1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "compiler/glsl_types.h"
25 #include "loop_analysis.h"
26 #include "ir_hierarchical_visitor.h"
27 
28 static void try_add_loop_terminator(loop_variable_state *ls, ir_if *ir);
29 
30 static bool all_expression_operands_are_loop_constant(ir_rvalue *,
31 						      hash_table *);
32 
33 static ir_rvalue *get_basic_induction_increment(ir_assignment *, hash_table *);
34 
35 /**
36  * Find an initializer of a variable outside a loop
37  *
38  * Works backwards from the loop to find the pre-loop value of the variable.
39  * This is used, for example, to find the initial value of loop induction
40  * variables.
41  *
42  * \param loop  Loop where \c var is an induction variable
43  * \param var   Variable whose initializer is to be found
44  *
45  * \return
46  * The \c ir_rvalue assigned to the variable outside the loop.  May return
47  * \c NULL if no initializer can be found.
48  */
49 static ir_rvalue *
find_initial_value(ir_loop * loop,ir_variable * var)50 find_initial_value(ir_loop *loop, ir_variable *var)
51 {
52    for (exec_node *node = loop->prev; !node->is_head_sentinel();
53         node = node->prev) {
54       ir_instruction *ir = (ir_instruction *) node;
55 
56       switch (ir->ir_type) {
57       case ir_type_call:
58       case ir_type_loop:
59       case ir_type_loop_jump:
60       case ir_type_return:
61       case ir_type_if:
62          return NULL;
63 
64       case ir_type_function:
65       case ir_type_function_signature:
66          assert(!"Should not get here.");
67          return NULL;
68 
69       case ir_type_assignment: {
70          ir_assignment *assign = ir->as_assignment();
71          ir_variable *assignee = assign->lhs->whole_variable_referenced();
72 
73          if (assignee == var)
74             return (assign->condition != NULL) ? NULL : assign->rhs;
75 
76          break;
77       }
78 
79       default:
80          break;
81       }
82    }
83 
84    return NULL;
85 }
86 
87 
88 static int
calculate_iterations(ir_rvalue * from,ir_rvalue * to,ir_rvalue * increment,enum ir_expression_operation op,bool continue_from_then,bool swap_compare_operands,bool inc_before_terminator)89 calculate_iterations(ir_rvalue *from, ir_rvalue *to, ir_rvalue *increment,
90                      enum ir_expression_operation op, bool continue_from_then,
91                      bool swap_compare_operands, bool inc_before_terminator)
92 {
93    if (from == NULL || to == NULL || increment == NULL)
94       return -1;
95 
96    void *mem_ctx = ralloc_context(NULL);
97 
98    ir_expression *const sub =
99       new(mem_ctx) ir_expression(ir_binop_sub, from->type, to, from);
100 
101    ir_expression *const div =
102       new(mem_ctx) ir_expression(ir_binop_div, sub->type, sub, increment);
103 
104    ir_constant *iter = div->constant_expression_value(mem_ctx);
105    if (iter == NULL) {
106       ralloc_free(mem_ctx);
107       return -1;
108    }
109 
110    if (!iter->type->is_integer_32()) {
111       const ir_expression_operation op = iter->type->is_double()
112          ? ir_unop_d2i : ir_unop_f2i;
113       ir_rvalue *cast =
114          new(mem_ctx) ir_expression(op, glsl_type::int_type, iter, NULL);
115 
116       iter = cast->constant_expression_value(mem_ctx);
117    }
118 
119    int iter_value = iter->get_int_component(0);
120 
121    /* Code after this block works under assumption that iterator will be
122     * incremented or decremented until it hits the limit,
123     * however the loop condition can be false on the first iteration.
124     * Handle such loops first.
