1 /*
2  * Copyright © 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "util/register_allocate.h"
25 #include "brw_vec4.h"
26 #include "brw_cfg.h"
27 
28 using namespace brw;
29 
30 namespace brw {
31 
32 static void
assign(unsigned int * reg_hw_locations,backend_reg * reg)33 assign(unsigned int *reg_hw_locations, backend_reg *reg)
34 {
35    if (reg->file == VGRF) {
36       reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
37       reg->offset %= REG_SIZE;
38    }
39 }
40 
41 bool
reg_allocate_trivial()42 vec4_visitor::reg_allocate_trivial()
43 {
44    unsigned int hw_reg_mapping[this->alloc.count];
45    bool virtual_grf_used[this->alloc.count];
46    int next;
47 
48    /* Calculate which virtual GRFs are actually in use after whatever
49     * optimization passes have occurred.
50     */
51    for (unsigned i = 0; i < this->alloc.count; i++) {
52       virtual_grf_used[i] = false;
53    }
54 
55    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
56       if (inst->dst.file == VGRF)
57          virtual_grf_used[inst->dst.nr] = true;
58 
59       for (unsigned i = 0; i < 3; i++) {
60 	 if (inst->src[i].file == VGRF)
61             virtual_grf_used[inst->src[i].nr] = true;
62       }
63    }
64 
65    hw_reg_mapping[0] = this->first_non_payload_grf;
66    next = hw_reg_mapping[0] + this->alloc.sizes[0];
67    for (unsigned i = 1; i < this->alloc.count; i++) {
68       if (virtual_grf_used[i]) {
69 	 hw_reg_mapping[i] = next;
70 	 next += this->alloc.sizes[i];
71       }
72    }
73    prog_data->total_grf = next;
74 
75    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
76       assign(hw_reg_mapping, &inst->dst);
77       assign(hw_reg_mapping, &inst->src[0]);
78       assign(hw_reg_mapping, &inst->src[1]);
79       assign(hw_reg_mapping, &inst->src[2]);
80    }
81 
82    if (prog_data->total_grf > max_grf) {
83       fail("Ran out of regs on trivial allocator (%d/%d)\n",
84 	   prog_data->total_grf, max_grf);
85       return false;
86    }
87 
88    return true;
89 }
90 
91 extern "C" void
brw_vec4_alloc_reg_set(struct brw_compiler * compiler)92 brw_vec4_alloc_reg_set(struct brw_compiler *compiler)
93 {
94    int base_reg_count =
95       compiler->devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
96 
97    /* After running split_virtual_grfs(), almost all VGRFs will be of size 1.
98     * SEND-from-GRF sources cannot be split, so we also need classes for each
99     * potential message length.
100     */
101    const int class_count = MAX_VGRF_SIZE;
102    int class_sizes[MAX_VGRF_SIZE];
103 
104    for (int i = 0; i < class_count; i++)
105       class_sizes[i] = i + 1;
106 
107    /* Compute the total number of registers across all classes. */
108    int ra_reg_count = 0;
109    for (int i = 0; i < class_count; i++) {
110       ra_reg_count += base_reg_count - (class_sizes[i] - 1);
111    }
112 
113    ralloc_free(compiler->vec4_reg_set.ra_reg_to_grf);
114    compiler->vec4_reg_set.ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
115    ralloc_free(compiler->vec4_reg_set.regs);
116    compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
117    if (compiler->devinfo->gen >= 6)
118       ra_set_allocate_round_robin(compiler->vec4_reg_set.regs);
119    ralloc_free(compiler->vec4_reg_set.classes);
120    compiler->vec4_reg_set.classes = ralloc_array(compiler, int, class_count);
121 
122    /* Now, add the registers to their classes, and add the conflicts
123     * between them and the base GRF registers (and also each other).
