1 // Copyright 2018 Developers of the Rand project.
2 //
3 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4 // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5 // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
6 // option. This file may not be copied, modified, or distributed
7 // except according to those terms.
8 
9 //! Low-level API for sampling indices
10 
11 #[cfg(feature = "alloc")] use core::slice;
12 
13 #[cfg(feature = "alloc")] use alloc::vec::{self, Vec};
14 // BTreeMap is not as fast in tests, but better than nothing.
15 #[cfg(all(feature = "alloc", not(feature = "std")))]
16 use alloc::collections::BTreeSet;
17 #[cfg(feature = "std")] use std::collections::HashSet;
18 
19 #[cfg(feature = "alloc")]
20 use crate::distributions::{uniform::SampleUniform, Distribution, Uniform};
21 #[cfg(feature = "std")]
22 use crate::distributions::WeightedError;
23 use crate::Rng;
24 
25 #[cfg(feature = "serde1")]
26 use serde::{Serialize, Deserialize};
27 
28 /// A vector of indices.
29 ///
30 /// Multiple internal representations are possible.
31 #[derive(Clone, Debug)]
32 #[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
33 pub enum IndexVec {
34     #[doc(hidden)]
35     U32(Vec<u32>),
36     #[doc(hidden)]
37     USize(Vec<usize>),
38 }
39 
40 impl IndexVec {
41     /// Returns the number of indices
42     #[inline]
len(&self) -> usize43     pub fn len(&self) -> usize {
44         match *self {
45             IndexVec::U32(ref v) => v.len(),
46             IndexVec::USize(ref v) => v.len(),
47         }
48     }
49 
50     /// Returns `true` if the length is 0.
51     #[inline]
is_empty(&self) -> bool52     pub fn is_empty(&self) -> bool {
53         match *self {
54             IndexVec::U32(ref v) => v.is_empty(),
55             IndexVec::USize(ref v) => v.is_empty(),
56         }
57     }
58 
59     /// Return the value at the given `index`.
60     ///
61     /// (Note: we cannot implement [`std::ops::Index`] because of lifetime
62     /// restrictions.)
63     #[inline]
index(&self, index: usize) -> usize64     pub fn index(&self, index: usize) -> usize {
65         match *self {
66             IndexVec::U32(ref v) => v[index] as usize,
67             IndexVec::USize(ref v) => v[index],
68         }
69     }
70 
71     /// Return result as a `Vec<usize>`. Conversion may or may not be trivial.
72     #[inline]
into_vec(self) -> Vec<usize>73     pub fn into_vec(self) -> Vec<usize> {
74         match self {
75             IndexVec::U32(v) => v.into_iter().map(|i| i as usize).collect(),
76             IndexVec::USize(v) => v,
77         }
78     }
79 
80     /// Iterate over the indices as a sequence of `usize` values
81     #[inline]
iter(&self) -> IndexVecIter<'_>82     pub fn iter(&self) -> IndexVecIter<'_> {
83         match *self {
84             IndexVec::U32(ref v) => IndexVecIter::U32(v.iter()),
85             IndexVec::USize(ref v) => IndexVecIter::USize(v.iter()),
86         }
87     }
88 }
89 
90 impl IntoIterator for IndexVec {
91     type Item = usize;
92     type IntoIter = IndexVecIntoIter;
93 
94     /// Convert into an iterator over the indices as a sequence of `usize` values
95     #[inline]
into_iter(self) -> IndexVecIntoIter96     fn into_iter(self) -> IndexVecIntoIter {
97         match self {
98             IndexVec::U32(v) => IndexVecIntoIter::U32(v.into_iter()),
99             IndexVec::USize(v) => IndexVecIntoIter::USize(v.into_iter()),
100         }
101     }
102 }
103 
104 impl PartialEq for IndexVec {
eq(&self, other: &IndexVec) -> bool105     fn eq(&self, other: &IndexVec) -> bool {
106         use self::IndexVec::*;
107         match (self, other) {
108             (&U32(ref v1), &U32(ref v2)) => v1 == v2,
109             (&USize(ref v1), &USize(ref v2)) => v1 == v2,
110             (&U32(ref v1), &USize(ref v2)) => {
111                 (v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x as usize == *y))
112             }
113             (&USize(ref v1), &U32(ref v2)) => {
114                 (v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x == *y as usize))
115             }
116         }
117     }
118 }
119 
120 impl From<Vec<u32>> for IndexVec {
121     #[inline]
from(v: Vec<u32>) -> Self122     fn from(v: Vec<u32>) -> Self {
123         IndexVec::U32(v)
124     }
125 }
126 
127 impl From<Vec<usize>> for IndexVec {
128     #[inline]
from(v: Vec<usize>) -> Self129     fn from(v: Vec<usize>) -> Self {
130         IndexVec::USize(v)
131     }
132 }
133 
134 /// Return type of `IndexVec::iter`.