125     */
126    {
127       ir_rvalue *first_value = from;
128       if (inc_before_terminator) {
129          first_value =
130             new(mem_ctx) ir_expression(ir_binop_add, from->type, from, increment);
131       }
132 
133       ir_expression *cmp = swap_compare_operands
134             ? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, first_value)
135             : new(mem_ctx) ir_expression(op, glsl_type::bool_type, first_value, to);
136       if (continue_from_then)
137          cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
138 
139       ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
140       assert(cmp_result != NULL);
141       if (cmp_result->get_bool_component(0)) {
142          ralloc_free(mem_ctx);
143          return 0;
144       }
145    }
146 
147    /* Make sure that the calculated number of iterations satisfies the exit
148     * condition.  This is needed to catch off-by-one errors and some types of
149     * ill-formed loops.  For example, we need to detect that the following
150     * loop does not have a maximum iteration count.
151     *
152     *    for (float x = 0.0; x != 0.9; x += 0.2)
153     *        ;
154     */
155    const int bias[] = { -1, 0, 1 };
156    bool valid_loop = false;
157 
158    for (unsigned i = 0; i < ARRAY_SIZE(bias); i++) {
159       /* Increment may be of type int, uint or float. */
160       switch (increment->type->base_type) {
161       case GLSL_TYPE_INT:
162          iter = new(mem_ctx) ir_constant(iter_value + bias[i]);
163          break;
164       case GLSL_TYPE_INT16:
165          iter = new(mem_ctx) ir_constant(uint16_t(iter_value + bias[i]));
166          break;
167       case GLSL_TYPE_UINT:
168          iter = new(mem_ctx) ir_constant(unsigned(iter_value + bias[i]));
169          break;
170       case GLSL_TYPE_UINT16:
171          iter = new(mem_ctx) ir_constant(uint16_t(iter_value + bias[i]));
172          break;
173       case GLSL_TYPE_FLOAT:
174          iter = new(mem_ctx) ir_constant(float(iter_value + bias[i]));
175          break;
176       case GLSL_TYPE_FLOAT16:
177          iter = new(mem_ctx) ir_constant(float16_t(float(iter_value + bias[i])));
178          break;
179       case GLSL_TYPE_DOUBLE:
180          iter = new(mem_ctx) ir_constant(double(iter_value + bias[i]));
181          break;
182       default:
183           unreachable("Unsupported type for loop iterator.");
184       }
185 
186       ir_expression *const mul =
187          new(mem_ctx) ir_expression(ir_binop_mul, increment->type, iter,
188                                     increment);
189 
190       ir_expression *const add =
191          new(mem_ctx) ir_expression(ir_binop_add, mul->type, mul, from);
192 
193       ir_expression *cmp = swap_compare_operands
194          ? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, add)
195          : new(mem_ctx) ir_expression(op, glsl_type::bool_type, add, to);
196       if (continue_from_then)
197          cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
198 
199       ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
200 
201       assert(cmp_result != NULL);
202       if (cmp_result->get_bool_component(0)) {
203          iter_value += bias[i];
204          valid_loop = true;
205          break;
206       }
207    }
208 
209    ralloc_free(mem_ctx);
210 
211    if (inc_before_terminator) {
212       iter_value--;
213    }
214 
215    return (valid_loop) ? iter_value : -1;
216 }
217 
218 static bool
incremented_before_terminator(ir_loop * loop,ir_variable * var,ir_if * terminator)219 incremented_before_terminator(ir_loop *loop, ir_variable *var,
220                               ir_if *terminator)
221 {
222    for (exec_node *node = loop->body_instructions.get_head();
223         !node->is_tail_sentinel();
224         node = node->get_next()) {
225       ir_instruction *ir = (ir_instruction *) node;
226 
227       switch (ir->ir_type) {
228       case ir_type_if:
229          if (ir->as_if() == terminator)
230             return false;
231          break;
232 
233       case ir_type_assignment: {
234          ir_assignment *assign = ir->as_assignment();
235          ir_variable *assignee = assign->lhs->whole_variable_referenced();
236 
237          if (assignee == var) {
238             assert(assign->condition == NULL);
239             return true;
240          }
241 
242          break;
243       }
244 
245       default:
246          break;
247       }
248    }
249 
250    unreachable("Unable to find induction variable");
251 }
252 
253 /**
254  * Record the fact that the given loop variable was referenced inside the loop.