124     */
125    int reg = 0;
126    unsigned *q_values[MAX_VGRF_SIZE];
127    for (int i = 0; i < class_count; i++) {
128       int class_reg_count = base_reg_count - (class_sizes[i] - 1);
129       compiler->vec4_reg_set.classes[i] = ra_alloc_reg_class(compiler->vec4_reg_set.regs);
130 
131       q_values[i] = new unsigned[MAX_VGRF_SIZE];
132 
133       for (int j = 0; j < class_reg_count; j++) {
134 	 ra_class_add_reg(compiler->vec4_reg_set.regs, compiler->vec4_reg_set.classes[i], reg);
135 
136 	 compiler->vec4_reg_set.ra_reg_to_grf[reg] = j;
137 
138 	 for (int base_reg = j;
139 	      base_reg < j + class_sizes[i];
140 	      base_reg++) {
141 	    ra_add_reg_conflict(compiler->vec4_reg_set.regs, base_reg, reg);
142 	 }
143 
144 	 reg++;
145       }
146 
147       for (int j = 0; j < class_count; j++) {
148          /* Calculate the q values manually because the algorithm used by
149           * ra_set_finalize() to do it has higher complexity affecting the
150           * start-up time of some applications.  q(i, j) is just the maximum
151           * number of registers from class i a register from class j can
152           * conflict with.
153           */
154          q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
155       }
156    }
157    assert(reg == ra_reg_count);
158 
159    for (int reg = 0; reg < base_reg_count; reg++)
160       ra_make_reg_conflicts_transitive(compiler->vec4_reg_set.regs, reg);
161 
162    ra_set_finalize(compiler->vec4_reg_set.regs, q_values);
163 
164    for (int i = 0; i < MAX_VGRF_SIZE; i++)
165       delete[] q_values[i];
166 }
167 
168 void
setup_payload_interference(struct ra_graph * g,int first_payload_node,int reg_node_count)169 vec4_visitor::setup_payload_interference(struct ra_graph *g,
170                                          int first_payload_node,
171                                          int reg_node_count)
172 {
173    int payload_node_count = this->first_non_payload_grf;
174 
175    for (int i = 0; i < payload_node_count; i++) {
176       /* Mark each payload reg node as being allocated to its physical register.
177        *
178        * The alternative would be to have per-physical register classes, which
179        * would just be silly.
180        */
181       ra_set_node_reg(g, first_payload_node + i, i);
182 
183       /* For now, just mark each payload node as interfering with every other
184        * node to be allocated.
185        */
186       for (int j = 0; j < reg_node_count; j++) {
187          ra_add_node_interference(g, first_payload_node + i, j);
188       }
189    }
190 }
191 
192 bool
reg_allocate()193 vec4_visitor::reg_allocate()
194 {
195    unsigned int hw_reg_mapping[alloc.count];
196    int payload_reg_count = this->first_non_payload_grf;
197 
198    /* Using the trivial allocator can be useful in debugging undefined
199     * register access as a result of broken optimization passes.
200     */
201    if (0)
202       return reg_allocate_trivial();
203 
204    const vec4_live_variables &live = live_analysis.require();
205    int node_count = alloc.count;
206    int first_payload_node = node_count;
207    node_count += payload_reg_count;
208    struct ra_graph *g =
209       ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count);
210 
211    for (unsigned i = 0; i < alloc.count; i++) {
212       int size = this->alloc.sizes[i];
213       assert(size >= 1 && size <= MAX_VGRF_SIZE);
214       ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]);
215 
216       for (unsigned j = 0; j < i; j++) {
217 	 if (live.vgrfs_interfere(i, j)) {
218 	    ra_add_node_interference(g, i, j);
219 	 }
220       }
221    }
222 
223    /* Certain instructions can't safely use the same register for their
224     * sources and destination.  Add interference.
225     */
226    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
227       if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
228          for (unsigned i = 0; i < 3; i++) {
229             if (inst->src[i].file == VGRF) {
230                ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
231             }
232          }
233       }
234    }
235 
236    setup_payload_interference(g, first_payload_node, node_count);
237 
238    if (!ra_allocate(g)) {
239       /* Failed to allocate registers.  Spill a reg, and the caller will
240        * loop back into here to try again.
