254 return llvm::None;
1255 }
1256
1257 /// Parse zero or more SSA comma-separated operand references with a specified
1258 /// surrounding delimiter, and an optional required operand count.
parseOperandList(SmallVectorImpl<OperandType> & result,int requiredOperandCount=-1,Delimiter delimiter=Delimiter::None)1259 ParseResult parseOperandList(SmallVectorImpl<OperandType> &result,
1260 int requiredOperandCount = -1,
1261 Delimiter delimiter = Delimiter::None) override {
1262 return parseOperandOrRegionArgList(result, /*isOperandList=*/true,
1263 requiredOperandCount, delimiter);
1264 }
1265
1266 /// Parse zero or more SSA comma-separated operand or region arguments with
1267 /// optional surrounding delimiter and required operand count.
1268 ParseResult
parseOperandOrRegionArgList(SmallVectorImpl<OperandType> & result,bool isOperandList,int requiredOperandCount=-1,Delimiter delimiter=Delimiter::None)1269 parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result,
1270 bool isOperandList, int requiredOperandCount = -1,
1271 Delimiter delimiter = Delimiter::None) {
1272 auto startLoc = parser.getToken().getLoc();
1273
1274 // Handle delimiters.
1275 switch (delimiter) {
1276 case Delimiter::None:
1277 // Don't check for the absence of a delimiter if the number of operands
1278 // is unknown (and hence the operand list could be empty).
1279 if (requiredOperandCount == -1)
1280 break;
1281 // Token already matches an identifier and so can't be a delimiter.
1282 if (parser.getToken().is(Token::percent_identifier))
1283 break;
1284 // Test against known delimiters.
1285 if (parser.getToken().is(Token::l_paren) ||
1286 parser.getToken().is(Token::l_square))
1287 return emitError(startLoc, "unexpected delimiter");
1288 return emitError(startLoc, "invalid operand");
1289 case Delimiter::OptionalParen:
1290 if (parser.getToken().isNot(Token::l_paren))
1291 return success();
1292 LLVM_FALLTHROUGH;
1293 case Delimiter::Paren:
1294 if (parser.parseToken(Token::l_paren, "expected '(' in operand list"))
1295 return failure();
1296 break;
1297 case Delimiter::OptionalSquare:
1298 if (parser.getToken().isNot(Token::l_square))
1299 return success();
1300 LLVM_FALLTHROUGH;
1301 case Delimiter::Square:
1302 if (parser.parseToken(Token::l_square, "expected '[' in operand list"))
1303 return failure();
1304 break;
1305 }
1306
1307 // Check for zero operands.
1308 if (parser.getToken().is(Token::percent_identifier)) {
1309 do {
1310 OperandType operandOrArg;
1311 if (isOperandList ? parseOperand(operandOrArg)
1312 : parseRegionArgument(operandOrArg))
1313 return failure();
1314 result.push_back(operandOrArg);
1315 } while (parser.consumeIf(Token::comma));
1316 }
1317
1318 // Handle delimiters. If we reach here, the optional delimiters were
1319 // present, so we need to parse their closing one.
1320 switch (delimiter) {
1321 case Delimiter::None:
1322 break;
1323 case Delimiter::OptionalParen:
1324 case Delimiter::Paren:
1325 if (parser.parseToken(Token::r_paren, "expected ')' in operand list"))
1326 return failure();
1327 break;
1328 case Delimiter::OptionalSquare:
1329 case Delimiter::Square:
1330 if (parser.parseToken(Token::r_square, "expected ']' in operand list"))
1331 return failure();
1332 break;
1333 }
1334
1335 if (requiredOperandCount != -1 &&
1336 result.size() != static_cast<size_t>(requiredOperandCount))
1337 return emitError(startLoc, "expected ")
1338 << requiredOperandCount << " operands";
1339 return success();
1340 }
1341
1342 /// Parse zero or more trailing SSA comma-separated trailing operand
1343 /// references with a specified surrounding delimiter, and an optional
1344 /// required operand count. A leading comma is expected before the operands.
parseTrailingOperandList(SmallVectorImpl<OperandType> & result,int requiredOperandCount,Delimiter delimiter)1345 ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result,
1346 int requiredOperandCount,
1347 Delimiter delimiter) override {
1348 if (parser.getToken().is(Token::comma)) {
1349 parseComma();
1350 return parseOperandList(result, requiredOperandCount, delimiter);
1351 }
1352 if (requiredOperandCount != -1)
1353 return emitError(parser.getToken().getLoc(), "expected ")
1354 << requiredOperandCount << " operands";
1355 return success();
1356 }
1357
1358 /// Resolve an operand to an SSA value, emitting an error on failure.