255  *
256  * \arg in_assignee is true if the reference was on the LHS of an assignment.
257  *
258  * \arg in_conditional_code_or_nested_loop is true if the reference occurred
259  * inside an if statement or a nested loop.
260  *
261  * \arg current_assignment is the ir_assignment node that the loop variable is
262  * on the LHS of, if any (ignored if \c in_assignee is false).
263  */
264 void
record_reference(bool in_assignee,bool in_conditional_code_or_nested_loop,ir_assignment * current_assignment)265 loop_variable::record_reference(bool in_assignee,
266                                 bool in_conditional_code_or_nested_loop,
267                                 ir_assignment *current_assignment)
268 {
269    if (in_assignee) {
270       assert(current_assignment != NULL);
271 
272       if (in_conditional_code_or_nested_loop ||
273           current_assignment->condition != NULL) {
274          this->conditional_or_nested_assignment = true;
275       }
276 
277       if (this->first_assignment == NULL) {
278          assert(this->num_assignments == 0);
279 
280          this->first_assignment = current_assignment;
281       }
282 
283       this->num_assignments++;
284    } else if (this->first_assignment == current_assignment) {
285       /* This catches the case where the variable is used in the RHS of an
286        * assignment where it is also in the LHS.
287        */
288       this->read_before_write = true;
289    }
290 }
291 
292 
loop_state()293 loop_state::loop_state()
294 {
295    this->ht = _mesa_pointer_hash_table_create(NULL);
296    this->mem_ctx = ralloc_context(NULL);
297    this->loop_found = false;
298 }
299 
300 
~loop_state()301 loop_state::~loop_state()
302 {
303    _mesa_hash_table_destroy(this->ht, NULL);
304    ralloc_free(this->mem_ctx);
305 }
306 
307 
308 loop_variable_state *
insert(ir_loop * ir)309 loop_state::insert(ir_loop *ir)
310 {
311    loop_variable_state *ls = new(this->mem_ctx) loop_variable_state;
312 
313    _mesa_hash_table_insert(this->ht, ir, ls);
314    this->loop_found = true;
315 
316    return ls;
317 }
318 
319 
320 loop_variable_state *
get(const ir_loop * ir)321 loop_state::get(const ir_loop *ir)
322 {
323    hash_entry *entry = _mesa_hash_table_search(this->ht, ir);
324    return entry ? (loop_variable_state *) entry->data : NULL;
325 }
326 
327 
328 loop_variable *
get(const ir_variable * ir)329 loop_variable_state::get(const ir_variable *ir)
330 {
331    if (ir == NULL)
332       return NULL;
333 
334    hash_entry *entry = _mesa_hash_table_search(this->var_hash, ir);
335    return entry ? (loop_variable *) entry->data : NULL;
336 }
337 
338 
339 loop_variable *
insert(ir_variable * var)340 loop_variable_state::insert(ir_variable *var)
341 {
342    void *mem_ctx = ralloc_parent(this);
343    loop_variable *lv = rzalloc(mem_ctx, loop_variable);
344 
345    lv->var = var;
346 
347    _mesa_hash_table_insert(this->var_hash, lv->var, lv);
348    this->variables.push_tail(lv);
349 
350    return lv;
351 }
352 
353 
354 loop_terminator *
insert(ir_if * if_stmt,bool continue_from_then)355 loop_variable_state::insert(ir_if *if_stmt, bool continue_from_then)
356 {
357    void *mem_ctx = ralloc_parent(this);
358    loop_terminator *t = new(mem_ctx) loop_terminator(if_stmt,
359                                                      continue_from_then);
360 
361    this->terminators.push_tail(t);
362 
363    return t;
364 }
365 
366 
367 /**
368  * If the given variable already is recorded in the state for this loop,
369  * return the corresponding loop_variable object that records information
370  * about it.
371  *
372  * Otherwise, create a new loop_variable object to record information about
373  * the variable, and set its \c read_before_write field appropriately based on
374  * \c in_assignee.
