1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <pthread.h>
30
31 #include <errno.h>
32 #include <limits.h>
33 #include <stdatomic.h>
34 #include <sys/mman.h>
35 #include <time.h>
36 #include <unistd.h>
37
38 #include "pthread_internal.h"
39
40 #include "private/bionic_futex.h"
41 #include "private/bionic_time_conversions.h"
42 #include "private/bionic_tls.h"
43
44 // XXX *technically* there is a race condition that could allow
45 // XXX a signal to be missed. If thread A is preempted in _wait()
46 // XXX after unlocking the mutex and before waiting, and if other
47 // XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
48 // XXX before thread A is scheduled again and calls futex_wait(),
49 // XXX then the signal will be lost.
50
51 // We use one bit in pthread_condattr_t (long) values as the 'shared' flag
52 // and one bit for the clock type (CLOCK_REALTIME is 0 and
53 // CLOCK_MONOTONIC is 1). The rest of the bits are a counter.
54 //
55 // The 'value' field in pthread_cond_t has the same layout.
56
57 #define COND_SHARED_MASK 0x0001
58 #define COND_CLOCK_MASK 0x0002
59 #define COND_COUNTER_STEP 0x0004
60 #define COND_FLAGS_MASK (COND_SHARED_MASK | COND_CLOCK_MASK)
61 #define COND_COUNTER_MASK (~COND_FLAGS_MASK)
62
63 #define COND_IS_SHARED(c) (((c) & COND_SHARED_MASK) != 0)
64 #define COND_GET_CLOCK(c) (((c) & COND_CLOCK_MASK) >> 1)
65 #define COND_SET_CLOCK(attr, c) ((attr) | (c << 1))
66
pthread_condattr_init(pthread_condattr_t * attr)67 int pthread_condattr_init(pthread_condattr_t* attr) {
68 *attr = 0;
69 *attr |= PTHREAD_PROCESS_PRIVATE;
70 *attr |= (CLOCK_REALTIME << 1);
71 return 0;
72 }
73
pthread_condattr_getpshared(const pthread_condattr_t * attr,int * pshared)74 int pthread_condattr_getpshared(const pthread_condattr_t* attr, int* pshared) {
75 *pshared = static_cast<int>(COND_IS_SHARED(*attr));
76 return 0;
77 }
78
pthread_condattr_setpshared(pthread_condattr_t * attr,int pshared)79 int pthread_condattr_setpshared(pthread_condattr_t* attr, int pshared) {
80 if (pshared != PTHREAD_PROCESS_SHARED && pshared != PTHREAD_PROCESS_PRIVATE) {
81 return EINVAL;
82 }
83
84 *attr |= pshared;
85 return 0;
86 }
87
pthread_condattr_getclock(const pthread_condattr_t * attr,clockid_t * clock)88 int pthread_condattr_getclock(const pthread_condattr_t* attr, clockid_t* clock) {
89 *clock = COND_GET_CLOCK(*attr);
90 return 0;
91 }
92
pthread_condattr_setclock(pthread_condattr_t * attr,clockid_t clock)93 int pthread_condattr_setclock(pthread_condattr_t* attr, clockid_t clock) {
94 if (clock != CLOCK_MONOTONIC && clock != CLOCK_REALTIME) {
95 return EINVAL;
96 }
97
98 *attr = COND_SET_CLOCK(*attr, clock);
99 return 0;
100 }
101
pthread_condattr_destroy(pthread_condattr_t * attr)102 int pthread_condattr_destroy(pthread_condattr_t* attr) {
103 *attr = 0xdeada11d;
104 return 0;
105 }
106
107 struct pthread_cond_internal_t {
108 atomic_uint state;
109
process_sharedpthread_cond_internal_t110 bool process_shared() {
111 return COND_IS_SHARED(atomic_load_explicit(&state, memory_order_relaxed));
112 }
113
use_realtime_clockpthread_cond_internal_t114 bool use_realtime_clock() {
115 return COND_GET_CLOCK(atomic_load_explicit(&state, memory_order_relaxed)) == CLOCK_REALTIME;
116 }
117
118 #if defined(__LP64__)
119 atomic_uint waiters;
120 char __reserved[40];
121 #endif
122 };
123
124 static_assert(sizeof(pthread_cond_t) == sizeof(pthread_cond_internal_t),
125 "pthread_cond_t should actually be pthread_cond_internal_t in implementation.");
126
127 // For binary compatibility with old version of pthread_cond_t, we can't use more strict alignment
128 // than 4-byte alignment.
