1 /*
2 * Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "video/adaptation/overuse_frame_detector.h"
12
13 #include <math.h>
14 #include <stdio.h>
15
16 #include <algorithm>
17 #include <list>
18 #include <map>
19 #include <memory>
20 #include <string>
21 #include <utility>
22
23 #include "api/video/video_frame.h"
24 #include "rtc_base/checks.h"
25 #include "rtc_base/logging.h"
26 #include "rtc_base/numerics/exp_filter.h"
27 #include "rtc_base/time_utils.h"
28 #include "system_wrappers/include/field_trial.h"
29
30 #if defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
31 #include <mach/mach.h>
32 #endif // defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
33
34 namespace webrtc {
35
36 namespace {
37 const int64_t kCheckForOveruseIntervalMs = 5000;
38 const int64_t kTimeToFirstCheckForOveruseMs = 100;
39
40 // Delay between consecutive rampups. (Used for quick recovery.)
41 const int kQuickRampUpDelayMs = 10 * 1000;
42 // Delay between rampup attempts. Initially uses standard, scales up to max.
43 const int kStandardRampUpDelayMs = 40 * 1000;
44 const int kMaxRampUpDelayMs = 240 * 1000;
45 // Expontential back-off factor, to prevent annoying up-down behaviour.
46 const double kRampUpBackoffFactor = 2.0;
47
48 // Max number of overuses detected before always applying the rampup delay.
49 const int kMaxOverusesBeforeApplyRampupDelay = 4;
50
51 // The maximum exponent to use in VCMExpFilter.
52 const float kMaxExp = 7.0f;
53 // Default value used before first reconfiguration.
54 const int kDefaultFrameRate = 30;
55 // Default sample diff, default frame rate.
56 const float kDefaultSampleDiffMs = 1000.0f / kDefaultFrameRate;
57 // A factor applied to the sample diff on OnTargetFramerateUpdated to determine
58 // a max limit for the sample diff. For instance, with a framerate of 30fps,
59 // the sample diff is capped to (1000 / 30) * 1.35 = 45ms. This prevents
60 // triggering too soon if there are individual very large outliers.
61 const float kMaxSampleDiffMarginFactor = 1.35f;
62 // Minimum framerate allowed for usage calculation. This prevents crazy long
63 // encode times from being accepted if the frame rate happens to be low.
64 const int kMinFramerate = 7;
65 const int kMaxFramerate = 30;
66
67 // Class for calculating the processing usage on the send-side (the average
68 // processing time of a frame divided by the average time difference between
69 // captured frames).
70 class SendProcessingUsage1 : public OveruseFrameDetector::ProcessingUsage {
71 public:
SendProcessingUsage1(const CpuOveruseOptions & options)72 explicit SendProcessingUsage1(const CpuOveruseOptions& options)
73 : kWeightFactorFrameDiff(0.998f),
74 kWeightFactorProcessing(0.995f),
75 kInitialSampleDiffMs(40.0f),
76 options_(options),
77 count_(0),
78 last_processed_capture_time_us_(-1),
79 max_sample_diff_ms_(kDefaultSampleDiffMs * kMaxSampleDiffMarginFactor),
80 filtered_processing_ms_(new rtc::ExpFilter(kWeightFactorProcessing)),
81 filtered_frame_diff_ms_(new rtc::ExpFilter(kWeightFactorFrameDiff)) {
82 Reset();
83 }
~SendProcessingUsage1()84 ~SendProcessingUsage1() override {}
85
Reset()86 void Reset() override {
87 frame_timing_.clear();
88 count_ = 0;
89 last_processed_capture_time_us_ = -1;
90 max_sample_diff_ms_ = kDefaultSampleDiffMs * kMaxSampleDiffMarginFactor;
91 filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff);
92 filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs);
93 filtered_processing_ms_->Reset(kWeightFactorProcessing);
94 filtered_processing_ms_->Apply(1.0f, InitialProcessingMs());
95 }
96
SetMaxSampleDiffMs(float diff_ms)97 void SetMaxSampleDiffMs(float diff_ms) override {
98 max_sample_diff_ms_ = diff_ms;
99 }
100
FrameCaptured(const VideoFrame & frame,int64_t time_when_first_seen_us,int64_t last_capture_time_us)101 void FrameCaptured(const VideoFrame& frame,