375  *
376  * \arg in_assignee is true if this variable was encountered on the LHS of an
377  * assignment.
378  */
379 loop_variable *
get_or_insert(ir_variable * var,bool in_assignee)380 loop_variable_state::get_or_insert(ir_variable *var, bool in_assignee)
381 {
382    loop_variable *lv = this->get(var);
383 
384    if (lv == NULL) {
385       lv = this->insert(var);
386       lv->read_before_write = !in_assignee;
387    }
388 
389    return lv;
390 }
391 
392 
393 namespace {
394 
395 class loop_analysis : public ir_hierarchical_visitor {
396 public:
397    loop_analysis(loop_state *loops);
398 
399    virtual ir_visitor_status visit(ir_loop_jump *);
400    virtual ir_visitor_status visit(ir_dereference_variable *);
401 
402    virtual ir_visitor_status visit_enter(ir_call *);
403 
404    virtual ir_visitor_status visit_enter(ir_loop *);
405    virtual ir_visitor_status visit_leave(ir_loop *);
406    virtual ir_visitor_status visit_enter(ir_assignment *);
407    virtual ir_visitor_status visit_leave(ir_assignment *);
408    virtual ir_visitor_status visit_enter(ir_if *);
409    virtual ir_visitor_status visit_leave(ir_if *);
410 
411    loop_state *loops;
412 
413    int if_statement_depth;
414 
415    ir_assignment *current_assignment;
416 
417    exec_list state;
418 };
419 
420 } /* anonymous namespace */
421 
loop_analysis(loop_state * loops)422 loop_analysis::loop_analysis(loop_state *loops)
423    : loops(loops), if_statement_depth(0), current_assignment(NULL)
424 {
425    /* empty */
426 }
427 
428 
429 ir_visitor_status
visit(ir_loop_jump * ir)430 loop_analysis::visit(ir_loop_jump *ir)
431 {
432    (void) ir;
433 
434    assert(!this->state.is_empty());
435 
436    loop_variable_state *const ls =
437       (loop_variable_state *) this->state.get_head();
438 
439    ls->num_loop_jumps++;
440 
441    return visit_continue;
442 }
443 
444 
445 ir_visitor_status
visit_enter(ir_call *)446 loop_analysis::visit_enter(ir_call *)
447 {
448    /* Mark every loop that we're currently analyzing as containing an ir_call
449     * (even those at outer nesting levels).
450     */
451    foreach_in_list(loop_variable_state, ls, &this->state) {
452       ls->contains_calls = true;
453    }
454 
455    return visit_continue_with_parent;
456 }
457 
458 
459 ir_visitor_status
visit(ir_dereference_variable * ir)460 loop_analysis::visit(ir_dereference_variable *ir)
461 {
462    /* If we're not somewhere inside a loop, there's nothing to do.
463     */
464    if (this->state.is_empty())
465       return visit_continue;
466 
467    bool nested = false;
468 
469    foreach_in_list(loop_variable_state, ls, &this->state) {
470       ir_variable *var = ir->variable_referenced();
471       loop_variable *lv = ls->get_or_insert(var, this->in_assignee);
472 
473       lv->record_reference(this->in_assignee,
474                            nested || this->if_statement_depth > 0,
475                            this->current_assignment);
476       nested = true;
477    }
478 
479    return visit_continue;
480 }
481 
482 ir_visitor_status
visit_enter(ir_loop * ir)483 loop_analysis::visit_enter(ir_loop *ir)
484 {
485    loop_variable_state *ls = this->loops->insert(ir);
486    this->state.push_head(ls);
487 
488    return visit_continue;
489 }
490 
491 ir_visitor_status
visit_leave(ir_loop * ir)492 loop_analysis::visit_leave(ir_loop *ir)
493 {
494    loop_variable_state *const ls =
495       (loop_variable_state *) this->state.pop_head();
496 
497    /* Function calls may contain side effects.  These could alter any of our
498     * variables in ways that cannot be known, and may even terminate shader
499     * execution (say, calling discard in the fragment shader).  So we can't
500     * rely on any of our analysis about assignments to variables.
