1 /*
2  * Copyright 2013 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors: Marek Olšák <maraeo@gmail.com>
24  *
25  */
26 
27 #include "r600_pipe_common.h"
28 #include "r600_cs.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "compiler/nir/nir.h"
31 #include "util/list.h"
32 #include "util/u_draw_quad.h"
33 #include "util/u_memory.h"
34 #include "util/format/u_format_s3tc.h"
35 #include "util/u_upload_mgr.h"
36 #include "util/os_time.h"
37 #include "vl/vl_decoder.h"
38 #include "vl/vl_video_buffer.h"
39 #include "radeon_video.h"
40 #include <inttypes.h>
41 #include <sys/utsname.h>
42 #include <stdlib.h>
43 
44 #ifdef LLVM_AVAILABLE
45 #include <llvm-c/TargetMachine.h>
46 #endif
47 
48 struct r600_multi_fence {
49 	struct pipe_reference reference;
50 	struct pipe_fence_handle *gfx;
51 	struct pipe_fence_handle *sdma;
52 
53 	/* If the context wasn't flushed at fence creation, this is non-NULL. */
54 	struct {
55 		struct r600_common_context *ctx;
56 		unsigned ib_index;
57 	} gfx_unflushed;
58 };
59 
60 /*
61  * pipe_context
62  */
63 
64 /**
65  * Write an EOP event.
66  *
67  * \param event		EVENT_TYPE_*
68  * \param event_flags	Optional cache flush flags (TC)
69  * \param data_sel	1 = fence, 3 = timestamp
70  * \param buf		Buffer
71  * \param va		GPU address
72  * \param old_value	Previous fence value (for a bug workaround)
73  * \param new_value	Fence value to write for this event.
74  */
r600_gfx_write_event_eop(struct r600_common_context * ctx,unsigned event,unsigned event_flags,unsigned data_sel,struct r600_resource * buf,uint64_t va,uint32_t new_fence,unsigned query_type)75 void r600_gfx_write_event_eop(struct r600_common_context *ctx,
76 			      unsigned event, unsigned event_flags,
77 			      unsigned data_sel,
78 			      struct r600_resource *buf, uint64_t va,
79 			      uint32_t new_fence, unsigned query_type)
80 {
81 	struct radeon_cmdbuf *cs = ctx->gfx.cs;
82 	unsigned op = EVENT_TYPE(event) |
83 		      EVENT_INDEX(5) |
84 		      event_flags;
85 	unsigned sel = EOP_DATA_SEL(data_sel);
86 
87 	radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
88 	radeon_emit(cs, op);
89 	radeon_emit(cs, va);
90 	radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
91 	radeon_emit(cs, new_fence); /* immediate data */
92 	radeon_emit(cs, 0); /* unused */
93 
94 	if (buf)
95 		r600_emit_reloc(ctx, &ctx->gfx, buf, RADEON_USAGE_WRITE,
96 				RADEON_PRIO_QUERY);
97 }
98 
r600_gfx_write_fence_dwords(struct r600_common_screen * screen)99 unsigned r600_gfx_write_fence_dwords(struct r600_common_screen *screen)
100 {
101 	unsigned dwords = 6;
102 
103 	if (!screen->info.r600_has_virtual_memory)
104 		dwords += 2;
105 
106 	return dwords;
107 }
108 
r600_gfx_wait_fence(struct r600_common_context * ctx,struct r600_resource * buf,uint64_t va,uint32_t ref,uint32_t mask)109 void r600_gfx_wait_fence(struct r600_common_context *ctx,
110 			 struct r600_resource *buf,
111 			 uint64_t va, uint32_t ref, uint32_t mask)
112 {
113 	struct radeon_cmdbuf *cs = ctx->gfx.cs;
114 
115 	radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
116 	radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1));
117 	radeon_emit(cs, va);
118 	radeon_emit(cs, va >> 32);
119 	radeon_emit(cs, ref); /* reference value */
120 	radeon_emit(cs, mask); /* mask */
121 	radeon_emit(cs, 4); /* poll interval */
122 
123 	if (buf)
124 		r600_emit_reloc(ctx, &ctx->gfx, buf, RADEON_USAGE_READ,
125 				RADEON_PRIO_QUERY);
126 }
127 
r600_draw_rectangle(struct blitter_context * blitter,void * vertex_elements_cso,blitter_get_vs_func get_vs,int x1,int y1,int x2,int y2,float depth,unsigned num_instances,enum blitter_attrib_type type,const union blitter_attrib * attrib)128 void r600_draw_rectangle(struct blitter_context *blitter,
129 			 void *vertex_elements_cso,
130 			 blitter_get_vs_func get_vs,
131 			 int x1, int y1, int x2, int y2,
132 			 float depth, unsigned num_instances,
133 			 enum blitter_attrib_type type,
134 			 const union blitter_attrib *attrib)
135 {
136 	struct r600_common_context *rctx =
137 		(struct r600_common_context*)util_blitter_get_pipe(blitter);
138 	struct pipe_viewport_state viewport;
139 	struct pipe_resource *buf = NULL;
140 	unsigned offset = 0;
141 	float *vb;
142 
143 	rctx->b.bind_vertex_elements_state(&rctx->b, vertex_elements_cso);
144 	rctx->b.bind_vs_state(&rctx->b, get_vs(blitter));
145 
146 	/* Some operations (like color resolve on r6xx) don't work
147 	 * with the conventional primitive types.
148 	 * One that works is PT_RECTLIST, which we use here. */
149 
150 	/* setup viewport */
151 	viewport.scale[0] = 1.0f;
152 	viewport.scale[1] = 1.0f;
153 	viewport.scale[2] = 1.0f;
154 	viewport.translate[0] = 0.0f;
155 	viewport.translate[1] = 0.0f;
156 	viewport.translate[2] = 0.0f;
157 	rctx->b.set_viewport_states(&rctx->b, 0, 1, &viewport);
158 
159 	/* Upload vertices. The hw rectangle has only 3 vertices,
160 	 * The 4th one is derived from the first 3.
161 	 * The vertex specification should match u_blitter's vertex element state. */
162 	u_upload_alloc(rctx->b.stream_uploader, 0, sizeof(float) * 24,
163 		       rctx->screen->info.tcc_cache_line_size,
164                        &offset, &buf, (void**)&vb);
165 	if (!buf)
166 		return;
167 
168 	vb[0] = x1;
169 	vb[1] = y1;
170 	vb[2] = depth;
171 	vb[3] = 1;
172 
173 	vb[8] = x1;
174 	vb[9] = y2;
175 	vb[10] = depth;
176 	vb[11] = 1;
177 
178 	vb[16] = x2;
179 	vb[17] = y1;
180 	vb[18] = depth;
181 	vb[19] = 1;
182 
183 	switch (type) {
184 	case UTIL_BLITTER_ATTRIB_COLOR:
185 		memcpy(vb+4, attrib->color, sizeof(float)*4);
186 		memcpy(vb+12, attrib->color, sizeof(float)*4);
187 		memcpy(vb+20, attrib->color, sizeof(float)*4);
188 		break;
189 	case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
190 	case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
191 		vb[6] = vb[14] = vb[22] = attrib->texcoord.z;
192 		vb[7] = vb[15] = vb[23] = attrib->texcoord.w;
193 		/* fall through */
194 		vb[4] = attrib->texcoord.x1;
195 		vb[5] = attrib->texcoord.y1;
196 		vb[12] = attrib->texcoord.x1;
197 		vb[13] = attrib->texcoord.y2;
198 		vb[20] = attrib->texcoord.x2;
199 		vb[21] = attrib->texcoord.y1;
200 		break;
201 	default:; /* Nothing to do. */
202 	}
203 
204 	/* draw */
205 	struct pipe_vertex_buffer vbuffer = {};
206 	vbuffer.buffer.resource = buf;
207 	vbuffer.stride = 2 * 4 * sizeof(float); /* vertex size */
208 	vbuffer.buffer_offset = offset;
209 
210 	rctx->b.set_vertex_buffers(&rctx->b, blitter->vb_slot, 1, &vbuffer);
211 	util_draw_arrays_instanced(&rctx->b, R600_PRIM_RECTANGLE_LIST, 0, 3,
212 				   0, num_instances);
213 	pipe_resource_reference(&buf, NULL);
214 }
215 
r600_dma_emit_wait_idle(struct r600_common_context * rctx)216 static void r600_dma_emit_wait_idle(struct r600_common_context *rctx)
217 {
218 	struct radeon_cmdbuf *cs = rctx->dma.cs;
219 
220 	if (rctx->chip_class >= EVERGREEN)
221 		radeon_emit(cs, 0xf0000000); /* NOP */
222 	else {
223 		/* TODO: R600-R700 should use the FENCE packet.