102 int64_t time_when_first_seen_us,
103 int64_t last_capture_time_us) override {
104 if (last_capture_time_us != -1)
105 AddCaptureSample(1e-3 * (time_when_first_seen_us - last_capture_time_us));
106
107 frame_timing_.push_back(FrameTiming(frame.timestamp_us(), frame.timestamp(),
108 time_when_first_seen_us));
109 }
110
FrameSent(uint32_t timestamp,int64_t time_sent_in_us,int64_t,absl::optional<int>)111 absl::optional<int> FrameSent(
112 uint32_t timestamp,
113 int64_t time_sent_in_us,
114 int64_t /* capture_time_us */,
115 absl::optional<int> /* encode_duration_us */) override {
116 absl::optional<int> encode_duration_us;
117 // Delay before reporting actual encoding time, used to have the ability to
118 // detect total encoding time when encoding more than one layer. Encoding is
119 // here assumed to finish within a second (or that we get enough long-time
120 // samples before one second to trigger an overuse even when this is not the
121 // case).
122 static const int64_t kEncodingTimeMeasureWindowMs = 1000;
123 for (auto& it : frame_timing_) {
124 if (it.timestamp == timestamp) {
125 it.last_send_us = time_sent_in_us;
126 break;
127 }
128 }
129 // TODO(pbos): Handle the case/log errors when not finding the corresponding
130 // frame (either very slow encoding or incorrect wrong timestamps returned
131 // from the encoder).
132 // This is currently the case for all frames on ChromeOS, so logging them
133 // would be spammy, and triggering overuse would be wrong.
134 // https://crbug.com/350106
135 while (!frame_timing_.empty()) {
136 FrameTiming timing = frame_timing_.front();
137 if (time_sent_in_us - timing.capture_us <
138 kEncodingTimeMeasureWindowMs * rtc::kNumMicrosecsPerMillisec) {
139 break;
140 }
141 if (timing.last_send_us != -1) {
142 encode_duration_us.emplace(
143 static_cast<int>(timing.last_send_us - timing.capture_us));
144
145 if (last_processed_capture_time_us_ != -1) {
146 int64_t diff_us = timing.capture_us - last_processed_capture_time_us_;
147 AddSample(1e-3 * (*encode_duration_us), 1e-3 * diff_us);
148 }
149 last_processed_capture_time_us_ = timing.capture_us;
150 }
151 frame_timing_.pop_front();
152 }
153 return encode_duration_us;
154 }
155
Value()156 int Value() override {
157 if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
158 return static_cast<int>(InitialUsageInPercent() + 0.5f);
159 }
160 float frame_diff_ms = std::max(filtered_frame_diff_ms_->filtered(), 1.0f);
161 frame_diff_ms = std::min(frame_diff_ms, max_sample_diff_ms_);
162 float encode_usage_percent =
163 100.0f * filtered_processing_ms_->filtered() / frame_diff_ms;
164 return static_cast<int>(encode_usage_percent + 0.5);
165 }
166
167 private:
168 struct FrameTiming {
FrameTimingwebrtc::__anon5f06bfa10111::SendProcessingUsage1::FrameTiming169 FrameTiming(int64_t capture_time_us, uint32_t timestamp, int64_t now)
170 : capture_time_us(capture_time_us),
171 timestamp(timestamp),
172 capture_us(now),
173 last_send_us(-1) {}
174 int64_t capture_time_us;
175 uint32_t timestamp;
176 int64_t capture_us;
177 int64_t last_send_us;
178 };
179
AddCaptureSample(float sample_ms)180 void AddCaptureSample(float sample_ms) {
181 float exp = sample_ms / kDefaultSampleDiffMs;
182 exp = std::min(exp, kMaxExp);
183 filtered_frame_diff_ms_->Apply(exp, sample_ms);
184 }
185
AddSample(float processing_ms,int64_t diff_last_sample_ms)186 void AddSample(float processing_ms, int64_t diff_last_sample_ms) {
187 ++count_;
188 float exp = diff_last_sample_ms / kDefaultSampleDiffMs;
189 exp = std::min(exp, kMaxExp);
190 filtered_processing_ms_->Apply(exp, processing_ms);
191 }
192
InitialUsageInPercent() const193 float InitialUsageInPercent() const {
194 // Start in between the underuse and overuse threshold.