resolveOperand(const OperandType & operand,Type type,SmallVectorImpl<Value> & result)1359 ParseResult resolveOperand(const OperandType &operand, Type type,
1360 SmallVectorImpl<Value> &result) override {
1361 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
1362 operand.location};
1363 if (auto value = parser.resolveSSAUse(operandInfo, type)) {
1364 result.push_back(value);
1365 return success();
1366 }
1367 return failure();
1368 }
1369
1370 /// Parse an AffineMap of SSA ids.
parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> & operands,Attribute & mapAttr,StringRef attrName,NamedAttrList & attrs,Delimiter delimiter)1371 ParseResult parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands,
1372 Attribute &mapAttr, StringRef attrName,
1373 NamedAttrList &attrs,
1374 Delimiter delimiter) override {
1375 SmallVector<OperandType, 2> dimOperands;
1376 SmallVector<OperandType, 1> symOperands;
1377
1378 auto parseElement = [&](bool isSymbol) -> ParseResult {
1379 OperandType operand;
1380 if (parseOperand(operand))
1381 return failure();
1382 if (isSymbol)
1383 symOperands.push_back(operand);
1384 else
1385 dimOperands.push_back(operand);
1386 return success();
1387 };
1388
1389 AffineMap map;
1390 if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter))
1391 return failure();
1392 // Add AffineMap attribute.
1393 if (map) {
1394 mapAttr = AffineMapAttr::get(map);
1395 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr));
1396 }
1397
1398 // Add dim operands before symbol operands in 'operands'.
1399 operands.assign(dimOperands.begin(), dimOperands.end());
1400 operands.append(symOperands.begin(), symOperands.end());
1401 return success();
1402 }
1403
1404 //===--------------------------------------------------------------------===//
1405 // Region Parsing
1406 //===--------------------------------------------------------------------===//
1407
1408 /// Parse a region that takes `arguments` of `argTypes` types. This
1409 /// effectively defines the SSA values of `arguments` and assigns their type.
parseRegion(Region & region,ArrayRef<OperandType> arguments,ArrayRef<Type> argTypes,bool enableNameShadowing)1410 ParseResult parseRegion(Region ®ion, ArrayRef<OperandType> arguments,
1411 ArrayRef<Type> argTypes,
1412 bool enableNameShadowing) override {
1413 assert(arguments.size() == argTypes.size() &&
1414 "mismatching number of arguments and types");
1415
1416 SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2>
1417 regionArguments;
1418 for (auto pair : llvm::zip(arguments, argTypes)) {
1419 const OperandType &operand = std::get<0>(pair);
1420 Type type = std::get<1>(pair);
1421 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
1422 operand.location};
1423 regionArguments.emplace_back(operandInfo, type);
1424 }
1425
1426 // Try to parse the region.
1427 assert((!enableNameShadowing ||
1428 opDefinition->hasProperty(OperationProperty::IsolatedFromAbove)) &&
1429 "name shadowing is only allowed on isolated regions");
1430 if (parser.parseRegion(region, regionArguments, enableNameShadowing))
1431 return failure();
1432 return success();
1433 }
1434
1435 /// Parses a region if present.
parseOptionalRegion(Region & region,ArrayRef<OperandType> arguments,ArrayRef<Type> argTypes,bool enableNameShadowing)1436 OptionalParseResult parseOptionalRegion(Region ®ion,
1437 ArrayRef<OperandType> arguments,
1438 ArrayRef<Type> argTypes,
1439 bool enableNameShadowing) override {
1440 if (parser.getToken().isNot(Token::l_brace))
1441 return llvm::None;
1442 return parseRegion(region, arguments, argTypes, enableNameShadowing);
1443 }
1444
1445 /// Parses a region if present. If the region is present, a new region is
1446 /// allocated and placed in `region`. If no region is present, `region`
1447 /// remains untouched.