224 		 * CS checker support is required. */
225 	}
226 }
227 
r600_need_dma_space(struct r600_common_context * ctx,unsigned num_dw,struct r600_resource * dst,struct r600_resource * src)228 void r600_need_dma_space(struct r600_common_context *ctx, unsigned num_dw,
229                          struct r600_resource *dst, struct r600_resource *src)
230 {
231 	uint64_t vram = ctx->dma.cs->used_vram;
232 	uint64_t gtt = ctx->dma.cs->used_gart;
233 
234 	if (dst) {
235 		vram += dst->vram_usage;
236 		gtt += dst->gart_usage;
237 	}
238 	if (src) {
239 		vram += src->vram_usage;
240 		gtt += src->gart_usage;
241 	}
242 
243 	/* Flush the GFX IB if DMA depends on it. */
244 	if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
245 	    ((dst &&
246 	      ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, dst->buf,
247 					       RADEON_USAGE_READWRITE)) ||
248 	     (src &&
249 	      ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, src->buf,
250 					       RADEON_USAGE_WRITE))))
251 		ctx->gfx.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
252 
253 	/* Flush if there's not enough space, or if the memory usage per IB
254 	 * is too large.
255 	 *
256 	 * IBs using too little memory are limited by the IB submission overhead.
257 	 * IBs using too much memory are limited by the kernel/TTM overhead.
258 	 * Too long IBs create CPU-GPU pipeline bubbles and add latency.
259 	 *
260 	 * This heuristic makes sure that DMA requests are executed
261 	 * very soon after the call is made and lowers memory usage.
262 	 * It improves texture upload performance by keeping the DMA
263 	 * engine busy while uploads are being submitted.
264 	 */
265 	num_dw++; /* for emit_wait_idle below */
266 	if (!ctx->ws->cs_check_space(ctx->dma.cs, num_dw, false) ||
267 	    ctx->dma.cs->used_vram + ctx->dma.cs->used_gart > 64 * 1024 * 1024 ||
268 	    !radeon_cs_memory_below_limit(ctx->screen, ctx->dma.cs, vram, gtt)) {
269 		ctx->dma.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
270 		assert((num_dw + ctx->dma.cs->current.cdw) <= ctx->dma.cs->current.max_dw);
271 	}
272 
273 	/* Wait for idle if either buffer has been used in the IB before to
274 	 * prevent read-after-write hazards.
275 	 */
276 	if ((dst &&
277 	     ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, dst->buf,
278 					      RADEON_USAGE_READWRITE)) ||
279 	    (src &&
280 	     ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, src->buf,
281 					      RADEON_USAGE_WRITE)))
282 		r600_dma_emit_wait_idle(ctx);
283 
284 	/* If GPUVM is not supported, the CS checker needs 2 entries
285 	 * in the buffer list per packet, which has to be done manually.
286 	 */
287 	if (ctx->screen->info.r600_has_virtual_memory) {
288 		if (dst)
289 			radeon_add_to_buffer_list(ctx, &ctx->dma, dst,
290 						  RADEON_USAGE_WRITE, 0);
291 		if (src)
292 			radeon_add_to_buffer_list(ctx, &ctx->dma, src,
293 						  RADEON_USAGE_READ, 0);
294 	}
295 
296 	/* this function is called before all DMA calls, so increment this. */
297 	ctx->num_dma_calls++;
298 }
299 
r600_preflush_suspend_features(struct r600_common_context * ctx)300 void r600_preflush_suspend_features(struct r600_common_context *ctx)
301 {
302 	/* suspend queries */
303 	if (!list_is_empty(&ctx->active_queries))
304 		r600_suspend_queries(ctx);
305 
306 	ctx->streamout.suspended = false;
307 	if (ctx->streamout.begin_emitted) {
308 		r600_emit_streamout_end(ctx);
309 		ctx->streamout.suspended = true;
310 	}
311 }
312 
r600_postflush_resume_features(struct r600_common_context * ctx)313 void r600_postflush_resume_features(struct r600_common_context *ctx)
314 {
315 	if (ctx->streamout.suspended) {
316 		ctx->streamout.append_bitmask = ctx->streamout.enabled_mask;
317 		r600_streamout_buffers_dirty(ctx);
318 	}
319 
320 	/* resume queries */
321 	if (!list_is_empty(&ctx->active_queries))
322 		r600_resume_queries(ctx);
323 }
324 
r600_fence_server_sync(struct pipe_context * ctx,struct pipe_fence_handle * fence)325 static void r600_fence_server_sync(struct pipe_context *ctx,
326 				   struct pipe_fence_handle *fence)
327 {
328 	/* radeon synchronizes all rings by default and will not implement
329 	 * fence imports.
330 	 */
331 }
332 
r600_flush_from_st(struct pipe_context * ctx,struct pipe_fence_handle ** fence,unsigned flags)333 static void r600_flush_from_st(struct pipe_context *ctx,
334 			       struct pipe_fence_handle **fence,
335 			       unsigned flags)
336 {
337 	struct pipe_screen *screen = ctx->screen;
338 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
339 	struct radeon_winsys *ws = rctx->ws;
340 	struct pipe_fence_handle *gfx_fence = NULL;
341 	struct pipe_fence_handle *sdma_fence = NULL;
342 	bool deferred_fence = false;
343 	unsigned rflags = PIPE_FLUSH_ASYNC;
344 
345 	if (flags & PIPE_FLUSH_END_OF_FRAME)
346 		rflags |= PIPE_FLUSH_END_OF_FRAME;
347 
348 	/* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
349 	if (rctx->dma.cs)
350 		rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL);
351 
352 	if (!radeon_emitted(rctx->gfx.cs, rctx->initial_gfx_cs_size)) {
353 		if (fence)
354 			ws->fence_reference(&gfx_fence, rctx->last_gfx_fence);
355 		if (!(flags & PIPE_FLUSH_DEFERRED))
356 			ws->cs_sync_flush(rctx->gfx.cs);
357 	} else {
358 		/* Instead of flushing, create a deferred fence. Constraints:
359 		 * - the gallium frontend must allow a deferred flush.
360 		 * - the gallium frontend must request a fence.
361 		 * Thread safety in fence_finish must be ensured by the gallium frontend.