241        */
242       int reg = choose_spill_reg(g);
243       if (this->no_spills) {
244          fail("Failure to register allocate.  Reduce number of live "
245               "values to avoid this.");
246       } else if (reg == -1) {
247          fail("no register to spill\n");
248       } else {
249          spill_reg(reg);
250       }
251       ralloc_free(g);
252       return false;
253    }
254 
255    /* Get the chosen virtual registers for each node, and map virtual
256     * regs in the register classes back down to real hardware reg
257     * numbers.
258     */
259    prog_data->total_grf = payload_reg_count;
260    for (unsigned i = 0; i < alloc.count; i++) {
261       int reg = ra_get_node_reg(g, i);
262 
263       hw_reg_mapping[i] = compiler->vec4_reg_set.ra_reg_to_grf[reg];
264       prog_data->total_grf = MAX2(prog_data->total_grf,
265 				  hw_reg_mapping[i] + alloc.sizes[i]);
266    }
267 
268    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
269       assign(hw_reg_mapping, &inst->dst);
270       assign(hw_reg_mapping, &inst->src[0]);
271       assign(hw_reg_mapping, &inst->src[1]);
272       assign(hw_reg_mapping, &inst->src[2]);
273    }
274 
275    ralloc_free(g);
276 
277    return true;
278 }
279 
280 /**
281  * When we decide to spill a register, instead of blindly spilling every use,
282  * save unspills when the spill register is used (read) in consecutive
283  * instructions. This can potentially save a bunch of unspills that would
284  * have very little impact in register allocation anyway.
285  *
286  * Notice that we need to account for this behavior when spilling a register
287  * and when evaluating spilling costs. This function is designed so it can
288  * be called from both places and avoid repeating the logic.
289  *
290  *  - When we call this function from spill_reg(), we pass in scratch_reg the
291  *    actual unspill/spill register that we want to reuse in the current
292  *    instruction.
293  *
294  *  - When we call this from evaluate_spill_costs(), we pass the register for
295  *    which we are evaluating spilling costs.
296  *
297  * In either case, we check if the previous instructions read scratch_reg until
298  * we find one that writes to it with a compatible mask or does not read/write
299  * scratch_reg at all.
300  */
301 static bool
can_use_scratch_for_source(const vec4_instruction * inst,unsigned i,unsigned scratch_reg)302 can_use_scratch_for_source(const vec4_instruction *inst, unsigned i,
303                            unsigned scratch_reg)
304 {
305    assert(inst->src[i].file == VGRF);
306    bool prev_inst_read_scratch_reg = false;
307 
308    /* See if any previous source in the same instructions reads scratch_reg */
309    for (unsigned n = 0; n < i; n++) {
310       if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg)
311          prev_inst_read_scratch_reg = true;
312    }
313 
314    /* Now check if previous instructions read/write scratch_reg */
315    for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev;
316         !prev_inst->is_head_sentinel();
317         prev_inst = (vec4_instruction *) prev_inst->prev) {
318 
319       /* If the previous instruction writes to scratch_reg then we can reuse
320        * it if the write is not conditional and the channels we write are
321        * compatible with our read mask
322        */
323       if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) {
324          return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) &&
325                 (brw_mask_for_swizzle(inst->src[i].swizzle) &
326                  ~prev_inst->dst.writemask) == 0;
327       }
328 
329       /* Skip scratch read/writes so that instructions generated by spilling
330        * other registers (that won't read/write scratch_reg) do not stop us from
331        * reusing scratch_reg for this instruction.