1448 OptionalParseResult
parseOptionalRegion(std::unique_ptr<Region> & region,ArrayRef<OperandType> arguments,ArrayRef<Type> argTypes,bool enableNameShadowing=false)1449 parseOptionalRegion(std::unique_ptr<Region> ®ion,
1450 ArrayRef<OperandType> arguments, ArrayRef<Type> argTypes,
1451 bool enableNameShadowing = false) override {
1452 if (parser.getToken().isNot(Token::l_brace))
1453 return llvm::None;
1454 std::unique_ptr<Region> newRegion = std::make_unique<Region>();
1455 if (parseRegion(*newRegion, arguments, argTypes, enableNameShadowing))
1456 return failure();
1457
1458 region = std::move(newRegion);
1459 return success();
1460 }
1461
1462 /// Parse a region argument. The type of the argument will be resolved later
1463 /// by a call to `parseRegion`.
parseRegionArgument(OperandType & argument)1464 ParseResult parseRegionArgument(OperandType &argument) override {
1465 return parseOperand(argument);
1466 }
1467
1468 /// Parse a region argument if present.
parseOptionalRegionArgument(OperandType & argument)1469 ParseResult parseOptionalRegionArgument(OperandType &argument) override {
1470 if (parser.getToken().isNot(Token::percent_identifier))
1471 return success();
1472 return parseRegionArgument(argument);
1473 }
1474
1475 ParseResult
parseRegionArgumentList(SmallVectorImpl<OperandType> & result,int requiredOperandCount=-1,Delimiter delimiter=Delimiter::None)1476 parseRegionArgumentList(SmallVectorImpl<OperandType> &result,
1477 int requiredOperandCount = -1,
1478 Delimiter delimiter = Delimiter::None) override {
1479 return parseOperandOrRegionArgList(result, /*isOperandList=*/false,
1480 requiredOperandCount, delimiter);
1481 }
1482
1483 //===--------------------------------------------------------------------===//
1484 // Successor Parsing
1485 //===--------------------------------------------------------------------===//
1486
1487 /// Parse a single operation successor.
parseSuccessor(Block * & dest)1488 ParseResult parseSuccessor(Block *&dest) override {
1489 return parser.parseSuccessor(dest);
1490 }
1491
1492 /// Parse an optional operation successor and its operand list.
parseOptionalSuccessor(Block * & dest)1493 OptionalParseResult parseOptionalSuccessor(Block *&dest) override {
1494 if (parser.getToken().isNot(Token::caret_identifier))
1495 return llvm::None;
1496 return parseSuccessor(dest);
1497 }
1498
1499 /// Parse a single operation successor and its operand list.
1500 ParseResult
parseSuccessorAndUseList(Block * & dest,SmallVectorImpl<Value> & operands)1501 parseSuccessorAndUseList(Block *&dest,
1502 SmallVectorImpl<Value> &operands) override {
1503 if (parseSuccessor(dest))
1504 return failure();
1505
1506 // Handle optional arguments.
1507 if (succeeded(parseOptionalLParen()) &&
1508 (parser.parseOptionalSSAUseAndTypeList(operands) || parseRParen())) {
1509 return failure();
1510 }
1511 return success();
1512 }
1513
1514 //===--------------------------------------------------------------------===//
1515 // Type Parsing
1516 //===--------------------------------------------------------------------===//
1517
1518 /// Parse a type.
parseType(Type & result)1519 ParseResult parseType(Type &result) override {
1520 return failure(!(result = parser.parseType()));
1521 }
1522
1523 /// Parse an optional type.
parseOptionalType(Type & result)1524 OptionalParseResult parseOptionalType(Type &result) override {
1525 return parser.parseOptionalType(result);
1526 }
1527
1528 /// Parse an arrow followed by a type list.
parseArrowTypeList(SmallVectorImpl<Type> & result)1529 ParseResult parseArrowTypeList(SmallVectorImpl<Type> &result) override {
1530 if (parseArrow() || parser.parseFunctionResultTypes(result))
1531 return failure();
1532 return success();
1533 }
1534
1535 /// Parse an optional arrow followed by a type list.
1536 ParseResult
parseOptionalArrowTypeList(SmallVectorImpl<Type> & result)1537 parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override {
1538 if (!parser.consumeIf(Token::arrow))
1539 return success();
1540 return parser.parseFunctionResultTypes(result);
1541 }
1542
1543 /// Parse a colon followed by a type.
parseColonType(Type & result)1544 ParseResult parseColonType(Type &result) override {
1545 return failure(parser.parseToken(Token::colon, "expected ':'") ||
1546 !(result = parser.parseType()));
1547 }
1548
1549 /// Parse a colon followed by a type list, which must have at least one type.
parseColonTypeList(SmallVectorImpl<Type> & result)1550 ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override {
1551 if (parser.parseToken(Token::colon, "expected ':'"))
1552 return failure();
1553 return parser.parseTypeListNoParens(result);
1554 }
1555
1556 /// Parse an optional colon followed by a type list, which if present must
1557 /// have at least one type.