129 static_assert(alignof(pthread_cond_t) == 4,
130 "pthread_cond_t should fulfill the alignment requirement of pthread_cond_internal_t.");
131
__get_internal_cond(pthread_cond_t * cond_interface)132 static pthread_cond_internal_t* __get_internal_cond(pthread_cond_t* cond_interface) {
133 return reinterpret_cast<pthread_cond_internal_t*>(cond_interface);
134 }
135
pthread_cond_init(pthread_cond_t * cond_interface,const pthread_condattr_t * attr)136 int pthread_cond_init(pthread_cond_t* cond_interface, const pthread_condattr_t* attr) {
137 pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
138
139 unsigned int init_state = 0;
140 if (attr != nullptr) {
141 init_state = (*attr & COND_FLAGS_MASK);
142 }
143 atomic_init(&cond->state, init_state);
144
145 #if defined(__LP64__)
146 atomic_init(&cond->waiters, 0);
147 #endif
148
149 return 0;
150 }
151
pthread_cond_destroy(pthread_cond_t * cond_interface)152 int pthread_cond_destroy(pthread_cond_t* cond_interface) {
153 pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
154 atomic_store_explicit(&cond->state, 0xdeadc04d, memory_order_relaxed);
155 return 0;
156 }
157
158 // This function is used by pthread_cond_broadcast and
159 // pthread_cond_signal to atomically decrement the counter
160 // then wake up thread_count threads.
__pthread_cond_pulse(pthread_cond_internal_t * cond,int thread_count)161 static int __pthread_cond_pulse(pthread_cond_internal_t* cond, int thread_count) {
162 // We don't use a release/seq_cst fence here. Because pthread_cond_wait/signal can't be
163 // used as a method for memory synchronization by itself. It should always be used with
164 // pthread mutexes. Note that Spurious wakeups from pthread_cond_wait/timedwait may occur,
165 // so when using condition variables there is always a boolean predicate involving shared
166 // variables associated with each condition wait that is true if the thread should proceed.
167 // If the predicate is seen true before a condition wait, pthread_cond_wait/timedwait will
168 // not be called. That's why pthread_wait/signal pair can't be used as a method for memory
169 // synchronization. And it doesn't help even if we use any fence here.
170
171 #if defined(__LP64__)
172 if (atomic_load_explicit(&cond->waiters, memory_order_relaxed) == 0) {
173 return 0;
174 }
175 #endif
176
177 // The increase of value should leave flags alone, even if the value can overflows.
178 atomic_fetch_add_explicit(&cond->state, COND_COUNTER_STEP, memory_order_relaxed);
179
180 __futex_wake_ex(&cond->state, cond->process_shared(), thread_count);
181 return 0;
182 }
183
__pthread_cond_timedwait(pthread_cond_internal_t * cond,pthread_mutex_t * mutex,bool use_realtime_clock,const timespec * abs_timeout_or_null)184 static int __pthread_cond_timedwait(pthread_cond_internal_t* cond, pthread_mutex_t* mutex,
185 bool use_realtime_clock, const timespec* abs_timeout_or_null) {
186 int result = check_timespec(abs_timeout_or_null, true);
187 if (result != 0) {
188 return result;
189 }
190
191 unsigned int old_state = atomic_load_explicit(&cond->state, memory_order_relaxed);
192
193 #if defined(__LP64__)
194 atomic_fetch_add_explicit(&cond->waiters, 1, memory_order_relaxed);
195 #endif
196
197 pthread_mutex_unlock(mutex);
198 int status = __futex_wait_ex(&cond->state, cond->process_shared(), old_state,
199 use_realtime_clock, abs_timeout_or_null);
200
201 #if defined(__LP64__)
202 atomic_fetch_sub_explicit(&cond->waiters, 1, memory_order_relaxed);
203 #endif
204
205 pthread_mutex_lock(mutex);
206
207 if (status == -ETIMEDOUT) {
208 return ETIMEDOUT;
209 }