195 return (options_.low_encode_usage_threshold_percent +
196 options_.high_encode_usage_threshold_percent) /
197 2.0f;
198 }
199
InitialProcessingMs() const200 float InitialProcessingMs() const {
201 return InitialUsageInPercent() * kInitialSampleDiffMs / 100;
202 }
203
204 const float kWeightFactorFrameDiff;
205 const float kWeightFactorProcessing;
206 const float kInitialSampleDiffMs;
207
208 const CpuOveruseOptions options_;
209 std::list<FrameTiming> frame_timing_;
210 uint64_t count_;
211 int64_t last_processed_capture_time_us_;
212 float max_sample_diff_ms_;
213 std::unique_ptr<rtc::ExpFilter> filtered_processing_ms_;
214 std::unique_ptr<rtc::ExpFilter> filtered_frame_diff_ms_;
215 };
216
217 // New cpu load estimator.
218 // TODO(bugs.webrtc.org/8504): For some period of time, we need to
219 // switch between the two versions of the estimator for experiments.
220 // When problems are sorted out, the old estimator should be deleted.
221 class SendProcessingUsage2 : public OveruseFrameDetector::ProcessingUsage {
222 public:
SendProcessingUsage2(const CpuOveruseOptions & options)223 explicit SendProcessingUsage2(const CpuOveruseOptions& options)
224 : options_(options) {
225 Reset();
226 }
227 ~SendProcessingUsage2() override = default;
228
Reset()229 void Reset() override {
230 prev_time_us_ = -1;
231 // Start in between the underuse and overuse threshold.
232 load_estimate_ = (options_.low_encode_usage_threshold_percent +
233 options_.high_encode_usage_threshold_percent) /
234 200.0;
235 }
236
SetMaxSampleDiffMs(float)237 void SetMaxSampleDiffMs(float /* diff_ms */) override {}
238
FrameCaptured(const VideoFrame & frame,int64_t time_when_first_seen_us,int64_t last_capture_time_us)239 void FrameCaptured(const VideoFrame& frame,
240 int64_t time_when_first_seen_us,
241 int64_t last_capture_time_us) override {}
242
FrameSent(uint32_t,int64_t,int64_t capture_time_us,absl::optional<int> encode_duration_us)243 absl::optional<int> FrameSent(
244 uint32_t /* timestamp */,
245 int64_t /* time_sent_in_us */,
246 int64_t capture_time_us,
247 absl::optional<int> encode_duration_us) override {
248 if (encode_duration_us) {
249 int duration_per_frame_us =
250 DurationPerInputFrame(capture_time_us, *encode_duration_us);
251 if (prev_time_us_ != -1) {
252 if (capture_time_us < prev_time_us_) {
253 // The weighting in AddSample assumes that samples are processed with
254 // non-decreasing measurement timestamps. We could implement
255 // appropriate weights for samples arriving late, but since it is a
256 // rare case, keep things simple, by just pushing those measurements a
257 // bit forward in time.