1558 ParseResult
parseOptionalColonTypeList(SmallVectorImpl<Type> & result)1559 parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override {
1560 if (!parser.consumeIf(Token::colon))
1561 return success();
1562 return parser.parseTypeListNoParens(result);
1563 }
1564
1565 /// Parse a list of assignments of the form
1566 /// (%x1 = %y1, %x2 = %y2, ...).
1567 OptionalParseResult
parseOptionalAssignmentList(SmallVectorImpl<OperandType> & lhs,SmallVectorImpl<OperandType> & rhs)1568 parseOptionalAssignmentList(SmallVectorImpl<OperandType> &lhs,
1569 SmallVectorImpl<OperandType> &rhs) override {
1570 if (failed(parseOptionalLParen()))
1571 return llvm::None;
1572
1573 auto parseElt = [&]() -> ParseResult {
1574 OperandType regionArg, operand;
1575 if (parseRegionArgument(regionArg) || parseEqual() ||
1576 parseOperand(operand))
1577 return failure();
1578 lhs.push_back(regionArg);
1579 rhs.push_back(operand);
1580 return success();
1581 };
1582 return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt);
1583 }
1584
1585 private:
1586 /// The source location of the operation name.
1587 SMLoc nameLoc;
1588
1589 /// Information about the result name specifiers.
1590 ArrayRef<OperationParser::ResultRecord> resultIDs;
1591
1592 /// The abstract information of the operation.
1593 const AbstractOperation *opDefinition;
1594
1595 /// The main operation parser.
1596 OperationParser &parser;
1597
1598 /// A flag that indicates if any errors were emitted during parsing.
1599 bool emittedError = false;
1600 };
1601 } // end anonymous namespace.
1602
1603 Operation *
parseCustomOperation(ArrayRef<ResultRecord> resultIDs)1604 OperationParser::parseCustomOperation(ArrayRef<ResultRecord> resultIDs) {
1605 llvm::SMLoc opLoc = getToken().getLoc();
1606 StringRef opName = getTokenSpelling();
1607
1608 auto *opDefinition = AbstractOperation::lookup(opName, getContext());
1609 if (!opDefinition) {
1610 if (opName.contains('.')) {
1611 // This op has a dialect, we try to check if we can register it in the
1612 // context on the fly.
1613 StringRef dialectName = opName.split('.').first;
1614 if (!getContext()->getLoadedDialect(dialectName) &&
1615 getContext()->getOrLoadDialect(dialectName)) {
1616 opDefinition = AbstractOperation::lookup(opName, getContext());
1617 }
1618 } else {
1619 // If the operation name has no namespace prefix we treat it as a standard
1620 // operation and prefix it with "std".
1621 // TODO: Would it be better to just build a mapping of the registered
1622 // operations in the standard dialect?
1623 if (getContext()->getOrLoadDialect("std"))
1624 opDefinition = AbstractOperation::lookup(Twine("std." + opName).str(),
1625 getContext());
1626 }
1627 }
1628
1629 if (!opDefinition) {
1630 emitError(opLoc) << "custom op '" << opName << "' is unknown";
1631 return nullptr;
1632 }
1633
1634 consumeToken();
1635
1636 // If the custom op parser crashes, produce some indication to help
1637 // debugging.
1638 std::string opNameStr = opName.str();
1639 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'",
1640 opNameStr.c_str());
1641
1642 // Get location information for the operation.
1643 auto srcLocation = getEncodedSourceLocation(opLoc);
1644
1645 // Have the op implementation take a crack and parsing this.
1646 OperationState opState(srcLocation, opDefinition->name);
1647 CleanupOpStateRegions guard{opState};
1648 CustomOpAsmParser opAsmParser(opLoc, resultIDs, opDefinition, *this);
1649 if (opAsmParser.parseOperation(opState))
1650 return nullptr;
1651
1652 // If it emitted an error, we failed.
1653 if (opAsmParser.didEmitError())
1654 return nullptr;
1655
1656 // Otherwise, create the operation and try to parse a location for it.
1657 Operation *op = opBuilder.createOperation(opState);
1658 if (parseTrailingOperationLocation(op))
1659 return nullptr;
1660 return op;
1661 }
1662
parseTrailingOperationLocation(Operation * op)1663 ParseResult OperationParser::parseTrailingOperationLocation(Operation *op) {
1664 // If there is a 'loc' we parse a trailing location.