332        */
333       if (prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE ||
334           prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ)
335          continue;
336 
337       /* If the previous instruction does not write to scratch_reg, then check
338        * if it reads it
339        */
340       int n;
341       for (n = 0; n < 3; n++) {
342          if (prev_inst->src[n].file == VGRF &&
343              prev_inst->src[n].nr == scratch_reg) {
344             prev_inst_read_scratch_reg = true;
345             break;
346          }
347       }
348       if (n == 3) {
349          /* The previous instruction does not read scratch_reg. At this point,
350           * if no previous instruction has read scratch_reg it means that we
351           * will need to unspill it here and we can't reuse it (so we return
352           * false). Otherwise, if we found at least one consecutive instruction
353           * that read scratch_reg, then we know that we got here from
354           * evaluate_spill_costs (since for the spill_reg path any block of
355           * consecutive instructions using scratch_reg must start with a write
356           * to that register, so we would've exited the loop in the check for
357           * the write that we have at the start of this loop), and in that case
358           * it means that we found the point at which the scratch_reg would be
359           * unspilled. Since we always unspill a full vec4, it means that we
360           * have all the channels available and we can just return true to
361           * signal that we can reuse the register in the current instruction
362           * too.
363           */
364          return prev_inst_read_scratch_reg;
365       }
366    }
367 
368    return prev_inst_read_scratch_reg;
369 }
370 
371 static inline float
spill_cost_for_type(enum brw_reg_type type)372 spill_cost_for_type(enum brw_reg_type type)
373 {
374    /* Spilling of a 64-bit register involves emitting 2 32-bit scratch
375     * messages plus the 64b/32b shuffling code.
376     */
377    return type_sz(type) == 8 ? 2.25f : 1.0f;
378 }
379 
380 void
evaluate_spill_costs(float * spill_costs,bool * no_spill)381 vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill)
382 {
383    float loop_scale = 1.0;
384 
385    unsigned *reg_type_size = (unsigned *)
386       ralloc_size(NULL, this->alloc.count * sizeof(unsigned));
387 
388    for (unsigned i = 0; i < this->alloc.count; i++) {
389       spill_costs[i] = 0.0;
390       no_spill[i] = alloc.sizes[i] != 1 && alloc.sizes[i] != 2;
391       reg_type_size[i] = 0;
392    }
393 
394    /* Calculate costs for spilling nodes.  Call it a cost of 1 per
395     * spill/unspill we'll have to do, and guess that the insides of
396     * loops run 10 times.
397     */
398    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
399       for (unsigned int i = 0; i < 3; i++) {
400          if (inst->src[i].file == VGRF && !no_spill[inst->src[i].nr]) {
401             /* We will only unspill src[i] it it wasn't unspilled for the
402              * previous instruction, in which case we'll just reuse the scratch
403              * reg for this instruction.
404              */
405             if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) {
406                spill_costs[inst->src[i].nr] +=
407                   loop_scale * spill_cost_for_type(inst->src[i].type);
408                if (inst->src[i].reladdr ||
409                    inst->src[i].offset >= REG_SIZE)
410                   no_spill[inst->src[i].nr] = true;
411 
412                /* We don't support unspills of partial DF reads.
413                 *
414                 * Our 64-bit unspills are implemented with two 32-bit scratch
415                 * messages, each one reading that for both SIMD4x2 threads that
416                 * we need to shuffle into correct 64-bit data. Ensure that we
417                 * are reading data for both threads.
418                 */
419                if (type_sz(inst->src[i].type) == 8 && inst->exec_size != 8)
420                   no_spill[inst->src[i].nr] = true;
421             }
422 
423             /* We can't spill registers that mix 32-bit and 64-bit access (that
424              * contain 64-bit data that is operated on via 32-bit instructions)
425              */
426             unsigned type_size = type_sz(inst->src[i].type);
427             if (reg_type_size[inst->src[i].nr] == 0)
428                reg_type_size[inst->src[i].nr] = type_size;
429             else if (reg_type_size[inst->src[i].nr] != type_size)
430                no_spill[inst->src[i].nr] = true;
431          }
432       }
433 
434       if (inst->dst.file == VGRF && !no_spill[inst->dst.nr]) {
435          spill_costs[inst->dst.nr] +=
436             loop_scale * spill_cost_for_type(inst->dst.type);
437          if (inst->dst.reladdr || inst->dst.offset >= REG_SIZE)
438             no_spill[inst->dst.nr] = true;
439 
440          /* We don't support spills of partial DF writes.