258 capture_time_us = prev_time_us_;
259 }
260 AddSample(1e-6 * duration_per_frame_us,
261 1e-6 * (capture_time_us - prev_time_us_));
262 }
263 }
264 prev_time_us_ = capture_time_us;
265
266 return encode_duration_us;
267 }
268
269 private:
AddSample(double encode_time,double diff_time)270 void AddSample(double encode_time, double diff_time) {
271 RTC_CHECK_GE(diff_time, 0.0);
272
273 // Use the filter update
274 //
275 // load <-- x/d (1-exp (-d/T)) + exp (-d/T) load
276 //
277 // where we must take care for small d, using the proper limit
278 // (1 - exp(-d/tau)) / d = 1/tau - d/2tau^2 + O(d^2)
279 double tau = (1e-3 * options_.filter_time_ms);
280 double e = diff_time / tau;
281 double c;
282 if (e < 0.0001) {
283 c = (1 - e / 2) / tau;
284 } else {
285 c = -expm1(-e) / diff_time;
286 }
287 load_estimate_ = c * encode_time + exp(-e) * load_estimate_;
288 }
289
DurationPerInputFrame(int64_t capture_time_us,int64_t encode_time_us)290 int64_t DurationPerInputFrame(int64_t capture_time_us,
291 int64_t encode_time_us) {
292 // Discard data on old frames; limit 2 seconds.
293 static constexpr int64_t kMaxAge = 2 * rtc::kNumMicrosecsPerSec;
294 for (auto it = max_encode_time_per_input_frame_.begin();
295 it != max_encode_time_per_input_frame_.end() &&
296 it->first < capture_time_us - kMaxAge;) {
297 it = max_encode_time_per_input_frame_.erase(it);
298 }
299
300 std::map<int64_t, int>::iterator it;
301 bool inserted;
302 std::tie(it, inserted) = max_encode_time_per_input_frame_.emplace(
303 capture_time_us, encode_time_us);
304 if (inserted) {
305 // First encoded frame for this input frame.
306 return encode_time_us;
307 }
308 if (encode_time_us <= it->second) {
309 // Shorter encode time than previous frame (unlikely). Count it as being
310 // done in parallel.
311 return 0;
312 }
313 // Record new maximum encode time, and return increase from previous max.
314 int increase = encode_time_us - it->second;
315 it->second = encode_time_us;
316 return increase;
317 }
318
Value()319 int Value() override {
320 return static_cast<int>(100.0 * load_estimate_ + 0.5);
321 }
322
323 const CpuOveruseOptions options_;
324 // Indexed by the capture timestamp, used as frame id.
325 std::map<int64_t, int> max_encode_time_per_input_frame_;
326
327 int64_t prev_time_us_ = -1;
328 double load_estimate_;
329 };
330
331 // Class used for manual testing of overuse, enabled via field trial flag.
332 class OverdoseInjector : public OveruseFrameDetector::ProcessingUsage {
333 public:
OverdoseInjector(std::unique_ptr<OveruseFrameDetector::ProcessingUsage> usage,int64_t normal_period_ms,int64_t overuse_period_ms,int64_t underuse_period_ms)334 OverdoseInjector(std::unique_ptr<OveruseFrameDetector::ProcessingUsage> usage,
335 int64_t normal_period_ms,
336 int64_t overuse_period_ms,
337 int64_t underuse_period_ms)
338 : usage_(std::move(usage)),
339 normal_period_ms_(normal_period_ms),
340 overuse_period_ms_(overuse_period_ms),
341 underuse_period_ms_(underuse_period_ms),
342 state_(State::kNormal),
343 last_toggling_ms_(-1) {
344 RTC_DCHECK_GT(overuse_period_ms, 0);
345 RTC_DCHECK_GT(normal_period_ms, 0);
346 RTC_LOG(LS_INFO) << "Simulating overuse with intervals " << normal_period_ms
347 << "ms normal mode, " << overuse_period_ms
348 << "ms overuse mode.";
349 }
350
~OverdoseInjector()351 ~OverdoseInjector() override {}
352
Reset()353 void Reset() override { usage_->Reset(); }
354
SetMaxSampleDiffMs(float diff_ms)355 void SetMaxSampleDiffMs(float diff_ms) override {
356 usage_->SetMaxSampleDiffMs(diff_ms);
357 }
358
FrameCaptured(const VideoFrame & frame,int64_t time_when_first_seen_us,int64_t last_capture_time_us)359 void FrameCaptured(const VideoFrame& frame,
360 int64_t time_when_first_seen_us,
361 int64_t last_capture_time_us) override {
362 usage_->FrameCaptured(frame, time_when_first_seen_us, last_capture_time_us);
363 }
364
FrameSent(uint32_t timestamp,int64_t time_sent_in_us,int64_t capture_time_us,absl::optional<int> encode_duration_us)365 absl::optional<int> FrameSent(
366 // These two argument used by old estimator.