1665 if (!consumeIf(Token::kw_loc))
1666 return success();
1667 if (parseToken(Token::l_paren, "expected '(' in location"))
1668 return failure();
1669 Token tok = getToken();
1670
1671 // Check to see if we are parsing a location alias.
1672 LocationAttr directLoc;
1673 if (tok.is(Token::hash_identifier)) {
1674 consumeToken();
1675
1676 StringRef identifier = tok.getSpelling().drop_front();
1677 if (identifier.contains('.')) {
1678 return emitError(tok.getLoc())
1679 << "expected location, but found dialect attribute: '#"
1680 << identifier << "'";
1681 }
1682
1683 // If this alias can be resolved, do it now.
1684 Attribute attr =
1685 getState().symbols.attributeAliasDefinitions.lookup(identifier);
1686 if (attr) {
1687 if (!(directLoc = attr.dyn_cast<LocationAttr>()))
1688 return emitError(tok.getLoc())
1689 << "expected location, but found '" << attr << "'";
1690 } else {
1691 // Otherwise, remember this operation and resolve its location later.
1692 opsWithDeferredLocs.emplace_back(op, tok);
1693 }
1694
1695 // Otherwise, we parse the location directly.
1696 } else if (parseLocationInstance(directLoc)) {
1697 return failure();
1698 }
1699
1700 if (parseToken(Token::r_paren, "expected ')' in location"))
1701 return failure();
1702
1703 if (directLoc)
1704 op->setLoc(directLoc);
1705 return success();
1706 }
1707
1708 //===----------------------------------------------------------------------===//
1709 // Region Parsing
1710 //===----------------------------------------------------------------------===//
1711
1712 /// Region.
1713 ///
1714 /// region ::= '{' region-body
1715 ///
parseRegion(Region & region,ArrayRef<std::pair<OperationParser::SSAUseInfo,Type>> entryArguments,bool isIsolatedNameScope)1716 ParseResult OperationParser::parseRegion(
1717 Region ®ion,
1718 ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments,
1719 bool isIsolatedNameScope) {
1720 // Parse the '{'.
1721 if (parseToken(Token::l_brace, "expected '{' to begin a region"))
1722 return failure();
1723
1724 // Check for an empty region.
1725 if (entryArguments.empty() && consumeIf(Token::r_brace))
1726 return success();
1727 auto currentPt = opBuilder.saveInsertionPoint();
1728
1729 // Push a new named value scope.
1730 pushSSANameScope(isIsolatedNameScope);
1731
1732 // Parse the first block directly to allow for it to be unnamed.
1733 auto owning_block = std::make_unique<Block>();
1734 Block *block = owning_block.get();
1735
1736 // Add arguments to the entry block.
1737 if (!entryArguments.empty()) {
1738 for (auto &placeholderArgPair : entryArguments) {
1739 auto &argInfo = placeholderArgPair.first;
1740 // Ensure that the argument was not already defined.
1741 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) {
1742 return emitError(argInfo.loc, "region entry argument '" + argInfo.name +
1743 "' is already in use")
1744 .attachNote(getEncodedSourceLocation(*defLoc))
1745 << "previously referenced here";
1746 }
1747 if (addDefinition(placeholderArgPair.first,
1748 block->addArgument(placeholderArgPair.second))) {
1749 return failure();
1750 }
1751 }
1752
1753 // If we had named arguments, then don't allow a block name.
1754 if (getToken().is(Token::caret_identifier))
1755 return emitError("invalid block name in region with named arguments");
1756 }
1757
1758 if (parseBlock(block)) {
1759 return failure();
1760 }
1761
1762 // Verify that no other arguments were parsed.
1763 if (!entryArguments.empty() &&
1764 block->getNumArguments() > entryArguments.size()) {
1765 return emitError("entry block arguments were already defined");
1766 }
1767
1768 // Parse the rest of the region.
1769 region.push_back(owning_block.release());
1770 if (parseRegionBody(region))
1771 return failure();
1772
1773 // Pop the SSA value scope for this region.
1774 if (popSSANameScope())
1775 return failure();
1776
1777 // Reset the original insertion point.
1778 opBuilder.restoreInsertionPoint(currentPt);
1779 return success();
1780 }
1781
1782 /// Region.
1783 ///
1784 /// region-body ::= block* '}'
1785 ///
parseRegionBody(Region & region)1786 ParseResult OperationParser::parseRegionBody(Region ®ion) {
1787 // Parse the list of blocks.