135 #[derive(Debug)]
136 pub enum IndexVecIter<'a> {
137     #[doc(hidden)]
138     U32(slice::Iter<'a, u32>),
139     #[doc(hidden)]
140     USize(slice::Iter<'a, usize>),
141 }
142 
143 impl<'a> Iterator for IndexVecIter<'a> {
144     type Item = usize;
145 
146     #[inline]
next(&mut self) -> Option<usize>147     fn next(&mut self) -> Option<usize> {
148         use self::IndexVecIter::*;
149         match *self {
150             U32(ref mut iter) => iter.next().map(|i| *i as usize),
151             USize(ref mut iter) => iter.next().cloned(),
152         }
153     }
154 
155     #[inline]
size_hint(&self) -> (usize, Option<usize>)156     fn size_hint(&self) -> (usize, Option<usize>) {
157         match *self {
158             IndexVecIter::U32(ref v) => v.size_hint(),
159             IndexVecIter::USize(ref v) => v.size_hint(),
160         }
161     }
162 }
163 
164 impl<'a> ExactSizeIterator for IndexVecIter<'a> {}
165 
166 /// Return type of `IndexVec::into_iter`.
167 #[derive(Clone, Debug)]
168 pub enum IndexVecIntoIter {
169     #[doc(hidden)]
170     U32(vec::IntoIter<u32>),
171     #[doc(hidden)]
172     USize(vec::IntoIter<usize>),
173 }
174 
175 impl Iterator for IndexVecIntoIter {
176     type Item = usize;
177 
178     #[inline]
next(&mut self) -> Option<Self::Item>179     fn next(&mut self) -> Option<Self::Item> {
180         use self::IndexVecIntoIter::*;
181         match *self {
182             U32(ref mut v) => v.next().map(|i| i as usize),
183             USize(ref mut v) => v.next(),
184         }
185     }
186 
187     #[inline]
size_hint(&self) -> (usize, Option<usize>)188     fn size_hint(&self) -> (usize, Option<usize>) {
189         use self::IndexVecIntoIter::*;
190         match *self {
191             U32(ref v) => v.size_hint(),
192             USize(ref v) => v.size_hint(),
193         }
194     }
195 }
196 
197 impl ExactSizeIterator for IndexVecIntoIter {}
198 
199 
200 /// Randomly sample exactly `amount` distinct indices from `0..length`, and
201 /// return them in random order (fully shuffled).
202 ///
203 /// This method is used internally by the slice sampling methods, but it can
204 /// sometimes be useful to have the indices themselves so this is provided as
205 /// an alternative.
206 ///
207 /// The implementation used is not specified; we automatically select the
208 /// fastest available algorithm for the `length` and `amount` parameters
209 /// (based on detailed profiling on an Intel Haswell CPU). Roughly speaking,
210 /// complexity is `O(amount)`, except that when `amount` is small, performance
211 /// is closer to `O(amount^2)`, and when `length` is close to `amount` then
212 /// `O(length)`.
213 ///
214 /// Note that performance is significantly better over `u32` indices than over
215 /// `u64` indices. Because of this we hide the underlying type behind an
216 /// abstraction, `IndexVec`.
217 ///
218 /// If an allocation-free `no_std` function is required, it is suggested
219 /// to adapt the internal `sample_floyd` implementation.
220 ///
221 /// Panics if `amount > length`.
sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec where R: Rng + ?Sized222 pub fn sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec
223 where R: Rng + ?Sized {
224     if amount > length {
225         panic!("`amount` of samples must be less than or equal to `length`");
226     }
227     if length > (::core::u32::MAX as usize) {
228         // We never want to use inplace here, but could use floyd's alg
229         // Lazy version: always use the cache alg.
230         return sample_rejection(rng, length, amount);
231     }
232     let amount = amount as u32;
233     let length = length as u32;
234 
235     // Choice of algorithm here depends on both length and amount. See:
236     // https://github.com/rust-random/rand/pull/479
237     // We do some calculations with f32. Accuracy is not very important.