367 uint32_t timestamp,
368 int64_t time_sent_in_us,
369 // And these two by the new estimator.
370 int64_t capture_time_us,
371 absl::optional<int> encode_duration_us) override {
372 return usage_->FrameSent(timestamp, time_sent_in_us, capture_time_us,
373 encode_duration_us);
374 }
375
Value()376 int Value() override {
377 int64_t now_ms = rtc::TimeMillis();
378 if (last_toggling_ms_ == -1) {
379 last_toggling_ms_ = now_ms;
380 } else {
381 switch (state_) {
382 case State::kNormal:
383 if (now_ms > last_toggling_ms_ + normal_period_ms_) {
384 state_ = State::kOveruse;
385 last_toggling_ms_ = now_ms;
386 RTC_LOG(LS_INFO) << "Simulating CPU overuse.";
387 }
388 break;
389 case State::kOveruse:
390 if (now_ms > last_toggling_ms_ + overuse_period_ms_) {
391 state_ = State::kUnderuse;
392 last_toggling_ms_ = now_ms;
393 RTC_LOG(LS_INFO) << "Simulating CPU underuse.";
394 }
395 break;
396 case State::kUnderuse:
397 if (now_ms > last_toggling_ms_ + underuse_period_ms_) {
398 state_ = State::kNormal;
399 last_toggling_ms_ = now_ms;
400 RTC_LOG(LS_INFO) << "Actual CPU overuse measurements in effect.";
401 }
402 break;
403 }
404 }
405
406 absl::optional<int> overried_usage_value;
407 switch (state_) {
408 case State::kNormal:
409 break;
410 case State::kOveruse:
411 overried_usage_value.emplace(250);
412 break;
413 case State::kUnderuse:
414 overried_usage_value.emplace(5);
415 break;
416 }
417
418 return overried_usage_value.value_or(usage_->Value());
419 }
420
421 private:
422 const std::unique_ptr<OveruseFrameDetector::ProcessingUsage> usage_;
423 const int64_t normal_period_ms_;
424 const int64_t overuse_period_ms_;
425 const int64_t underuse_period_ms_;
426 enum class State { kNormal, kOveruse, kUnderuse } state_;
427 int64_t last_toggling_ms_;
428 };
429
430 } // namespace
431
CpuOveruseOptions()432 CpuOveruseOptions::CpuOveruseOptions()
433 : high_encode_usage_threshold_percent(85),
434 frame_timeout_interval_ms(1500),
435 min_frame_samples(120),
436 min_process_count(3),
437 high_threshold_consecutive_count(2),
438 // Disabled by default.
439 filter_time_ms(0) {
440 #if defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
441 // This is proof-of-concept code for letting the physical core count affect
442 // the interval into which we attempt to scale. For now, the code is Mac OS
443 // specific, since that's the platform were we saw most problems.
444 // TODO(torbjorng): Enhance SystemInfo to return this metric.
445
446 mach_port_t mach_host = mach_host_self();
447 host_basic_info hbi = {};
448 mach_msg_type_number_t info_count = HOST_BASIC_INFO_COUNT;
449 kern_return_t kr =
450 host_info(mach_host, HOST_BASIC_INFO, reinterpret_cast<host_info_t>(&hbi),
451 &info_count);
452 mach_port_deallocate(mach_task_self(), mach_host);
453
454 int n_physical_cores;
455 if (kr != KERN_SUCCESS) {
456 // If we couldn't get # of physical CPUs, don't panic. Assume we have 1.
457 n_physical_cores = 1;
458 RTC_LOG(LS_ERROR)
459 << "Failed to determine number of physical cores, assuming 1";
460 } else {
461 n_physical_cores = hbi.physical_cpu;
462 RTC_LOG(LS_INFO) << "Number of physical cores:" << n_physical_cores;
463 }
464
465 // Change init list default for few core systems. The assumption here is that
466 // encoding, which we measure here, takes about 1/4 of the processing of a
467 // two-way call. This is roughly true for x86 using both vp8 and vp9 without
468 // hardware encoding. Since we don't affect the incoming stream here, we only
469 // control about 1/2 of the total processing needs, but this is not taken into
470 // account.