441           *
442           * Our 64-bit spills are implemented with two 32-bit scratch messages,
443           * each one writing that for both SIMD4x2 threads. Ensure that we
444           * are writing data for both threads.
445           */
446          if (type_sz(inst->dst.type) == 8 && inst->exec_size != 8)
447             no_spill[inst->dst.nr] = true;
448 
449          /* We can't spill registers that mix 32-bit and 64-bit access (that
450           * contain 64-bit data that is operated on via 32-bit instructions)
451           */
452          unsigned type_size = type_sz(inst->dst.type);
453          if (reg_type_size[inst->dst.nr] == 0)
454             reg_type_size[inst->dst.nr] = type_size;
455          else if (reg_type_size[inst->dst.nr] != type_size)
456             no_spill[inst->dst.nr] = true;
457       }
458 
459       switch (inst->opcode) {
460 
461       case BRW_OPCODE_DO:
462          loop_scale *= 10;
463          break;
464 
465       case BRW_OPCODE_WHILE:
466          loop_scale /= 10;
467          break;
468 
469       case SHADER_OPCODE_GEN4_SCRATCH_READ:
470       case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
471          for (int i = 0; i < 3; i++) {
472             if (inst->src[i].file == VGRF)
473                no_spill[inst->src[i].nr] = true;
474          }
475          if (inst->dst.file == VGRF)
476             no_spill[inst->dst.nr] = true;
477          break;
478 
479       default:
480          break;
481       }
482    }
483 
484    ralloc_free(reg_type_size);
485 }
486 
487 int
choose_spill_reg(struct ra_graph * g)488 vec4_visitor::choose_spill_reg(struct ra_graph *g)
489 {
490    float spill_costs[this->alloc.count];
491    bool no_spill[this->alloc.count];
492 
493    evaluate_spill_costs(spill_costs, no_spill);
494 
495    for (unsigned i = 0; i < this->alloc.count; i++) {
496       if (!no_spill[i])
497          ra_set_node_spill_cost(g, i, spill_costs[i]);
498    }
499 
500    return ra_get_best_spill_node(g);
501 }
502 
503 void
spill_reg(unsigned spill_reg_nr)504 vec4_visitor::spill_reg(unsigned spill_reg_nr)
505 {
506    assert(alloc.sizes[spill_reg_nr] == 1 || alloc.sizes[spill_reg_nr] == 2);
507    unsigned spill_offset = last_scratch;
508    last_scratch += alloc.sizes[spill_reg_nr];
509 
510    /* Generate spill/unspill instructions for the objects being spilled. */
511    unsigned scratch_reg = ~0u;
512    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
513       for (unsigned i = 0; i < 3; i++) {
514          if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) {
515             if (scratch_reg == ~0u ||
516                 !can_use_scratch_for_source(inst, i, scratch_reg)) {
517                /* We need to unspill anyway so make sure we read the full vec4
518                 * in any case. This way, the cached register can be reused
519                 * for consecutive instructions that read different channels of
520                 * the same vec4.
521                 */
522                scratch_reg = alloc.allocate(alloc.sizes[spill_reg_nr]);
523                src_reg temp = inst->src[i];
524                temp.nr = scratch_reg;
525                temp.offset = 0;
526                temp.swizzle = BRW_SWIZZLE_XYZW;
527                emit_scratch_read(block, inst,
528                                  dst_reg(temp), inst->src[i], spill_offset);
529                temp.offset = inst->src[i].offset;
530             }
531             assert(scratch_reg != ~0u);
532             inst->src[i].nr = scratch_reg;
533          }
534       }
535 
536       if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) {
537          emit_scratch_write(block, inst, spill_offset);
538          scratch_reg = inst->dst.nr;
539       }
540    }
541 
542    invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
543 }
544 
545 } /* namespace brw */
546