238 
239     if amount < 163 {
240         const C: [[f32; 2]; 2] = [[1.6, 8.0 / 45.0], [10.0, 70.0 / 9.0]];
241         let j = if length < 500_000 { 0 } else { 1 };
242         let amount_fp = amount as f32;
243         let m4 = C[0][j] * amount_fp;
244         // Short-cut: when amount < 12, floyd's is always faster
245         if amount > 11 && (length as f32) < (C[1][j] + m4) * amount_fp {
246             sample_inplace(rng, length, amount)
247         } else {
248             sample_floyd(rng, length, amount)
249         }
250     } else {
251         const C: [f32; 2] = [270.0, 330.0 / 9.0];
252         let j = if length < 500_000 { 0 } else { 1 };
253         if (length as f32) < C[j] * (amount as f32) {
254             sample_inplace(rng, length, amount)
255         } else {
256             sample_rejection(rng, length, amount)
257         }
258     }
259 }
260 
261 /// Randomly sample exactly `amount` distinct indices from `0..length`, and
262 /// return them in an arbitrary order (there is no guarantee of shuffling or
263 /// ordering). The weights are to be provided by the input function `weights`,
264 /// which will be called once for each index.
265 ///
266 /// This method is used internally by the slice sampling methods, but it can
267 /// sometimes be useful to have the indices themselves so this is provided as
268 /// an alternative.
269 ///
270 /// This implementation uses `O(length + amount)` space and `O(length)` time
271 /// if the "nightly" feature is enabled, or `O(length)` space and
272 /// `O(length + amount * log length)` time otherwise.
273 ///
274 /// Panics if `amount > length`.
275 #[cfg(feature = "std")]
276 #[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
sample_weighted<R, F, X>( rng: &mut R, length: usize, weight: F, amount: usize, ) -> Result<IndexVec, WeightedError> where R: Rng + ?Sized, F: Fn(usize) -> X, X: Into<f64>,277 pub fn sample_weighted<R, F, X>(
278     rng: &mut R, length: usize, weight: F, amount: usize,
279 ) -> Result<IndexVec, WeightedError>
280 where
281     R: Rng + ?Sized,
282     F: Fn(usize) -> X,
283     X: Into<f64>,
284 {
285     if length > (core::u32::MAX as usize) {
286         sample_efraimidis_spirakis(rng, length, weight, amount)
287     } else {
288         assert!(amount <= core::u32::MAX as usize);
289         let amount = amount as u32;
290         let length = length as u32;
291         sample_efraimidis_spirakis(rng, length, weight, amount)
292     }
293 }
294 
295 
296 /// Randomly sample exactly `amount` distinct indices from `0..length`, and
297 /// return them in an arbitrary order (there is no guarantee of shuffling or
298 /// ordering). The weights are to be provided by the input function `weights`,
299 /// which will be called once for each index.
300 ///
301 /// This implementation uses the algorithm described by Efraimidis and Spirakis
302 /// in this paper: https://doi.org/10.1016/j.ipl.2005.11.003
303 /// It uses `O(length + amount)` space and `O(length)` time if the
304 /// "nightly" feature is enabled, or `O(length)` space and `O(length
305 /// + amount * log length)` time otherwise.
306 ///
307 /// Panics if `amount > length`.
308 #[cfg(feature = "std")]
sample_efraimidis_spirakis<R, F, X, N>( rng: &mut R, length: N, weight: F, amount: N, ) -> Result<IndexVec, WeightedError> where R: Rng + ?Sized, F: Fn(usize) -> X, X: Into<f64>, N: UInt, IndexVec: From<Vec<N>>,309 fn sample_efraimidis_spirakis<R, F, X, N>(
310     rng: &mut R, length: N, weight: F, amount: N,
311 ) -> Result<IndexVec, WeightedError>
312 where
313     R: Rng + ?Sized,
314     F: Fn(usize) -> X,
315     X: Into<f64>,
316     N: UInt,
317     IndexVec: From<Vec<N>>,
318 {
319     if amount == N::zero() {
320         return Ok(IndexVec::U32(Vec::new()));
321     }
322 
323     if amount > length {
324         panic!("`amount` of samples must be less than or equal to `length`");
325     }
326 
327     struct Element<N> {
328         index: N,
329         key: f64,
330     }
331     impl<N> PartialOrd for Element<N> {
332         fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
333             self.key.partial_cmp(&other.key)
334         }
335     }
336     impl<N> Ord for Element<N> {
337         fn cmp(&self, other: &Self) -> core::cmp::Ordering {
338              // partial_cmp will always produce a value,
339              // because we check that the weights are not nan
340             self.partial_cmp(other).unwrap()
341         }
342     }
343     impl<N> PartialEq for Element<N> {
344         fn eq(&self, other: &Self) -> bool {
345             self.key == other.key
346         }
347     }
348     impl<N> Eq for Element<N> {}
349 
350     #[cfg(feature = "nightly")]
351     {
352         let mut candidates = Vec::with_capacity(length.as_usize());
353         let mut index = N::zero();
354         while index < length {
355             let weight = weight(index.as_usize()).into();
356             if !(weight >= 0.) {
357                 return Err(WeightedError::InvalidWeight);
358             }
359 
360             let key = rng.gen::<f64>().powf(1.0 / weight);
361             candidates.push(Element { index, key });
362 
363             index += N::one();
364         }
365 
366         // Partially sort the array to find the `amount` elements with the greatest
367         // keys. Do this by using `select_nth_unstable` to put the elements with
368         // the *smallest* keys at the beginning of the list in `O(n)` time, which
369         // provides equivalent information about the elements with the *greatest* keys.