471 if (n_physical_cores == 1)
472 high_encode_usage_threshold_percent = 20; // Roughly 1/4 of 100%.
473 else if (n_physical_cores == 2)
474 high_encode_usage_threshold_percent = 40; // Roughly 1/4 of 200%.
475 #endif // defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
476
477 // Note that we make the interval 2x+epsilon wide, since libyuv scaling steps
478 // are close to that (when squared). This wide interval makes sure that
479 // scaling up or down does not jump all the way across the interval.
480 low_encode_usage_threshold_percent =
481 (high_encode_usage_threshold_percent - 1) / 2;
482 }
483
484 std::unique_ptr<OveruseFrameDetector::ProcessingUsage>
CreateProcessingUsage(const CpuOveruseOptions & options)485 OveruseFrameDetector::CreateProcessingUsage(const CpuOveruseOptions& options) {
486 std::unique_ptr<ProcessingUsage> instance;
487 if (options.filter_time_ms > 0) {
488 instance = std::make_unique<SendProcessingUsage2>(options);
489 } else {
490 instance = std::make_unique<SendProcessingUsage1>(options);
491 }
492 std::string toggling_interval =
493 field_trial::FindFullName("WebRTC-ForceSimulatedOveruseIntervalMs");
494 if (!toggling_interval.empty()) {
495 int normal_period_ms = 0;
496 int overuse_period_ms = 0;
497 int underuse_period_ms = 0;
498 if (sscanf(toggling_interval.c_str(), "%d-%d-%d", &normal_period_ms,
499 &overuse_period_ms, &underuse_period_ms) == 3) {
500 if (normal_period_ms > 0 && overuse_period_ms > 0 &&
501 underuse_period_ms > 0) {
502 instance = std::make_unique<OverdoseInjector>(
503 std::move(instance), normal_period_ms, overuse_period_ms,
504 underuse_period_ms);
505 } else {
506 RTC_LOG(LS_WARNING)
507 << "Invalid (non-positive) normal/overuse/underuse periods: "
508 << normal_period_ms << " / " << overuse_period_ms << " / "
509 << underuse_period_ms;
510 }
511 } else {
512 RTC_LOG(LS_WARNING) << "Malformed toggling interval: "
513 << toggling_interval;
514 }
515 }
516 return instance;
517 }
518
OveruseFrameDetector(CpuOveruseMetricsObserver * metrics_observer)519 OveruseFrameDetector::OveruseFrameDetector(
520 CpuOveruseMetricsObserver* metrics_observer)
521 : metrics_observer_(metrics_observer),
522 num_process_times_(0),
523 // TODO(nisse): Use absl::optional
524 last_capture_time_us_(-1),
525 num_pixels_(0),
526 max_framerate_(kDefaultFrameRate),
527 last_overuse_time_ms_(-1),
528 checks_above_threshold_(0),
529 num_overuse_detections_(0),
530 last_rampup_time_ms_(-1),
531 in_quick_rampup_(false),
532 current_rampup_delay_ms_(kStandardRampUpDelayMs) {
533 task_checker_.Detach();
534 ParseFieldTrial({&filter_time_constant_},
535 field_trial::FindFullName("WebRTC-CpuLoadEstimator"));
536 }
537
~OveruseFrameDetector()538 OveruseFrameDetector::~OveruseFrameDetector() {}
539
StartCheckForOveruse(TaskQueueBase * task_queue_base,const CpuOveruseOptions & options,OveruseFrameDetectorObserverInterface * overuse_observer)540 void OveruseFrameDetector::StartCheckForOveruse(
541 TaskQueueBase* task_queue_base,
542 const CpuOveruseOptions& options,
543 OveruseFrameDetectorObserverInterface* overuse_observer) {
544 RTC_DCHECK_RUN_ON(&task_checker_);
545 RTC_DCHECK(!check_overuse_task_.Running());
546 RTC_DCHECK(overuse_observer != nullptr);
547
548 SetOptions(options);
549 check_overuse_task_ = RepeatingTaskHandle::DelayedStart(
550 task_queue_base, TimeDelta::Millis(kTimeToFirstCheckForOveruseMs),
551 [this, overuse_observer] {
552 CheckForOveruse(overuse_observer);
553 return TimeDelta::Millis(kCheckForOveruseIntervalMs);
554 });
555 }
StopCheckForOveruse()556 void OveruseFrameDetector::StopCheckForOveruse() {