362 		 */
363 		if (flags & PIPE_FLUSH_DEFERRED && fence) {
364 			gfx_fence = rctx->ws->cs_get_next_fence(rctx->gfx.cs);
365 			deferred_fence = true;
366 		} else {
367 			rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL);
368 		}
369 	}
370 
371 	/* Both engines can signal out of order, so we need to keep both fences. */
372 	if (fence) {
373 		struct r600_multi_fence *multi_fence =
374 			CALLOC_STRUCT(r600_multi_fence);
375 		if (!multi_fence) {
376 			ws->fence_reference(&sdma_fence, NULL);
377 			ws->fence_reference(&gfx_fence, NULL);
378 			goto finish;
379 		}
380 
381 		multi_fence->reference.count = 1;
382 		/* If both fences are NULL, fence_finish will always return true. */
383 		multi_fence->gfx = gfx_fence;
384 		multi_fence->sdma = sdma_fence;
385 
386 		if (deferred_fence) {
387 			multi_fence->gfx_unflushed.ctx = rctx;
388 			multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes;
389 		}
390 
391 		screen->fence_reference(screen, fence, NULL);
392 		*fence = (struct pipe_fence_handle*)multi_fence;
393 	}
394 finish:
395 	if (!(flags & PIPE_FLUSH_DEFERRED)) {
396 		if (rctx->dma.cs)
397 			ws->cs_sync_flush(rctx->dma.cs);
398 		ws->cs_sync_flush(rctx->gfx.cs);
399 	}
400 }
401 
r600_flush_dma_ring(void * ctx,unsigned flags,struct pipe_fence_handle ** fence)402 static void r600_flush_dma_ring(void *ctx, unsigned flags,
403 				struct pipe_fence_handle **fence)
404 {
405 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
406 	struct radeon_cmdbuf *cs = rctx->dma.cs;
407 	struct radeon_saved_cs saved;
408 	bool check_vm =
409 		(rctx->screen->debug_flags & DBG_CHECK_VM) &&
410 		rctx->check_vm_faults;
411 
412 	if (!radeon_emitted(cs, 0)) {
413 		if (fence)
414 			rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
415 		return;
416 	}
417 
418 	if (check_vm)
419 		radeon_save_cs(rctx->ws, cs, &saved, true);
420 
421 	rctx->ws->cs_flush(cs, flags, &rctx->last_sdma_fence);
422 	if (fence)
423 		rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
424 
425 	if (check_vm) {
426 		/* Use conservative timeout 800ms, after which we won't wait any
427 		 * longer and assume the GPU is hung.
428 		 */
429 		rctx->ws->fence_wait(rctx->ws, rctx->last_sdma_fence, 800*1000*1000);
430 
431 		rctx->check_vm_faults(rctx, &saved, RING_DMA);
432 		radeon_clear_saved_cs(&saved);
433 	}
434 }
435 
436 /**
437  * Store a linearized copy of all chunks of \p cs together with the buffer
438  * list in \p saved.
439  */
radeon_save_cs(struct radeon_winsys * ws,struct radeon_cmdbuf * cs,struct radeon_saved_cs * saved,bool get_buffer_list)440 void radeon_save_cs(struct radeon_winsys *ws, struct radeon_cmdbuf *cs,
441 		    struct radeon_saved_cs *saved, bool get_buffer_list)
442 {
443 	uint32_t *buf;
444 	unsigned i;
445 
446 	/* Save the IB chunks. */
447 	saved->num_dw = cs->prev_dw + cs->current.cdw;
448 	saved->ib = MALLOC(4 * saved->num_dw);
449 	if (!saved->ib)
450 		goto oom;
451 
452 	buf = saved->ib;
453 	for (i = 0; i < cs->num_prev; ++i) {
454 		memcpy(buf, cs->prev[i].buf, cs->prev[i].cdw * 4);
455 		buf += cs->prev[i].cdw;
456 	}
457 	memcpy(buf, cs->current.buf, cs->current.cdw * 4);
458 
459 	if (!get_buffer_list)
460 		return;
461 
462 	/* Save the buffer list. */
463 	saved->bo_count = ws->cs_get_buffer_list(cs, NULL);
464 	saved->bo_list = CALLOC(saved->bo_count,
465 				sizeof(saved->bo_list[0]));
466 	if (!saved->bo_list) {
467 		FREE(saved->ib);
468 		goto oom;
469 	}
470 	ws->cs_get_buffer_list(cs, saved->bo_list);
471 
472 	return;
473 
474 oom:
475 	fprintf(stderr, "%s: out of memory\n", __func__);
476 	memset(saved, 0, sizeof(*saved));
477 }
478 
radeon_clear_saved_cs(struct radeon_saved_cs * saved)479 void radeon_clear_saved_cs(struct radeon_saved_cs *saved)
480 {
481 	FREE(saved->ib);
482 	FREE(saved->bo_list);
483 
484 	memset(saved, 0, sizeof(*saved));
485 }
486 
r600_get_reset_status(struct pipe_context * ctx)487 static enum pipe_reset_status r600_get_reset_status(struct pipe_context *ctx)
488 {
489 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
490 
491 	return rctx->ws->ctx_query_reset_status(rctx->ctx);
492 }
493 
r600_set_debug_callback(struct pipe_context * ctx,const struct pipe_debug_callback * cb)494 static void r600_set_debug_callback(struct pipe_context *ctx,
495 				    const struct pipe_debug_callback *cb)
496 {
497 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
498 
499 	if (cb)
500 		rctx->debug = *cb;
501 	else
502 		memset(&rctx->debug, 0, sizeof(rctx->debug));
503 }
504 
r600_set_device_reset_callback(struct pipe_context * ctx,const struct pipe_device_reset_callback * cb)505 static void r600_set_device_reset_callback(struct pipe_context *ctx,
506 					   const struct pipe_device_reset_callback *cb)
507 {
508 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
509 
510 	if (cb)
511 		rctx->device_reset_callback = *cb;
512 	else
513 		memset(&rctx->device_reset_callback, 0,
514 		       sizeof(rctx->device_reset_callback));
515 }
516 
r600_check_device_reset(struct r600_common_context * rctx)517 bool r600_check_device_reset(struct r600_common_context *rctx)
518 {
519 	enum pipe_reset_status status;
520 
521 	if (!rctx->device_reset_callback.reset)
522 		return false;
523 
524 	if (!rctx->b.get_device_reset_status)
525 		return false;
526 
527 	status = rctx->b.get_device_reset_status(&rctx->b);
528 	if (status == PIPE_NO_RESET)
529 		return false;
530 
531 	rctx->device_reset_callback.reset(rctx->device_reset_callback.data, status);
532 	return true;
533 }
534 
r600_dma_clear_buffer_fallback(struct pipe_context * ctx,struct pipe_resource * dst,uint64_t offset,uint64_t size,unsigned value)535 static void r600_dma_clear_buffer_fallback(struct pipe_context *ctx,
536 					   struct pipe_resource *dst,
537 					   uint64_t offset, uint64_t size,
538 					   unsigned value)
539 {
540 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
541 
542 	rctx->clear_buffer(ctx, dst, offset, size, value, R600_COHERENCY_NONE);
543 }
544 
r600_resource_commit(struct pipe_context * pctx,struct pipe_resource * resource,unsigned level,struct pipe_box * box,bool commit)545 static bool r600_resource_commit(struct pipe_context *pctx,
546 				 struct pipe_resource *resource,
547 				 unsigned level, struct pipe_box *box,
548 				 bool commit)
549 {
550 	struct r600_common_context *ctx = (struct r600_common_context *)pctx;
551 	struct r600_resource *res = r600_resource(resource);
552 
553 	/*
554 	 * Since buffer commitment changes cannot be pipelined, we need to
555 	 * (a) flush any pending commands that refer to the buffer we're about
556 	 *     to change, and
557 	 * (b) wait for threaded submit to finish, including those that were
558 	 *     triggered by some other, earlier operation.