1788 while (!consumeIf(Token::r_brace)) {
1789 Block *newBlock = nullptr;
1790 if (parseBlock(newBlock))
1791 return failure();
1792 region.push_back(newBlock);
1793 }
1794 return success();
1795 }
1796
1797 //===----------------------------------------------------------------------===//
1798 // Block Parsing
1799 //===----------------------------------------------------------------------===//
1800
1801 /// Block declaration.
1802 ///
1803 /// block ::= block-label? operation*
1804 /// block-label ::= block-id block-arg-list? `:`
1805 /// block-id ::= caret-id
1806 /// block-arg-list ::= `(` ssa-id-and-type-list? `)`
1807 ///
parseBlock(Block * & block)1808 ParseResult OperationParser::parseBlock(Block *&block) {
1809 // The first block of a region may already exist, if it does the caret
1810 // identifier is optional.
1811 if (block && getToken().isNot(Token::caret_identifier))
1812 return parseBlockBody(block);
1813
1814 SMLoc nameLoc = getToken().getLoc();
1815 auto name = getTokenSpelling();
1816 if (parseToken(Token::caret_identifier, "expected block name"))
1817 return failure();
1818
1819 block = defineBlockNamed(name, nameLoc, block);
1820
1821 // Fail if the block was already defined.
1822 if (!block)
1823 return emitError(nameLoc, "redefinition of block '") << name << "'";
1824
1825 // If an argument list is present, parse it.
1826 if (consumeIf(Token::l_paren)) {
1827 SmallVector<BlockArgument, 8> bbArgs;
1828 if (parseOptionalBlockArgList(bbArgs, block) ||
1829 parseToken(Token::r_paren, "expected ')' to end argument list"))
1830 return failure();
1831 }
1832
1833 if (parseToken(Token::colon, "expected ':' after block name"))
1834 return failure();
1835
1836 return parseBlockBody(block);
1837 }
1838
parseBlockBody(Block * block)1839 ParseResult OperationParser::parseBlockBody(Block *block) {
1840 // Set the insertion point to the end of the block to parse.
1841 opBuilder.setInsertionPointToEnd(block);
1842
1843 // Parse the list of operations that make up the body of the block.
1844 while (getToken().isNot(Token::caret_identifier, Token::r_brace))
1845 if (parseOperation())
1846 return failure();
1847
1848 return success();
1849 }
1850
1851 /// Get the block with the specified name, creating it if it doesn't already
1852 /// exist. The location specified is the point of use, which allows
1853 /// us to diagnose references to blocks that are not defined precisely.
getBlockNamed(StringRef name,SMLoc loc)1854 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) {
1855 auto &blockAndLoc = getBlockInfoByName(name);
1856 if (!blockAndLoc.first) {
1857 blockAndLoc = {new Block(), loc};
1858 insertForwardRef(blockAndLoc.first, loc);
1859 }
1860
1861 return blockAndLoc.first;
1862 }
1863
1864 /// Define the block with the specified name. Returns the Block* or nullptr in
1865 /// the case of redefinition.
defineBlockNamed(StringRef name,SMLoc loc,Block * existing)1866 Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc,
1867 Block *existing) {
1868 auto &blockAndLoc = getBlockInfoByName(name);
1869 if (!blockAndLoc.first) {
1870 // If the caller provided a block, use it. Otherwise create a new one.
1871 if (!existing)
1872 existing = new Block();
1873 blockAndLoc.first = existing;
1874 blockAndLoc.second = loc;
1875 return blockAndLoc.first;
1876 }
1877
1878 // Forward declarations are removed once defined, so if we are defining a
1879 // existing block and it is not a forward declaration, then it is a
1880 // redeclaration.
1881 if (!eraseForwardRef(blockAndLoc.first))
1882 return nullptr;
1883 return blockAndLoc.first;
1884 }
1885
1886 /// Parse a (possibly empty) list of SSA operands with types as block arguments.
1887 ///
1888 /// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)*
1889 ///
parseOptionalBlockArgList(SmallVectorImpl<BlockArgument> & results,Block * owner)1890 ParseResult OperationParser::parseOptionalBlockArgList(
1891 SmallVectorImpl<BlockArgument> &results, Block *owner) {
1892 if (getToken().is(Token::r_brace))
1893 return success();
1894
1895 // If the block already has arguments, then we're handling the entry block.
1896 // Parse and register the names for the arguments, but do not add them.
1897 bool definingExistingArgs = owner->getNumArguments() != 0;
1898 unsigned nextArgument = 0;
1899
1900 return parseCommaSeparatedList([&]() -> ParseResult {
1901 return parseSSADefOrUseAndType(
1902 [&](SSAUseInfo useInfo, Type type) -> ParseResult {
1903 // If this block did not have existing arguments, define a new one.