557 RTC_DCHECK_RUN_ON(&task_checker_);
558 check_overuse_task_.Stop();
559 }
560
EncodedFrameTimeMeasured(int encode_duration_ms)561 void OveruseFrameDetector::EncodedFrameTimeMeasured(int encode_duration_ms) {
562 RTC_DCHECK_RUN_ON(&task_checker_);
563 encode_usage_percent_ = usage_->Value();
564
565 metrics_observer_->OnEncodedFrameTimeMeasured(encode_duration_ms,
566 *encode_usage_percent_);
567 }
568
FrameSizeChanged(int num_pixels) const569 bool OveruseFrameDetector::FrameSizeChanged(int num_pixels) const {
570 RTC_DCHECK_RUN_ON(&task_checker_);
571 if (num_pixels != num_pixels_) {
572 return true;
573 }
574 return false;
575 }
576
FrameTimeoutDetected(int64_t now_us) const577 bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now_us) const {
578 RTC_DCHECK_RUN_ON(&task_checker_);
579 if (last_capture_time_us_ == -1)
580 return false;
581 return (now_us - last_capture_time_us_) >
582 options_.frame_timeout_interval_ms * rtc::kNumMicrosecsPerMillisec;
583 }
584
ResetAll(int num_pixels)585 void OveruseFrameDetector::ResetAll(int num_pixels) {
586 // Reset state, as a result resolution being changed. Do not however change
587 // the current frame rate back to the default.
588 RTC_DCHECK_RUN_ON(&task_checker_);
589 num_pixels_ = num_pixels;
590 usage_->Reset();
591 last_capture_time_us_ = -1;
592 num_process_times_ = 0;
593 encode_usage_percent_ = absl::nullopt;
594 OnTargetFramerateUpdated(max_framerate_);
595 }
596
OnTargetFramerateUpdated(int framerate_fps)597 void OveruseFrameDetector::OnTargetFramerateUpdated(int framerate_fps) {
598 RTC_DCHECK_RUN_ON(&task_checker_);
599 RTC_DCHECK_GE(framerate_fps, 0);
600 max_framerate_ = std::min(kMaxFramerate, framerate_fps);
601 usage_->SetMaxSampleDiffMs((1000 / std::max(kMinFramerate, max_framerate_)) *
602 kMaxSampleDiffMarginFactor);
603 }
604
FrameCaptured(const VideoFrame & frame,int64_t time_when_first_seen_us)605 void OveruseFrameDetector::FrameCaptured(const VideoFrame& frame,
606 int64_t time_when_first_seen_us) {
607 RTC_DCHECK_RUN_ON(&task_checker_);
608
609 if (FrameSizeChanged(frame.width() * frame.height()) ||
610 FrameTimeoutDetected(time_when_first_seen_us)) {
611 ResetAll(frame.width() * frame.height());
612 }
613
614 usage_->FrameCaptured(frame, time_when_first_seen_us, last_capture_time_us_);
615 last_capture_time_us_ = time_when_first_seen_us;
616 }
617
FrameSent(uint32_t timestamp,int64_t time_sent_in_us,int64_t capture_time_us,absl::optional<int> encode_duration_us)618 void OveruseFrameDetector::FrameSent(uint32_t timestamp,
619 int64_t time_sent_in_us,
620 int64_t capture_time_us,
621 absl::optional<int> encode_duration_us) {
622 RTC_DCHECK_RUN_ON(&task_checker_);
623 encode_duration_us = usage_->FrameSent(timestamp, time_sent_in_us,
624 capture_time_us, encode_duration_us);
625
626 if (encode_duration_us) {
627 EncodedFrameTimeMeasured(*encode_duration_us /
628 rtc::kNumMicrosecsPerMillisec);
629 }
630 }
631
CheckForOveruse(OveruseFrameDetectorObserverInterface * observer)632 void OveruseFrameDetector::CheckForOveruse(
633 OveruseFrameDetectorObserverInterface* observer) {
634 RTC_DCHECK_RUN_ON(&task_checker_);
635 RTC_DCHECK(observer);
636 ++num_process_times_;
637 if (num_process_times_ <= options_.min_process_count ||
638 !encode_usage_percent_)
639 return;
640
641 int64_t now_ms = rtc::TimeMillis();
642
643 if (IsOverusing(*encode_usage_percent_)) {
644 // If the last thing we did was going up, and now have to back down, we need
645 // to check if this peak was short. If so we should back off to avoid going
646 // back and forth between this load, the system doesn't seem to handle it.