559 	 */
560 	if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
561 	    ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs,
562 					     res->buf, RADEON_USAGE_READWRITE)) {
563 		ctx->gfx.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
564 	}
565 	if (radeon_emitted(ctx->dma.cs, 0) &&
566 	    ctx->ws->cs_is_buffer_referenced(ctx->dma.cs,
567 					     res->buf, RADEON_USAGE_READWRITE)) {
568 		ctx->dma.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
569 	}
570 
571 	ctx->ws->cs_sync_flush(ctx->dma.cs);
572 	ctx->ws->cs_sync_flush(ctx->gfx.cs);
573 
574 	assert(resource->target == PIPE_BUFFER);
575 
576 	return ctx->ws->buffer_commit(res->buf, box->x, box->width, commit);
577 }
578 
r600_common_context_init(struct r600_common_context * rctx,struct r600_common_screen * rscreen,unsigned context_flags)579 bool r600_common_context_init(struct r600_common_context *rctx,
580 			      struct r600_common_screen *rscreen,
581 			      unsigned context_flags)
582 {
583 	slab_create_child(&rctx->pool_transfers, &rscreen->pool_transfers);
584 	slab_create_child(&rctx->pool_transfers_unsync, &rscreen->pool_transfers);
585 
586 	rctx->screen = rscreen;
587 	rctx->ws = rscreen->ws;
588 	rctx->family = rscreen->family;
589 	rctx->chip_class = rscreen->chip_class;
590 
591 	rctx->b.invalidate_resource = r600_invalidate_resource;
592 	rctx->b.resource_commit = r600_resource_commit;
593 	rctx->b.transfer_map = u_transfer_map_vtbl;
594 	rctx->b.transfer_flush_region = u_transfer_flush_region_vtbl;
595 	rctx->b.transfer_unmap = u_transfer_unmap_vtbl;
596 	rctx->b.texture_subdata = u_default_texture_subdata;
597 	rctx->b.flush = r600_flush_from_st;
598 	rctx->b.set_debug_callback = r600_set_debug_callback;
599 	rctx->b.fence_server_sync = r600_fence_server_sync;
600 	rctx->dma_clear_buffer = r600_dma_clear_buffer_fallback;
601 
602 	/* evergreen_compute.c has a special codepath for global buffers.
603 	 * Everything else can use the direct path.
604 	 */
605 	if ((rscreen->chip_class == EVERGREEN || rscreen->chip_class == CAYMAN) &&
606 	    (context_flags & PIPE_CONTEXT_COMPUTE_ONLY))
607 		rctx->b.buffer_subdata = u_default_buffer_subdata;
608 	else
609 		rctx->b.buffer_subdata = r600_buffer_subdata;
610 
611 	rctx->b.get_device_reset_status = r600_get_reset_status;
612 	rctx->b.set_device_reset_callback = r600_set_device_reset_callback;
613 
614 	r600_init_context_texture_functions(rctx);
615 	r600_init_viewport_functions(rctx);
616 	r600_streamout_init(rctx);
617 	r600_query_init(rctx);
618 	cayman_init_msaa(&rctx->b);
619 
620 	rctx->allocator_zeroed_memory =
621 		u_suballocator_create(&rctx->b, rscreen->info.gart_page_size,
622 				      0, PIPE_USAGE_DEFAULT, 0, true);
623 	if (!rctx->allocator_zeroed_memory)
624 		return false;
625 
626 	rctx->b.stream_uploader = u_upload_create(&rctx->b, 1024 * 1024,
627 						  0, PIPE_USAGE_STREAM, 0);
628 	if (!rctx->b.stream_uploader)
629 		return false;
630 
631 	rctx->b.const_uploader = u_upload_create(&rctx->b, 128 * 1024,
632 						 0, PIPE_USAGE_DEFAULT, 0);
633 	if (!rctx->b.const_uploader)
634 		return false;
635 
636 	rctx->ctx = rctx->ws->ctx_create(rctx->ws);
637 	if (!rctx->ctx)
638 		return false;
639 
640 	if (rscreen->info.num_rings[RING_DMA] && !(rscreen->debug_flags & DBG_NO_ASYNC_DMA)) {
641 		rctx->dma.cs = rctx->ws->cs_create(rctx->ctx, RING_DMA,
642 						   r600_flush_dma_ring,
643 						   rctx, false);
644 		rctx->dma.flush = r600_flush_dma_ring;
645 	}
646 
647 	return true;
648 }
649 
r600_common_context_cleanup(struct r600_common_context * rctx)650 void r600_common_context_cleanup(struct r600_common_context *rctx)
651 {
652 	if (rctx->query_result_shader)
653 		rctx->b.delete_compute_state(&rctx->b, rctx->query_result_shader);
654 
655 	if (rctx->gfx.cs)
656 		rctx->ws->cs_destroy(rctx->gfx.cs);
657 	if (rctx->dma.cs)
658 		rctx->ws->cs_destroy(rctx->dma.cs);
659 	if (rctx->ctx)
660 		rctx->ws->ctx_destroy(rctx->ctx);
661 
662 	if (rctx->b.stream_uploader)
663 		u_upload_destroy(rctx->b.stream_uploader);
664 	if (rctx->b.const_uploader)
665 		u_upload_destroy(rctx->b.const_uploader);
666 
667 	slab_destroy_child(&rctx->pool_transfers);
668 	slab_destroy_child(&rctx->pool_transfers_unsync);
669 
670 	if (rctx->allocator_zeroed_memory) {
671 		u_suballocator_destroy(rctx->allocator_zeroed_memory);
672 	}
673 	rctx->ws->fence_reference(&rctx->last_gfx_fence, NULL);
674 	rctx->ws->fence_reference(&rctx->last_sdma_fence, NULL);
675 	r600_resource_reference(&rctx->eop_bug_scratch, NULL);
676 }
677 
678 /*
679  * pipe_screen
680  */
681 
682 static const struct debug_named_value common_debug_options[] = {
683 	/* logging */
684 	{ "tex", DBG_TEX, "Print texture info" },
685 	{ "nir", DBG_NIR, "Enable experimental NIR shaders" },
686 	{ "compute", DBG_COMPUTE, "Print compute info" },
687 	{ "vm", DBG_VM, "Print virtual addresses when creating resources" },
688 	{ "info", DBG_INFO, "Print driver information" },
689 
690 	/* shaders */
691 	{ "fs", DBG_FS, "Print fetch shaders" },
692 	{ "vs", DBG_VS, "Print vertex shaders" },
693 	{ "gs", DBG_GS, "Print geometry shaders" },
694 	{ "ps", DBG_PS, "Print pixel shaders" },
695 	{ "cs", DBG_CS, "Print compute shaders" },
696 	{ "tcs", DBG_TCS, "Print tessellation control shaders" },
697 	{ "tes", DBG_TES, "Print tessellation evaluation shaders" },
698 	{ "noir", DBG_NO_IR, "Don't print the LLVM IR"},
699 	{ "notgsi", DBG_NO_TGSI, "Don't print the TGSI"},
700 	{ "noasm", DBG_NO_ASM, "Don't print disassembled shaders"},
701 	{ "preoptir", DBG_PREOPT_IR, "Print the LLVM IR before initial optimizations" },
702 	{ "checkir", DBG_CHECK_IR, "Enable additional sanity checks on shader IR" },
703 	{ "nooptvariant", DBG_NO_OPT_VARIANT, "Disable compiling optimized shader variants." },
704 
705 	{ "testdma", DBG_TEST_DMA, "Invoke SDMA tests and exit." },
706 	{ "testvmfaultcp", DBG_TEST_VMFAULT_CP, "Invoke a CP VM fault test and exit." },
707 	{ "testvmfaultsdma", DBG_TEST_VMFAULT_SDMA, "Invoke a SDMA VM fault test and exit." },
708 	{ "testvmfaultshader", DBG_TEST_VMFAULT_SHADER, "Invoke a shader VM fault test and exit." },
709 
710 	/* features */
711 	{ "nodma", DBG_NO_ASYNC_DMA, "Disable asynchronous DMA" },
712 	{ "nohyperz", DBG_NO_HYPERZ, "Disable Hyper-Z" },
713 	/* GL uses the word INVALIDATE, gallium uses the word DISCARD */
714 	{ "noinvalrange", DBG_NO_DISCARD_RANGE, "Disable handling of INVALIDATE_RANGE map flags" },
715 	{ "no2d", DBG_NO_2D_TILING, "Disable 2D tiling" },
716 	{ "notiling", DBG_NO_TILING, "Disable tiling" },
717 	{ "switch_on_eop", DBG_SWITCH_ON_EOP, "Program WD/IA to switch on end-of-packet." },
718 	{ "forcedma", DBG_FORCE_DMA, "Use asynchronous DMA for all operations when possible." },
719 	{ "precompile", DBG_PRECOMPILE, "Compile one shader variant at shader creation." },
720 	{ "nowc", DBG_NO_WC, "Disable GTT write combining" },
721 	{ "check_vm", DBG_CHECK_VM, "Check VM faults and dump debug info." },
722 	{ "unsafemath", DBG_UNSAFE_MATH, "Enable unsafe math shader optimizations" },
723 
724 	DEBUG_NAMED_VALUE_END /* must be last */
725 };
726 
r600_get_vendor(struct pipe_screen * pscreen)727 static const char* r600_get_vendor(struct pipe_screen* pscreen)
728 {
729 	return "X.Org";
730 }