501     *
502     * We could perform some conservative analysis (prove there's no statically
503     * possible assignment, etc.) but it isn't worth it for now; function
504     * inlining will allow us to unroll loops anyway.
505     */
506    if (ls->contains_calls)
507       return visit_continue;
508 
509    foreach_in_list(ir_instruction, node, &ir->body_instructions) {
510       /* Skip over declarations at the start of a loop.
511        */
512       if (node->as_variable())
513 	 continue;
514 
515       ir_if *if_stmt = ((ir_instruction *) node)->as_if();
516 
517       if (if_stmt != NULL)
518          try_add_loop_terminator(ls, if_stmt);
519    }
520 
521 
522    foreach_in_list_safe(loop_variable, lv, &ls->variables) {
523       /* Move variables that are already marked as being loop constant to
524        * a separate list.  These trivially don't need to be tested.
525        */
526       if (lv->is_loop_constant()) {
527 	 lv->remove();
528 	 ls->constants.push_tail(lv);
529       }
530    }
531 
532    /* Each variable assigned in the loop that isn't already marked as being loop
533     * constant might still be loop constant.  The requirements at this point
534     * are:
535     *
536     *    - Variable is written before it is read.
537     *
538     *    - Only one assignment to the variable.
539     *
540     *    - All operands on the RHS of the assignment are also loop constants.
541     *
542     * The last requirement is the reason for the progress loop.  A variable
543     * marked as a loop constant on one pass may allow other variables to be
544     * marked as loop constant on following passes.
545     */
546    bool progress;
547    do {
548       progress = false;
549 
550       foreach_in_list_safe(loop_variable, lv, &ls->variables) {
551 	 if (lv->conditional_or_nested_assignment || (lv->num_assignments > 1))
552 	    continue;
553 
554 	 /* Process the RHS of the assignment.  If all of the variables
555 	  * accessed there are loop constants, then add this
556 	  */
557 	 ir_rvalue *const rhs = lv->first_assignment->rhs;
558 	 if (all_expression_operands_are_loop_constant(rhs, ls->var_hash)) {
559 	    lv->rhs_clean = true;
560 
561 	    if (lv->is_loop_constant()) {
562 	       progress = true;
563 
564 	       lv->remove();
565 	       ls->constants.push_tail(lv);
566 	    }
567 	 }
568       }
569    } while (progress);
570 
571    /* The remaining variables that are not loop invariant might be loop
572     * induction variables.
573     */
574    foreach_in_list_safe(loop_variable, lv, &ls->variables) {
575       /* If there is more than one assignment to a variable, it cannot be a
576        * loop induction variable.  This isn't strictly true, but this is a
577        * very simple induction variable detector, and it can't handle more
578        * complex cases.
579        */
580       if (lv->num_assignments > 1)
581 	 continue;
582 
583       /* All of the variables with zero assignments in the loop are loop
584        * invariant, and they should have already been filtered out.
585        */
586       assert(lv->num_assignments == 1);
587       assert(lv->first_assignment != NULL);
588 
589       /* The assignment to the variable in the loop must be unconditional and
590        * not inside a nested loop.
591        */
592       if (lv->conditional_or_nested_assignment)
593 	 continue;
594 
595       /* Basic loop induction variables have a single assignment in the loop
596        * that has the form 'VAR = VAR + i' or 'VAR = VAR - i' where i is a
597        * loop invariant.
598        */
599       ir_rvalue *const inc =
600 	 get_basic_induction_increment(lv->first_assignment, ls->var_hash);
601       if (inc != NULL) {
602 	 lv->increment = inc;
603 
604 	 lv->remove();
605 	 ls->induction_variables.push_tail(lv);
606       }
607    }
608 
609    /* Search the loop terminating conditions for those of the form 'i < c'
610     * where i is a loop induction variable, c is a constant, and < is any
611     * relative operator.  From each of these we can infer an iteration count.