647 bool check_for_backoff = last_rampup_time_ms_ > last_overuse_time_ms_;
648 if (check_for_backoff) {
649 if (now_ms - last_rampup_time_ms_ < kStandardRampUpDelayMs ||
650 num_overuse_detections_ > kMaxOverusesBeforeApplyRampupDelay) {
651 // Going up was not ok for very long, back off.
652 current_rampup_delay_ms_ *= kRampUpBackoffFactor;
653 if (current_rampup_delay_ms_ > kMaxRampUpDelayMs)
654 current_rampup_delay_ms_ = kMaxRampUpDelayMs;
655 } else {
656 // Not currently backing off, reset rampup delay.
657 current_rampup_delay_ms_ = kStandardRampUpDelayMs;
658 }
659 }
660
661 last_overuse_time_ms_ = now_ms;
662 in_quick_rampup_ = false;
663 checks_above_threshold_ = 0;
664 ++num_overuse_detections_;
665
666 observer->AdaptDown();
667 } else if (IsUnderusing(*encode_usage_percent_, now_ms)) {
668 last_rampup_time_ms_ = now_ms;
669 in_quick_rampup_ = true;
670
671 observer->AdaptUp();
672 }
673
674 int rampup_delay =
675 in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
676
677 RTC_LOG(LS_VERBOSE) << " Frame stats: "
678 " encode usage "
679 << *encode_usage_percent_ << " overuse detections "
680 << num_overuse_detections_ << " rampup delay "
681 << rampup_delay;
682 }
683
SetOptions(const CpuOveruseOptions & options)684 void OveruseFrameDetector::SetOptions(const CpuOveruseOptions& options) {
685 RTC_DCHECK_RUN_ON(&task_checker_);
686 options_ = options;
687
688 // Time constant config overridable by field trial.
689 if (filter_time_constant_) {
690 options_.filter_time_ms = filter_time_constant_->ms();
691 }
692 // Force reset with next frame.
693 num_pixels_ = 0;
694 usage_ = CreateProcessingUsage(options);
695 }
696
IsOverusing(int usage_percent)697 bool OveruseFrameDetector::IsOverusing(int usage_percent) {
698 RTC_DCHECK_RUN_ON(&task_checker_);
699
700 if (usage_percent >= options_.high_encode_usage_threshold_percent) {
701 ++checks_above_threshold_;
702 } else {
703 checks_above_threshold_ = 0;
704 }
705 return checks_above_threshold_ >= options_.high_threshold_consecutive_count;
706 }
707
IsUnderusing(int usage_percent,int64_t time_now)708 bool OveruseFrameDetector::IsUnderusing(int usage_percent, int64_t time_now) {
709 RTC_DCHECK_RUN_ON(&task_checker_);
710 int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
711 if (time_now < last_rampup_time_ms_ + delay)
712 return false;
713
714 return usage_percent < options_.low_encode_usage_threshold_percent;
715 }
716 } // namespace webrtc
717