731 
r600_get_device_vendor(struct pipe_screen * pscreen)732 static const char* r600_get_device_vendor(struct pipe_screen* pscreen)
733 {
734 	return "AMD";
735 }
736 
r600_get_family_name(const struct r600_common_screen * rscreen)737 static const char *r600_get_family_name(const struct r600_common_screen *rscreen)
738 {
739 	switch (rscreen->info.family) {
740 	case CHIP_R600: return "AMD R600";
741 	case CHIP_RV610: return "AMD RV610";
742 	case CHIP_RV630: return "AMD RV630";
743 	case CHIP_RV670: return "AMD RV670";
744 	case CHIP_RV620: return "AMD RV620";
745 	case CHIP_RV635: return "AMD RV635";
746 	case CHIP_RS780: return "AMD RS780";
747 	case CHIP_RS880: return "AMD RS880";
748 	case CHIP_RV770: return "AMD RV770";
749 	case CHIP_RV730: return "AMD RV730";
750 	case CHIP_RV710: return "AMD RV710";
751 	case CHIP_RV740: return "AMD RV740";
752 	case CHIP_CEDAR: return "AMD CEDAR";
753 	case CHIP_REDWOOD: return "AMD REDWOOD";
754 	case CHIP_JUNIPER: return "AMD JUNIPER";
755 	case CHIP_CYPRESS: return "AMD CYPRESS";
756 	case CHIP_HEMLOCK: return "AMD HEMLOCK";
757 	case CHIP_PALM: return "AMD PALM";
758 	case CHIP_SUMO: return "AMD SUMO";
759 	case CHIP_SUMO2: return "AMD SUMO2";
760 	case CHIP_BARTS: return "AMD BARTS";
761 	case CHIP_TURKS: return "AMD TURKS";
762 	case CHIP_CAICOS: return "AMD CAICOS";
763 	case CHIP_CAYMAN: return "AMD CAYMAN";
764 	case CHIP_ARUBA: return "AMD ARUBA";
765 	default: return "AMD unknown";
766 	}
767 }
768 
r600_disk_cache_create(struct r600_common_screen * rscreen)769 static void r600_disk_cache_create(struct r600_common_screen *rscreen)
770 {
771 	/* Don't use the cache if shader dumping is enabled. */
772 	if (rscreen->debug_flags & DBG_ALL_SHADERS)
773 		return;
774 
775 	struct mesa_sha1 ctx;
776 	unsigned char sha1[20];
777 	char cache_id[20 * 2 + 1];
778 
779 	_mesa_sha1_init(&ctx);
780 	if (!disk_cache_get_function_identifier(r600_disk_cache_create,
781 						&ctx))
782 		return;
783 
784 	_mesa_sha1_final(&ctx, sha1);
785 	disk_cache_format_hex_id(cache_id, sha1, 20 * 2);
786 
787 	/* These flags affect shader compilation. */
788 	uint64_t shader_debug_flags =
789 		rscreen->debug_flags &
790 		(DBG_FS_CORRECT_DERIVS_AFTER_KILL |
791 		 DBG_UNSAFE_MATH);
792 
793 	rscreen->disk_shader_cache =
794 		disk_cache_create(r600_get_family_name(rscreen),
795 				  cache_id,
796 				  shader_debug_flags);
797 }
798 
r600_get_disk_shader_cache(struct pipe_screen * pscreen)799 static struct disk_cache *r600_get_disk_shader_cache(struct pipe_screen *pscreen)
800 {
801 	struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
802 	return rscreen->disk_shader_cache;
803 }
804 
r600_get_name(struct pipe_screen * pscreen)805 static const char* r600_get_name(struct pipe_screen* pscreen)
806 {
807 	struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
808 
809 	return rscreen->renderer_string;
810 }
811 
r600_get_paramf(struct pipe_screen * pscreen,enum pipe_capf param)812 static float r600_get_paramf(struct pipe_screen* pscreen,
813 			     enum pipe_capf param)
814 {
815 	switch (param) {
816 	case PIPE_CAPF_MAX_LINE_WIDTH:
817 	case PIPE_CAPF_MAX_LINE_WIDTH_AA:
818 	case PIPE_CAPF_MAX_POINT_WIDTH:
819 	case PIPE_CAPF_MAX_POINT_WIDTH_AA:
820          return 8191.0f;
821 	case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
822 		return 16.0f;
823 	case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
824 		return 16.0f;
825     case PIPE_CAPF_MIN_CONSERVATIVE_RASTER_DILATE:
826     case PIPE_CAPF_MAX_CONSERVATIVE_RASTER_DILATE:
827     case PIPE_CAPF_CONSERVATIVE_RASTER_DILATE_GRANULARITY:
828         return 0.0f;
829 	}
830 	return 0.0f;
831 }
832 
r600_get_video_param(struct pipe_screen * screen,enum pipe_video_profile profile,enum pipe_video_entrypoint entrypoint,enum pipe_video_cap param)833 static int r600_get_video_param(struct pipe_screen *screen,
834 				enum pipe_video_profile profile,
835 				enum pipe_video_entrypoint entrypoint,
836 				enum pipe_video_cap param)
837 {
838 	switch (param) {
839 	case PIPE_VIDEO_CAP_SUPPORTED:
840 		return vl_profile_supported(screen, profile, entrypoint);
841 	case PIPE_VIDEO_CAP_NPOT_TEXTURES:
842 		return 1;
843 	case PIPE_VIDEO_CAP_MAX_WIDTH:
844 	case PIPE_VIDEO_CAP_MAX_HEIGHT:
845 		return vl_video_buffer_max_size(screen);
846 	case PIPE_VIDEO_CAP_PREFERED_FORMAT:
847 		return PIPE_FORMAT_NV12;
848 	case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
849 		return false;
850 	case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED:
851 		return false;
852 	case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
853 		return true;
854 	case PIPE_VIDEO_CAP_MAX_LEVEL:
855 		return vl_level_supported(screen, profile);
856 	default:
857 		return 0;
858 	}
859 }
860 
r600_get_llvm_processor_name(enum radeon_family family)861 const char *r600_get_llvm_processor_name(enum radeon_family family)
862 {
863 	switch (family) {
864 	case CHIP_R600:
865 	case CHIP_RV630:
866 	case CHIP_RV635:
867 	case CHIP_RV670:
868 		return "r600";
869 	case CHIP_RV610:
870 	case CHIP_RV620:
871 	case CHIP_RS780:
872 	case CHIP_RS880:
873 		return "rs880";
874 	case CHIP_RV710:
875 		return "rv710";
876 	case CHIP_RV730:
877 		return "rv730";
878 	case CHIP_RV740:
879 	case CHIP_RV770:
880 		return "rv770";
881 	case CHIP_PALM:
882 	case CHIP_CEDAR:
883 		return "cedar";
884 	case CHIP_SUMO:
885 	case CHIP_SUMO2:
886 		return "sumo";
887 	case CHIP_REDWOOD:
888 		return "redwood";
889 	case CHIP_JUNIPER:
890 		return "juniper";
891 	case CHIP_HEMLOCK:
892 	case CHIP_CYPRESS:
893 		return "cypress";
894 	case CHIP_BARTS:
895 		return "barts";
896 	case CHIP_TURKS:
897 		return "turks";
898 	case CHIP_CAICOS:
899 		return "caicos";
900 	case CHIP_CAYMAN:
901         case CHIP_ARUBA:
902 		return "cayman";
903 
904 	default:
905 		return "";
906 	}
907 }
908 
get_max_threads_per_block(struct r600_common_screen * screen,enum pipe_shader_ir ir_type)909 static unsigned get_max_threads_per_block(struct r600_common_screen *screen,
910 					  enum pipe_shader_ir ir_type)
911 {
912 	if (ir_type != PIPE_SHADER_IR_TGSI &&
913 	    ir_type != PIPE_SHADER_IR_NIR)
914 		return 256;
915 	if (screen->chip_class >= EVERGREEN)
916 		return 1024;
917 	return 256;
918 }
919 
r600_get_compute_param(struct pipe_screen * screen,enum pipe_shader_ir ir_type,enum pipe_compute_cap param,void * ret)920 static int r600_get_compute_param(struct pipe_screen *screen,
921         enum pipe_shader_ir ir_type,
922         enum pipe_compute_cap param,
923         void *ret)
924 {
925 	struct r600_common_screen *rscreen = (struct r600_common_screen *)screen;
926 
927 	//TODO: select these params by asic
928 	switch (param) {
929 	case PIPE_COMPUTE_CAP_IR_TARGET: {
930 		const char *gpu;
931 		const char *triple = "r600--";
932 		gpu = r600_get_llvm_processor_name(rscreen->family);
933 		if (ret) {
934 			sprintf(ret, "%s-%s", gpu, triple);
935 		}
936 		/* +2 for dash and terminating NIL byte */
937 		return (strlen(triple) + strlen(gpu) + 2) * sizeof(char);
938 	}
939 	case PIPE_COMPUTE_CAP_GRID_DIMENSION:
940 		if (ret) {
941 			uint64_t *grid_dimension = ret;
942 			grid_dimension[0] = 3;
943 		}
944 		return 1 * sizeof(uint64_t);
945 
946 	case PIPE_COMPUTE_CAP_MAX_GRID_SIZE:
