1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #ifndef TENSORFLOW_LITE_TOOLS_OPTIMIZE_OPERATOR_PROPERTY_H_
16 #define TENSORFLOW_LITE_TOOLS_OPTIMIZE_OPERATOR_PROPERTY_H_
17 
18 #include "tensorflow/lite/model.h"
19 #include "tensorflow/lite/schema/schema_generated.h"
20 
21 namespace tflite {
22 namespace optimize {
23 namespace operator_property {
24 
25 // The scales of a certain tensor can be derived from the multiplications of all
26 // the scales. For example, for bias in conv, derived_scale = {{0, 1}, {}, {}}
27 // and for lstm gate bias, the derived scale is {{}, {0}, {2^-10}}
28 struct DerivedScale {
29   // MSVC2015 version 14.0 and below doesn't support struct initialization with
30   // initializer lists so emulate the behavior using a float initializer list.
31 #if _MSC_VER <= 1900
DerivedScaleDerivedScale32   DerivedScale() {}
33   // Construct this object with a list of initializer lists. All list elements
34   // are cast to float values to avoid ambiguous construction of a union-style
35   // object that could take either std::initializer_list<float> or
36   // std::initializer_list<int>.
DerivedScaleDerivedScale37   DerivedScale(std::initializer_list<std::initializer_list<float>> values) {
38     assert(values.size() == 3);
39     std::vector<std::initializer_list<float>> items(values);
40     for (auto& it : items[0]) {
41       input_tensors.push_back(static_cast<int>(it));
42     }
43     for (auto& it : items[1]) {
44       intermediate_tensors.push_back(static_cast<int>(it));
45     }
46     factors.assign(items[2]);
47   }
48 #endif  // _MSC_VER <= 1900
49 
50   std::vector<int> input_tensors = {};
51   std::vector<int> intermediate_tensors = {};
52   // This is a list of extra factors that are not associated with any other
53   // tensor.
54   std::vector<float> factors = {};
55 };
56 
57 struct TensorProperty {
58   // per_axis also implies symmetric currently.
59   bool per_axis = false;
60   // TODO(jianlijianli): remove dimension index and read it from tensor instead.
61   int per_axis_index = 0;
62   bool symmetric = false;
63 
64   // Constraints.
65   bool restriction = false;
66   // scale/zero_point hardcoded.
67   std::pair<float, int> restricted_value_int8 = {0.0f, 0};
68   std::pair<float, int> restricted_value_int16 = {0.0f, 0};
69 
70   // Use derived scale.
71   bool use_derived_scale = false;
72   // The derived scale.
73   DerivedScale derived_scale;
74 
75   // The number of bits for this tensor. It could be 8, 16, 32 or even not power
76   // of two.
77   int number_of_bits = 8;
78 
79   // Extend the range to power of two.
80   bool extend_to_power_of_two = false;
81 
82   // State tensor.
83   bool state_tensor = false;
84 };
85 
86 struct OperatorProperty {
87   // Is a quantized operations currently supported.
88   bool quantizable = true;
89   // Is a quantized operations currently supported for 16x8
90   bool quantizable_int16 = true;
91   // Op has arbitrary number of inputs, such as concat.
92   bool arbitrary_inputs = false;
93   // Op has arbitrary number of outputs, such as slice.
94   bool arbitrary_outputs = false;
95   // Input indexes -> input tensor property.
96   // Must be topologically sorted since there are derived scales.
97   std::vector<std::pair<int, TensorProperty>> inputs = {};
98   // Output indexes -> output tensor property.
99   std::vector<std::pair<int, TensorProperty>> outputs = {};
100   // Bias indexes.
101   // TODO(jianlijianli): remove this by putting biases into inputs as well since
102   // we now can model "derived scale".
103   std::vector<int> biases = {};
104 
105   // Intermediate indexes -> intermediate tensor property.
106   std::vector<std::pair<int, TensorProperty>> intermediates = {};
107 
108   // Force output to reuse the same scale and zero point of input.
109   bool restrict_same_input_output_scale = false;
110 
111   // Use same min of min and max of max for each group.
112   // Incompatible with restrict_same_input_output_scale and restricted_value.
113   // Currently it only supports scale pair of {input_index, output_index}.
114   // TODO(b/174534943): make it compatible with other restrictions when there
115   // is a use case.
116   std::vector<std::vector<int>> restrict_scale = {};
117 
118   // Op version.
119   int version = 1;
120 
121   // When we quantize activations into 16 bit and weights into 8 bit,
122   // we want to quantize all inputs, including constant tensors,
123   // for the operators like Add, Mul into 16-bit as well. The constant
124   // inputs are quantized as weights and this variable indicates
125   // that we want to do quantizations of these tensors as activations.
126   bool quantize_input_as_activations = false;
127 };
128 
129 // The op as well as it variants.
130 // TODO(b/174283888): extend it to support ops that has multiple variants.
131 struct OpVariant {
132   BuiltinOperator op_code;
133   bool use_layer_norm = false;
134   bool use_projection = false;
135   bool use_peephole = false;
136   // An attribute to indicate if quantization is supported for this Op.
137   // This attribute is equivalent to the "quantizable" attribute in
138   // "OperatorProperty". It added here since OpVariants peeks inside the Op and
139   // determines its quantization related properties.
140   bool is_quantizable = true;
141 };
142 
143 OperatorProperty GetOperatorProperty(const ModelT* model, int subgraph_index,
144                                      int op_index);
145 OperatorProperty GetOperatorProperty(OpVariant op_variant);
146 
147 }  // namespace operator_property
148 }  // namespace optimize
149 }  // namespace tflite
150 
151 #endif  // TENSORFLOW_LITE_TOOLS_OPTIMIZE_OPERATOR_PROPERTY_H_
152