612     * Also figure out which terminator (if any) produces the smallest
613     * iteration count--this is the limiting terminator.
614     */
615    foreach_in_list(loop_terminator, t, &ls->terminators) {
616       ir_if *if_stmt = t->ir;
617 
618       /* If-statements can be either 'if (expr)' or 'if (deref)'.  We only care
619        * about the former here.
620        */
621       ir_expression *cond = if_stmt->condition->as_expression();
622       if (cond == NULL)
623 	 continue;
624 
625       switch (cond->operation) {
626       case ir_binop_less:
627       case ir_binop_gequal: {
628 	 /* The expressions that we care about will either be of the form
629 	  * 'counter < limit' or 'limit < counter'.  Figure out which is
630 	  * which.
631 	  */
632 	 ir_rvalue *counter = cond->operands[0]->as_dereference_variable();
633 	 ir_constant *limit = cond->operands[1]->as_constant();
634 	 enum ir_expression_operation cmp = cond->operation;
635          bool swap_compare_operands = false;
636 
637 	 if (limit == NULL) {
638 	    counter = cond->operands[1]->as_dereference_variable();
639 	    limit = cond->operands[0]->as_constant();
640             swap_compare_operands = true;
641 	 }
642 
643 	 if ((counter == NULL) || (limit == NULL))
644 	    break;
645 
646 	 ir_variable *var = counter->variable_referenced();
647 
648 	 ir_rvalue *init = find_initial_value(ir, var);
649 
650          loop_variable *lv = ls->get(var);
651          if (lv != NULL && lv->is_induction_var()) {
652             bool inc_before_terminator =
653                incremented_before_terminator(ir, var, t->ir);
654 
655             t->iterations = calculate_iterations(init, limit, lv->increment,
656                                                  cmp, t->continue_from_then,
657                                                  swap_compare_operands,
658                                                  inc_before_terminator);
659 
660             if (t->iterations >= 0 &&
661                 (ls->limiting_terminator == NULL ||
662                  t->iterations < ls->limiting_terminator->iterations)) {
663                ls->limiting_terminator = t;
664             }
665          }
666          break;
667       }
668 
669       default:
670          break;
671       }
672    }
673 
674    return visit_continue;
675 }
676 
677 ir_visitor_status
visit_enter(ir_if * ir)678 loop_analysis::visit_enter(ir_if *ir)
679 {
680    (void) ir;
681 
682    if (!this->state.is_empty())
683       this->if_statement_depth++;
684 
685    return visit_continue;
686 }
687 
688 ir_visitor_status
visit_leave(ir_if * ir)689 loop_analysis::visit_leave(ir_if *ir)
690 {
691    (void) ir;
692 
693    if (!this->state.is_empty())
694       this->if_statement_depth--;
695 
696    return visit_continue;
697 }
698 
699 ir_visitor_status
visit_enter(ir_assignment * ir)700 loop_analysis::visit_enter(ir_assignment *ir)
701 {
702    /* If we're not somewhere inside a loop, there's nothing to do.
703     */
704    if (this->state.is_empty())
705       return visit_continue_with_parent;
706 
707    this->current_assignment = ir;
708 
709    return visit_continue;
710 }
711 
712 ir_visitor_status
visit_leave(ir_assignment * ir)713 loop_analysis::visit_leave(ir_assignment *ir)
714 {
715    /* Since the visit_enter exits with visit_continue_with_parent for this
716     * case, the loop state stack should never be empty here.