947 		if (ret) {
948 			uint64_t *grid_size = ret;
949 			grid_size[0] = 65535;
950 			grid_size[1] = 65535;
951 			grid_size[2] = 65535;
952 		}
953 		return 3 * sizeof(uint64_t) ;
954 
955 	case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE:
956 		if (ret) {
957 			uint64_t *block_size = ret;
958 			unsigned threads_per_block = get_max_threads_per_block(rscreen, ir_type);
959 			block_size[0] = threads_per_block;
960 			block_size[1] = threads_per_block;
961 			block_size[2] = threads_per_block;
962 		}
963 		return 3 * sizeof(uint64_t);
964 
965 	case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK:
966 		if (ret) {
967 			uint64_t *max_threads_per_block = ret;
968 			*max_threads_per_block = get_max_threads_per_block(rscreen, ir_type);
969 		}
970 		return sizeof(uint64_t);
971 	case PIPE_COMPUTE_CAP_ADDRESS_BITS:
972 		if (ret) {
973 			uint32_t *address_bits = ret;
974 			address_bits[0] = 32;
975 		}
976 		return 1 * sizeof(uint32_t);
977 
978 	case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE:
979 		if (ret) {
980 			uint64_t *max_global_size = ret;
981 			uint64_t max_mem_alloc_size;
982 
983 			r600_get_compute_param(screen, ir_type,
984 				PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE,
985 				&max_mem_alloc_size);
986 
987 			/* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least
988 			 * 1/4 of the MAX_GLOBAL_SIZE.  Since the
989 			 * MAX_MEM_ALLOC_SIZE is fixed for older kernels,
990 			 * make sure we never report more than
991 			 * 4 * MAX_MEM_ALLOC_SIZE.
992 			 */
993 			*max_global_size = MIN2(4 * max_mem_alloc_size,
994 						MAX2(rscreen->info.gart_size,
995 						     rscreen->info.vram_size));
996 		}
997 		return sizeof(uint64_t);
998 
999 	case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE:
1000 		if (ret) {
1001 			uint64_t *max_local_size = ret;
1002 			/* Value reported by the closed source driver. */
1003 			*max_local_size = 32768;
1004 		}
1005 		return sizeof(uint64_t);
1006 
1007 	case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE:
1008 		if (ret) {
1009 			uint64_t *max_input_size = ret;
1010 			/* Value reported by the closed source driver. */
1011 			*max_input_size = 1024;
1012 		}
1013 		return sizeof(uint64_t);
1014 
1015 	case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE:
1016 		if (ret) {
1017 			uint64_t *max_mem_alloc_size = ret;
1018 
1019 			*max_mem_alloc_size = rscreen->info.max_alloc_size;
1020 		}
1021 		return sizeof(uint64_t);
1022 
1023 	case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY:
1024 		if (ret) {
1025 			uint32_t *max_clock_frequency = ret;
1026 			*max_clock_frequency = rscreen->info.max_shader_clock;
1027 		}
1028 		return sizeof(uint32_t);
1029 
1030 	case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS:
1031 		if (ret) {
1032 			uint32_t *max_compute_units = ret;
1033 			*max_compute_units = rscreen->info.num_good_compute_units;
1034 		}
1035 		return sizeof(uint32_t);
1036 
1037 	case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED:
1038 		if (ret) {
1039 			uint32_t *images_supported = ret;
1040 			*images_supported = 0;
1041 		}
1042 		return sizeof(uint32_t);
1043 	case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE:
1044 		break; /* unused */
1045 	case PIPE_COMPUTE_CAP_SUBGROUP_SIZE:
1046 		if (ret) {
1047 			uint32_t *subgroup_size = ret;
1048 			*subgroup_size = r600_wavefront_size(rscreen->family);
1049 		}
1050 		return sizeof(uint32_t);
1051 	case PIPE_COMPUTE_CAP_MAX_VARIABLE_THREADS_PER_BLOCK:
1052 		if (ret) {
1053 			uint64_t *max_variable_threads_per_block = ret;
1054 			*max_variable_threads_per_block = 0;
1055 		}
1056 		return sizeof(uint64_t);
1057 	}
1058 
1059         fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param);
1060         return 0;
1061 }
1062 
r600_get_timestamp(struct pipe_screen * screen)1063 static uint64_t r600_get_timestamp(struct pipe_screen *screen)
1064 {
1065 	struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1066 
1067 	return 1000000 * rscreen->ws->query_value(rscreen->ws, RADEON_TIMESTAMP) /
1068 			rscreen->info.clock_crystal_freq;
1069 }
1070 
r600_fence_reference(struct pipe_screen * screen,struct pipe_fence_handle ** dst,struct pipe_fence_handle * src)1071 static void r600_fence_reference(struct pipe_screen *screen,
1072 				 struct pipe_fence_handle **dst,
1073 				 struct pipe_fence_handle *src)
1074 {
1075 	struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
1076 	struct r600_multi_fence **rdst = (struct r600_multi_fence **)dst;
1077 	struct r600_multi_fence *rsrc = (struct r600_multi_fence *)src;
1078 
1079 	if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
1080 		ws->fence_reference(&(*rdst)->gfx, NULL);
1081 		ws->fence_reference(&(*rdst)->sdma, NULL);
1082 		FREE(*rdst);
1083 	}
1084         *rdst = rsrc;
1085 }
1086 
r600_fence_finish(struct pipe_screen * screen,struct pipe_context * ctx,struct pipe_fence_handle * fence,uint64_t timeout)1087 static bool r600_fence_finish(struct pipe_screen *screen,
1088 			      struct pipe_context *ctx,
1089 			      struct pipe_fence_handle *fence,
1090 			      uint64_t timeout)
1091 {
1092 	struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws;
1093 	struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence;
1094 	struct r600_common_context *rctx;
1095 	int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
1096 
1097 	ctx = threaded_context_unwrap_sync(ctx);
1098 	rctx = ctx ? (struct r600_common_context*)ctx : NULL;
1099 
1100 	if (rfence->sdma) {
1101 		if (!rws->fence_wait(rws, rfence->sdma, timeout))
1102 			return false;
1103 
1104 		/* Recompute the timeout after waiting. */
1105 		if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1106 			int64_t time = os_time_get_nano();
1107 			timeout = abs_timeout > time ? abs_timeout - time : 0;
1108 		}
1109 	}
1110 
1111 	if (!rfence->gfx)
1112 		return true;
1113 
1114 	/* Flush the gfx IB if it hasn't been flushed yet. */
1115 	if (rctx &&
1116 	    rfence->gfx_unflushed.ctx == rctx &&
1117 	    rfence->gfx_unflushed.ib_index == rctx->num_gfx_cs_flushes) {
1118 		rctx->gfx.flush(rctx, timeout ? 0 : PIPE_FLUSH_ASYNC, NULL);
1119 		rfence->gfx_unflushed.ctx = NULL;
1120 
1121 		if (!timeout)
1122 			return false;
1123 
1124 		/* Recompute the timeout after all that. */
1125 		if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1126 			int64_t time = os_time_get_nano();
1127 			timeout = abs_timeout > time ? abs_timeout - time : 0;
1128 		}
1129 	}
1130 
1131 	return rws->fence_wait(rws, rfence->gfx, timeout);
1132 }
1133 
r600_query_memory_info(struct pipe_screen * screen,struct pipe_memory_info * info)1134 static void r600_query_memory_info(struct pipe_screen *screen,
1135 				   struct pipe_memory_info *info)
1136 {
1137 	struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1138 	struct radeon_winsys *ws = rscreen->ws;
1139 	unsigned vram_usage, gtt_usage;
1140 
1141 	info->total_device_memory = rscreen->info.vram_size / 1024;
1142 	info->total_staging_memory = rscreen->info.gart_size / 1024;
1143 
1144 	/* The real TTM memory usage is somewhat random, because:
1145 	 *
1146 	 * 1) TTM delays freeing memory, because it can only free it after
1147 	 *    fences expire.