1904 if (!definingExistingArgs)
1905 return addDefinition(useInfo, owner->addArgument(type));
1906
1907 // Otherwise, ensure that this argument has already been created.
1908 if (nextArgument >= owner->getNumArguments())
1909 return emitError("too many arguments specified in argument list");
1910
1911 // Finally, make sure the existing argument has the correct type.
1912 auto arg = owner->getArgument(nextArgument++);
1913 if (arg.getType() != type)
1914 return emitError("argument and block argument type mismatch");
1915 return addDefinition(useInfo, arg);
1916 });
1917 });
1918 }
1919
1920 //===----------------------------------------------------------------------===//
1921 // Top-level entity parsing.
1922 //===----------------------------------------------------------------------===//
1923
1924 namespace {
1925 /// This parser handles entities that are only valid at the top level of the
1926 /// file.
1927 class TopLevelOperationParser : public Parser {
1928 public:
TopLevelOperationParser(ParserState & state)1929 explicit TopLevelOperationParser(ParserState &state) : Parser(state) {}
1930
1931 /// Parse a set of operations into the end of the given Block.
1932 ParseResult parse(Block *topLevelBlock, Location parserLoc);
1933
1934 private:
1935 /// Parse an attribute alias declaration.
1936 ParseResult parseAttributeAliasDef();
1937
1938 /// Parse an attribute alias declaration.
1939 ParseResult parseTypeAliasDef();
1940 };
1941 } // end anonymous namespace
1942
1943 /// Parses an attribute alias declaration.
1944 ///
1945 /// attribute-alias-def ::= '#' alias-name `=` attribute-value
1946 ///
parseAttributeAliasDef()1947 ParseResult TopLevelOperationParser::parseAttributeAliasDef() {
1948 assert(getToken().is(Token::hash_identifier));
1949 StringRef aliasName = getTokenSpelling().drop_front();
1950
1951 // Check for redefinitions.
1952 if (getState().symbols.attributeAliasDefinitions.count(aliasName) > 0)
1953 return emitError("redefinition of attribute alias id '" + aliasName + "'");
1954
1955 // Make sure this isn't invading the dialect attribute namespace.
1956 if (aliasName.contains('.'))
1957 return emitError("attribute names with a '.' are reserved for "
1958 "dialect-defined names");
1959
1960 consumeToken(Token::hash_identifier);
1961
1962 // Parse the '='.
1963 if (parseToken(Token::equal, "expected '=' in attribute alias definition"))
1964 return failure();
1965
1966 // Parse the attribute value.
1967 Attribute attr = parseAttribute();
1968 if (!attr)
1969 return failure();
1970
1971 getState().symbols.attributeAliasDefinitions[aliasName] = attr;
1972 return success();
1973 }
1974
1975 /// Parse a type alias declaration.
1976 ///
1977 /// type-alias-def ::= '!' alias-name `=` 'type' type
1978 ///
parseTypeAliasDef()1979 ParseResult TopLevelOperationParser::parseTypeAliasDef() {
1980 assert(getToken().is(Token::exclamation_identifier));
1981 StringRef aliasName = getTokenSpelling().drop_front();
1982
1983 // Check for redefinitions.
1984 if (getState().symbols.typeAliasDefinitions.count(aliasName) > 0)
1985 return emitError("redefinition of type alias id '" + aliasName + "'");
1986
1987 // Make sure this isn't invading the dialect type namespace.
1988 if (aliasName.contains('.'))
1989 return emitError("type names with a '.' are reserved for "
1990 "dialect-defined names");
1991
1992 consumeToken(Token::exclamation_identifier);
1993
1994 // Parse the '=' and 'type'.
1995 if (parseToken(Token::equal, "expected '=' in type alias definition") ||
1996 parseToken(Token::kw_type, "expected 'type' in type alias definition"))
1997 return failure();
1998
1999 // Parse the type.
2000 Type aliasedType = parseType();
2001 if (!aliasedType)
2002 return failure();
2003
2004 // Register this alias with the parser state.
2005 getState().symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType);
2006 return success();
2007 }
2008
parse(Block * topLevelBlock,Location parserLoc)2009 ParseResult TopLevelOperationParser::parse(Block *topLevelBlock,
2010 Location parserLoc) {
2011 // Create a top-level operation to contain the parsed state.