210 return 0;
211 }
212
pthread_cond_broadcast(pthread_cond_t * cond_interface)213 int pthread_cond_broadcast(pthread_cond_t* cond_interface) {
214 return __pthread_cond_pulse(__get_internal_cond(cond_interface), INT_MAX);
215 }
216
pthread_cond_signal(pthread_cond_t * cond_interface)217 int pthread_cond_signal(pthread_cond_t* cond_interface) {
218 return __pthread_cond_pulse(__get_internal_cond(cond_interface), 1);
219 }
220
pthread_cond_wait(pthread_cond_t * cond_interface,pthread_mutex_t * mutex)221 int pthread_cond_wait(pthread_cond_t* cond_interface, pthread_mutex_t* mutex) {
222 pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
223 return __pthread_cond_timedwait(cond, mutex, false, nullptr);
224 }
225
pthread_cond_timedwait(pthread_cond_t * cond_interface,pthread_mutex_t * mutex,const timespec * abstime)226 int pthread_cond_timedwait(pthread_cond_t *cond_interface, pthread_mutex_t * mutex,
227 const timespec *abstime) {
228
229 pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
230 return __pthread_cond_timedwait(cond, mutex, cond->use_realtime_clock(), abstime);
231 }
232
pthread_cond_timedwait_monotonic_np(pthread_cond_t * cond_interface,pthread_mutex_t * mutex,const timespec * abs_timeout)233 extern "C" int pthread_cond_timedwait_monotonic_np(pthread_cond_t* cond_interface,
234 pthread_mutex_t* mutex,
235 const timespec* abs_timeout) {
236 return __pthread_cond_timedwait(__get_internal_cond(cond_interface), mutex, false, abs_timeout);
237 }
238
pthread_cond_clockwait(pthread_cond_t * cond_interface,pthread_mutex_t * mutex,clockid_t clock,const struct timespec * abs_timeout)239 int pthread_cond_clockwait(pthread_cond_t* cond_interface, pthread_mutex_t* mutex, clockid_t clock,
240 const struct timespec* abs_timeout) {
241 switch (clock) {
242 case CLOCK_MONOTONIC:
243 return pthread_cond_timedwait_monotonic_np(cond_interface, mutex, abs_timeout);
244 case CLOCK_REALTIME:
245 return __pthread_cond_timedwait(__get_internal_cond(cond_interface), mutex, true, abs_timeout);
246 default:
247 return EINVAL;
248 }
249 }
250
251 #if !defined(__LP64__)
252 // TODO: this exists only for backward binary compatibility on 32 bit platforms.
pthread_cond_timedwait_monotonic(pthread_cond_t * cond_interface,pthread_mutex_t * mutex,const timespec * abs_timeout)253 extern "C" int pthread_cond_timedwait_monotonic(pthread_cond_t* cond_interface,
254 pthread_mutex_t* mutex,
255 const timespec* abs_timeout) {
256 return pthread_cond_timedwait_monotonic_np(cond_interface, mutex, abs_timeout);
257 }
258
259 // Force this function using CLOCK_MONOTONIC because it was always using
260 // CLOCK_MONOTONIC in history.
pthread_cond_timedwait_relative_np(pthread_cond_t * cond_interface,pthread_mutex_t * mutex,const timespec * rel_timeout)261 extern "C" int pthread_cond_timedwait_relative_np(pthread_cond_t* cond_interface,
262 pthread_mutex_t* mutex,
263 const timespec* rel_timeout) {
264 timespec ts;
265 timespec* abs_timeout = nullptr;
266 if (rel_timeout != nullptr) {
267 absolute_timespec_from_timespec(ts, *rel_timeout, CLOCK_MONOTONIC);
268 abs_timeout = &ts;
269 }
270 return __pthread_cond_timedwait(__get_internal_cond(cond_interface), mutex, false, abs_timeout);
271 }
272
pthread_cond_timeout_np(pthread_cond_t * cond_interface,pthread_mutex_t * mutex,unsigned ms)273 extern "C" int pthread_cond_timeout_np(pthread_cond_t* cond_interface,
274 pthread_mutex_t* mutex, unsigned ms) {
275 timespec ts;
276 timespec_from_ms(ts, ms);
277 return pthread_cond_timedwait_relative_np(cond_interface, mutex, &ts);
278 }
279 #endif // !defined(__LP64__)
280