1148 	 *
1149 	 * 2) The memory usage can be really low if big VRAM evictions are
1150 	 *    taking place, but the real usage is well above the size of VRAM.
1151 	 *
1152 	 * Instead, return statistics of this process.
1153 	 */
1154 	vram_usage = ws->query_value(ws, RADEON_REQUESTED_VRAM_MEMORY) / 1024;
1155 	gtt_usage =  ws->query_value(ws, RADEON_REQUESTED_GTT_MEMORY) / 1024;
1156 
1157 	info->avail_device_memory =
1158 		vram_usage <= info->total_device_memory ?
1159 				info->total_device_memory - vram_usage : 0;
1160 	info->avail_staging_memory =
1161 		gtt_usage <= info->total_staging_memory ?
1162 				info->total_staging_memory - gtt_usage : 0;
1163 
1164 	info->device_memory_evicted =
1165 		ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024;
1166 
1167 	/* Just return the number of evicted 64KB pages. */
1168 	info->nr_device_memory_evictions = info->device_memory_evicted / 64;
1169 }
1170 
r600_resource_create_common(struct pipe_screen * screen,const struct pipe_resource * templ)1171 struct pipe_resource *r600_resource_create_common(struct pipe_screen *screen,
1172 						  const struct pipe_resource *templ)
1173 {
1174 	if (templ->target == PIPE_BUFFER) {
1175 		return r600_buffer_create(screen, templ, 256);
1176 	} else {
1177 		return r600_texture_create(screen, templ);
1178 	}
1179 }
1180 
1181 const struct nir_shader_compiler_options r600_nir_fs_options = {
1182 	.fuse_ffma16 = true,
1183 	.fuse_ffma32 = true,
1184 	.fuse_ffma64 = true,
1185 	.lower_scmp = true,
1186 	.lower_flrp32 = true,
1187 	.lower_flrp64 = true,
1188 	.lower_fpow = true,
1189 	.lower_fdiv = true,
1190         .lower_isign = true,
1191         .lower_fsign = true,
1192 	.lower_fmod = true,
1193 	.lower_doubles_options = nir_lower_fp64_full_software,
1194 	.lower_int64_options = 0,
1195 	.lower_extract_byte = true,
1196 	.lower_extract_word = true,
1197         .lower_rotate = true,
1198 	.max_unroll_iterations = 32,
1199 	.lower_all_io_to_temps = true,
1200 	.vectorize_io = true,
1201 	.has_umad24 = true,
1202 	.has_umul24 = true,
1203 };
1204 
1205 const struct nir_shader_compiler_options r600_nir_options = {
1206 	.fuse_ffma16 = true,
1207 	.fuse_ffma32 = true,
1208 	.fuse_ffma64 = true,
1209 	.lower_scmp = true,
1210 	.lower_flrp32 = true,
1211 	.lower_flrp64 = true,
1212 	.lower_fpow = true,
1213 	.lower_fdiv = true,
1214 	.lower_fmod = true,
1215 	.lower_doubles_options = nir_lower_fp64_full_software,
1216 	.lower_int64_options = 0,
1217 	.lower_extract_byte = true,
1218 	.lower_extract_word = true,
1219         .lower_rotate = true,
1220 	.max_unroll_iterations = 32,
1221 	.vectorize_io = true,
1222 	.has_umad24 = true,
1223 	.has_umul24 = true,
1224 };
1225 
1226 
1227 static const void *
r600_get_compiler_options(struct pipe_screen * screen,enum pipe_shader_ir ir,enum pipe_shader_type shader)1228 r600_get_compiler_options(struct pipe_screen *screen,
1229 			  enum pipe_shader_ir ir,
1230 			  enum pipe_shader_type shader)
1231 {
1232 	assert(ir == PIPE_SHADER_IR_NIR);
1233 	if (shader == PIPE_SHADER_FRAGMENT)
1234 	   return &r600_nir_fs_options;
1235 	else
1236 	   return &r600_nir_options;
1237 }
1238 
r600_common_screen_init(struct r600_common_screen * rscreen,struct radeon_winsys * ws)1239 bool r600_common_screen_init(struct r600_common_screen *rscreen,
1240 			     struct radeon_winsys *ws)
1241 {
1242 	char family_name[32] = {}, kernel_version[128] = {};
1243 	struct utsname uname_data;
1244 	const char *chip_name;
1245 
1246 	ws->query_info(ws, &rscreen->info);
1247 	rscreen->ws = ws;
1248 
1249 	chip_name = r600_get_family_name(rscreen);
1250 
1251 	if (uname(&uname_data) == 0)
1252 		snprintf(kernel_version, sizeof(kernel_version),
1253 			 " / %s", uname_data.release);
1254 
1255 	snprintf(rscreen->renderer_string, sizeof(rscreen->renderer_string),
1256 		 "%s (%sDRM %i.%i.%i%s"
1257 #ifdef LLVM_AVAILABLE
1258 		 ", LLVM " MESA_LLVM_VERSION_STRING
1259 #endif
1260 		 ")",
1261 		 chip_name, family_name, rscreen->info.drm_major,
1262 		 rscreen->info.drm_minor, rscreen->info.drm_patchlevel,
1263 		 kernel_version);
1264 
1265 	rscreen->b.get_name = r600_get_name;
1266 	rscreen->b.get_vendor = r600_get_vendor;
1267 	rscreen->b.get_device_vendor = r600_get_device_vendor;
1268 	rscreen->b.get_disk_shader_cache = r600_get_disk_shader_cache;
1269 	rscreen->b.get_compute_param = r600_get_compute_param;
1270 	rscreen->b.get_paramf = r600_get_paramf;
1271 	rscreen->b.get_timestamp = r600_get_timestamp;
1272 	rscreen->b.get_compiler_options = r600_get_compiler_options;
1273 	rscreen->b.fence_finish = r600_fence_finish;
1274 	rscreen->b.fence_reference = r600_fence_reference;
1275 	rscreen->b.resource_destroy = u_resource_destroy_vtbl;
1276 	rscreen->b.resource_from_user_memory = r600_buffer_from_user_memory;
1277 	rscreen->b.query_memory_info = r600_query_memory_info;
1278 
1279 	if (rscreen->info.has_hw_decode) {
1280 		rscreen->b.get_video_param = rvid_get_video_param;
1281 		rscreen->b.is_video_format_supported = rvid_is_format_supported;
1282 	} else {
1283 		rscreen->b.get_video_param = r600_get_video_param;
1284 		rscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported;
1285 	}
1286 
1287 	r600_init_screen_texture_functions(rscreen);
1288 	r600_init_screen_query_functions(rscreen);
1289 
1290 	rscreen->family = rscreen->info.family;
1291 	rscreen->chip_class = rscreen->info.chip_class;
1292 	rscreen->debug_flags |= debug_get_flags_option("R600_DEBUG", common_debug_options, 0);
1293 
1294 	r600_disk_cache_create(rscreen);
1295 
1296 	slab_create_parent(&rscreen->pool_transfers, sizeof(struct r600_transfer), 64);