2012 OwningOpRef<Operation *> topLevelOp(ModuleOp::create(parserLoc));
2013 OperationParser opParser(getState(), topLevelOp.get());
2014 while (true) {
2015 switch (getToken().getKind()) {
2016 default:
2017 // Parse a top-level operation.
2018 if (opParser.parseOperation())
2019 return failure();
2020 break;
2021
2022 // If we got to the end of the file, then we're done.
2023 case Token::eof: {
2024 if (opParser.finalize())
2025 return failure();
2026
2027 // Verify that the parsed operations are valid.
2028 if (failed(verify(topLevelOp.get())))
2029 return failure();
2030
2031 // Splice the blocks of the parsed operation over to the provided
2032 // top-level block.
2033 auto &parsedOps = (*topLevelOp)->getRegion(0).front().getOperations();
2034 auto &destOps = topLevelBlock->getOperations();
2035 destOps.splice(destOps.empty() ? destOps.end() : std::prev(destOps.end()),
2036 parsedOps, parsedOps.begin(), std::prev(parsedOps.end()));
2037 return success();
2038 }
2039
2040 // If we got an error token, then the lexer already emitted an error, just
2041 // stop. Someday we could introduce error recovery if there was demand
2042 // for it.
2043 case Token::error:
2044 return failure();
2045
2046 // Parse an attribute alias.
2047 case Token::hash_identifier:
2048 if (parseAttributeAliasDef())
2049 return failure();
2050 break;
2051
2052 // Parse a type alias.
2053 case Token::exclamation_identifier:
2054 if (parseTypeAliasDef())
2055 return failure();
2056 break;
2057 }
2058 }
2059 }
2060
2061 //===----------------------------------------------------------------------===//
2062
parseSourceFile(const llvm::SourceMgr & sourceMgr,Block * block,MLIRContext * context,LocationAttr * sourceFileLoc)2063 LogicalResult mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr,
2064 Block *block, MLIRContext *context,
2065 LocationAttr *sourceFileLoc) {
2066 const auto *sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID());
2067
2068 Location parserLoc = FileLineColLoc::get(sourceBuf->getBufferIdentifier(),
2069 /*line=*/0, /*column=*/0, context);
2070 if (sourceFileLoc)
2071 *sourceFileLoc = parserLoc;
2072
2073 SymbolState aliasState;
2074 ParserState state(sourceMgr, context, aliasState);
2075 return TopLevelOperationParser(state).parse(block, parserLoc);
2076 }
2077
parseSourceFile(llvm::StringRef filename,Block * block,MLIRContext * context,LocationAttr * sourceFileLoc)2078 LogicalResult mlir::parseSourceFile(llvm::StringRef filename, Block *block,
2079 MLIRContext *context,
2080 LocationAttr *sourceFileLoc) {
2081 llvm::SourceMgr sourceMgr;
2082 return parseSourceFile(filename, sourceMgr, block, context, sourceFileLoc);
2083 }
2084
parseSourceFile(llvm::StringRef filename,llvm::SourceMgr & sourceMgr,Block * block,MLIRContext * context,LocationAttr * sourceFileLoc)2085 LogicalResult mlir::parseSourceFile(llvm::StringRef filename,
2086 llvm::SourceMgr &sourceMgr, Block *block,
2087 MLIRContext *context,
2088 LocationAttr *sourceFileLoc) {
2089 if (sourceMgr.getNumBuffers() != 0) {
2090 // TODO: Extend to support multiple buffers.
2091 return emitError(mlir::UnknownLoc::get(context),
2092 "only main buffer parsed at the moment");
2093 }
2094 auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename);
2095 if (std::error_code error = file_or_err.getError())
2096 return emitError(mlir::UnknownLoc::get(context),
2097 "could not open input file " + filename);
2098
2099 // Load the MLIR source file.
2100 sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc());
2101 return parseSourceFile(sourceMgr, block, context, sourceFileLoc);
2102 }
2103
parseSourceString(llvm::StringRef sourceStr,Block * block,MLIRContext * context,LocationAttr * sourceFileLoc)2104 LogicalResult mlir::parseSourceString(llvm::StringRef sourceStr, Block *block,
2105 MLIRContext *context,
2106 LocationAttr *sourceFileLoc) {
2107 auto memBuffer = MemoryBuffer::getMemBuffer(sourceStr);
2108 if (!memBuffer)
2109 return failure();
2110
2111 SourceMgr sourceMgr;
2112 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
2113 return parseSourceFile(sourceMgr, block, context, sourceFileLoc);
2114 }
2115