717     */
718    assert(!this->state.is_empty());
719 
720    assert(this->current_assignment == ir);
721    this->current_assignment = NULL;
722 
723    return visit_continue;
724 }
725 
726 
727 class examine_rhs : public ir_hierarchical_visitor {
728 public:
examine_rhs(hash_table * loop_variables)729    examine_rhs(hash_table *loop_variables)
730    {
731       this->only_uses_loop_constants = true;
732       this->loop_variables = loop_variables;
733    }
734 
visit(ir_dereference_variable * ir)735    virtual ir_visitor_status visit(ir_dereference_variable *ir)
736    {
737       hash_entry *entry = _mesa_hash_table_search(this->loop_variables,
738                                                   ir->var);
739       loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
740 
741       assert(lv != NULL);
742 
743       if (lv->is_loop_constant()) {
744 	 return visit_continue;
745       } else {
746 	 this->only_uses_loop_constants = false;
747 	 return visit_stop;
748       }
749    }
750 
751    hash_table *loop_variables;
752    bool only_uses_loop_constants;
753 };
754 
755 
756 bool
all_expression_operands_are_loop_constant(ir_rvalue * ir,hash_table * variables)757 all_expression_operands_are_loop_constant(ir_rvalue *ir, hash_table *variables)
758 {
759    examine_rhs v(variables);
760 
761    ir->accept(&v);
762 
763    return v.only_uses_loop_constants;
764 }
765 
766 
767 ir_rvalue *
get_basic_induction_increment(ir_assignment * ir,hash_table * var_hash)768 get_basic_induction_increment(ir_assignment *ir, hash_table *var_hash)
769 {
770    /* The RHS must be a binary expression.
771     */
772    ir_expression *const rhs = ir->rhs->as_expression();
773    if ((rhs == NULL)
774        || ((rhs->operation != ir_binop_add)
775 	   && (rhs->operation != ir_binop_sub)))
776       return NULL;
777 
778    /* One of the of operands of the expression must be the variable assigned.
779     * If the operation is subtraction, the variable in question must be the
780     * "left" operand.
781     */
782    ir_variable *const var = ir->lhs->variable_referenced();
783 
784    ir_variable *const op0 = rhs->operands[0]->variable_referenced();
785    ir_variable *const op1 = rhs->operands[1]->variable_referenced();
786 
787    if (((op0 != var) && (op1 != var))
788        || ((op1 == var) && (rhs->operation == ir_binop_sub)))
789       return NULL;
790 
791    ir_rvalue *inc = (op0 == var) ? rhs->operands[1] : rhs->operands[0];
792 
793    if (inc->as_constant() == NULL) {
794       ir_variable *const inc_var = inc->variable_referenced();
795       if (inc_var != NULL) {
796          hash_entry *entry = _mesa_hash_table_search(var_hash, inc_var);
797          loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
798 
799          if (lv == NULL || !lv->is_loop_constant()) {
800             assert(lv != NULL);
801             inc = NULL;
802          }
803       } else
804 	 inc = NULL;
805    }
806 
807    if ((inc != NULL) && (rhs->operation == ir_binop_sub)) {
808       void *mem_ctx = ralloc_parent(ir);
809 
810       inc = new(mem_ctx) ir_expression(ir_unop_neg,
811 				       inc->type,
812 				       inc->clone(mem_ctx, NULL),
813 				       NULL);
814    }
815 
816    return inc;
817 }
818 
819 
820 /**
821  * Detect whether an if-statement is a loop terminating condition, if so
822  * add it to the list of loop terminators.
823  *
824  * Detects if-statements of the form
825  *
826  *  (if (expression bool ...) (...then_instrs...break))
827  *
828  *     or
829  *
830  *  (if (expression bool ...) ... (...else_instrs...break))
831  */
832 void
try_add_loop_terminator(loop_variable_state * ls,ir_if * ir)833 try_add_loop_terminator(loop_variable_state *ls, ir_if *ir)
834 {
835    ir_instruction *inst = (ir_instruction *) ir->then_instructions.get_tail();
836    ir_instruction *else_inst =
837       (ir_instruction *) ir->else_instructions.get_tail();
838 
839    if (is_break(inst) || is_break(else_inst))
840       ls->insert(ir, is_break(else_inst));
841 }
842 
843 
844 loop_state *
analyze_loop_variables(exec_list * instructions)845 analyze_loop_variables(exec_list *instructions)
846 {
847    loop_state *loops = new loop_state;
848    loop_analysis v(loops);
849 
850    v.run(instructions);
851    return v.loops;
852 }
853