1297 
1298 	rscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1));
1299 	if (rscreen->force_aniso >= 0) {
1300 		printf("radeon: Forcing anisotropy filter to %ix\n",
1301 		       /* round down to a power of two */
1302 		       1 << util_logbase2(rscreen->force_aniso));
1303 	}
1304 
1305 	(void) mtx_init(&rscreen->aux_context_lock, mtx_plain);
1306 	(void) mtx_init(&rscreen->gpu_load_mutex, mtx_plain);
1307 
1308 	if (rscreen->debug_flags & DBG_INFO) {
1309 		printf("pci (domain:bus:dev.func): %04x:%02x:%02x.%x\n",
1310 		       rscreen->info.pci_domain, rscreen->info.pci_bus,
1311 		       rscreen->info.pci_dev, rscreen->info.pci_func);
1312 		printf("pci_id = 0x%x\n", rscreen->info.pci_id);
1313 		printf("family = %i (%s)\n", rscreen->info.family,
1314 		       r600_get_family_name(rscreen));
1315 		printf("chip_class = %i\n", rscreen->info.chip_class);
1316 		printf("pte_fragment_size = %u\n", rscreen->info.pte_fragment_size);
1317 		printf("gart_page_size = %u\n", rscreen->info.gart_page_size);
1318 		printf("gart_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.gart_size, 1024*1024));
1319 		printf("vram_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_size, 1024*1024));
1320 		printf("vram_vis_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_vis_size, 1024*1024));
1321 		printf("max_alloc_size = %i MB\n",
1322 		       (int)DIV_ROUND_UP(rscreen->info.max_alloc_size, 1024*1024));
1323 		printf("min_alloc_size = %u\n", rscreen->info.min_alloc_size);
1324 		printf("has_dedicated_vram = %u\n", rscreen->info.has_dedicated_vram);
1325 		printf("r600_has_virtual_memory = %i\n", rscreen->info.r600_has_virtual_memory);
1326 		printf("gfx_ib_pad_with_type2 = %i\n", rscreen->info.gfx_ib_pad_with_type2);
1327 		printf("has_hw_decode = %u\n", rscreen->info.has_hw_decode);
1328 		printf("num_rings[RING_DMA] = %i\n", rscreen->info.num_rings[RING_DMA]);
1329 		printf("num_rings[RING_COMPUTE] = %u\n", rscreen->info.num_rings[RING_COMPUTE]);
1330 		printf("uvd_fw_version = %u\n", rscreen->info.uvd_fw_version);
1331 		printf("vce_fw_version = %u\n", rscreen->info.vce_fw_version);
1332 		printf("me_fw_version = %i\n", rscreen->info.me_fw_version);
1333 		printf("pfp_fw_version = %i\n", rscreen->info.pfp_fw_version);
1334 		printf("ce_fw_version = %i\n", rscreen->info.ce_fw_version);
1335 		printf("vce_harvest_config = %i\n", rscreen->info.vce_harvest_config);
1336 		printf("clock_crystal_freq = %i\n", rscreen->info.clock_crystal_freq);
1337 		printf("tcc_cache_line_size = %u\n", rscreen->info.tcc_cache_line_size);
1338 		printf("drm = %i.%i.%i\n", rscreen->info.drm_major,
1339 		       rscreen->info.drm_minor, rscreen->info.drm_patchlevel);
1340 		printf("has_userptr = %i\n", rscreen->info.has_userptr);
1341 		printf("has_syncobj = %u\n", rscreen->info.has_syncobj);
1342 
1343 		printf("r600_max_quad_pipes = %i\n", rscreen->info.r600_max_quad_pipes);
1344 		printf("max_shader_clock = %i\n", rscreen->info.max_shader_clock);
1345 		printf("num_good_compute_units = %i\n", rscreen->info.num_good_compute_units);
1346 		printf("max_se = %i\n", rscreen->info.max_se);
1347 		printf("max_sh_per_se = %i\n", rscreen->info.max_sh_per_se);
1348 
1349 		printf("r600_gb_backend_map = %i\n", rscreen->info.r600_gb_backend_map);
1350 		printf("r600_gb_backend_map_valid = %i\n", rscreen->info.r600_gb_backend_map_valid);
1351 		printf("r600_num_banks = %i\n", rscreen->info.r600_num_banks);
1352 		printf("num_render_backends = %i\n", rscreen->info.num_render_backends);
1353 		printf("num_tile_pipes = %i\n", rscreen->info.num_tile_pipes);
1354 		printf("pipe_interleave_bytes = %i\n", rscreen->info.pipe_interleave_bytes);
1355 		printf("enabled_rb_mask = 0x%x\n", rscreen->info.enabled_rb_mask);
1356 		printf("max_alignment = %u\n", (unsigned)rscreen->info.max_alignment);
1357 	}
1358 	return true;
1359 }
1360 
r600_destroy_common_screen(struct r600_common_screen * rscreen)1361 void r600_destroy_common_screen(struct r600_common_screen *rscreen)
1362 {
1363 	r600_perfcounters_destroy(rscreen);
1364 	r600_gpu_load_kill_thread(rscreen);
1365 
1366 	mtx_destroy(&rscreen->gpu_load_mutex);
1367 	mtx_destroy(&rscreen->aux_context_lock);
1368 	rscreen->aux_context->destroy(rscreen->aux_context);
1369 
1370 	slab_destroy_parent(&rscreen->pool_transfers);
1371 
1372 	disk_cache_destroy(rscreen->disk_shader_cache);
1373 	rscreen->ws->destroy(rscreen->ws);
1374 	FREE(rscreen);
1375 }
1376 
r600_can_dump_shader(struct r600_common_screen * rscreen,unsigned processor)1377 bool r600_can_dump_shader(struct r600_common_screen *rscreen,
1378 			  unsigned processor)
1379 {
1380 	return rscreen->debug_flags & (1 << processor);
1381 }
1382 
r600_extra_shader_checks(struct r600_common_screen * rscreen,unsigned processor)1383 bool r600_extra_shader_checks(struct r600_common_screen *rscreen, unsigned processor)
1384 {
1385 	return (rscreen->debug_flags & DBG_CHECK_IR) ||
1386 	       r600_can_dump_shader(rscreen, processor);
1387 }
1388 
r600_screen_clear_buffer(struct r600_common_screen * rscreen,struct pipe_resource * dst,uint64_t offset,uint64_t size,unsigned value)1389 void r600_screen_clear_buffer(struct r600_common_screen *rscreen, struct pipe_resource *dst,
1390 			      uint64_t offset, uint64_t size, unsigned value)
1391 {
1392 	struct r600_common_context *rctx = (struct r600_common_context*)rscreen->aux_context;
1393 
1394 	mtx_lock(&rscreen->aux_context_lock);
1395 	rctx->dma_clear_buffer(&rctx->b, dst, offset, size, value);
1396 	rscreen->aux_context->flush(rscreen->aux_context, NULL, 0);
1397 	mtx_unlock(&rscreen->aux_context_lock);
1398 }
1399