370         let (_, mid, greater)
371             = candidates.select_nth_unstable(length.as_usize() - amount.as_usize());
372 
373         let mut result: Vec<N> = Vec::with_capacity(amount.as_usize());
374         result.push(mid.index);
375         for element in greater {
376             result.push(element.index);
377         }
378         Ok(IndexVec::from(result))
379     }
380 
381     #[cfg(not(feature = "nightly"))]
382     {
383         use std::collections::BinaryHeap;
384 
385         // Partially sort the array such that the `amount` elements with the largest
386         // keys are first using a binary max heap.
387         let mut candidates = BinaryHeap::with_capacity(length.as_usize());
388         let mut index = N::zero();
389         while index < length {
390             let weight = weight(index.as_usize()).into();
391             if !(weight >= 0.) {
392                 return Err(WeightedError::InvalidWeight);
393             }
394 
395             let key = rng.gen::<f64>().powf(1.0 / weight);
396             candidates.push(Element { index, key });
397 
398             index += N::one();
399         }
400 
401         let mut result: Vec<N> = Vec::with_capacity(amount.as_usize());
402         while result.len() < amount.as_usize() {
403             result.push(candidates.pop().unwrap().index);
404         }
405         Ok(IndexVec::from(result))
406     }
407 }
408 
409 /// Randomly sample exactly `amount` indices from `0..length`, using Floyd's
410 /// combination algorithm.
411 ///
412 /// The output values are fully shuffled. (Overhead is under 50%.)
413 ///
414 /// This implementation uses `O(amount)` memory and `O(amount^2)` time.
sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec where R: Rng + ?Sized415 fn sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
416 where R: Rng + ?Sized {
417     // For small amount we use Floyd's fully-shuffled variant. For larger
418     // amounts this is slow due to Vec::insert performance, so we shuffle
419     // afterwards. Benchmarks show little overhead from extra logic.
420     let floyd_shuffle = amount < 50;
421 
422     debug_assert!(amount <= length);
423     let mut indices = Vec::with_capacity(amount as usize);
424     for j in length - amount..length {
425         let t = rng.gen_range(0..=j);
426         if floyd_shuffle {
427             if let Some(pos) = indices.iter().position(|&x| x == t) {
428                 indices.insert(pos, j);
429                 continue;
430             }
431         } else if indices.contains(&t) {
432             indices.push(j);
433             continue;
434         }
435         indices.push(t);
436     }
437     if !floyd_shuffle {
438         // Reimplement SliceRandom::shuffle with smaller indices
439         for i in (1..amount).rev() {
440             // invariant: elements with index > i have been locked in place.
441             indices.swap(i as usize, rng.gen_range(0..=i) as usize);
442         }
443     }
444     IndexVec::from(indices)
445 }
446 
447 /// Randomly sample exactly `amount` indices from `0..length`, using an inplace
448 /// partial Fisher-Yates method.
449 /// Sample an amount of indices using an inplace partial fisher yates method.
450 ///
451 /// This allocates the entire `length` of indices and randomizes only the first `amount`.
452 /// It then truncates to `amount` and returns.
453 ///
454 /// This method is not appropriate for large `length` and potentially uses a lot
455 /// of memory; because of this we only implement for `u32` index (which improves
456 /// performance in all cases).
457 ///
458 /// Set-up is `O(length)` time and memory and shuffling is `O(amount)` time.
sample_inplace<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec where R: Rng + ?Sized459 fn sample_inplace<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
460 where R: Rng + ?Sized {
461     debug_assert!(amount <= length);
462     let mut indices: Vec<u32> = Vec::with_capacity(length as usize);
463     indices.extend(0..length);
464     for i in 0..amount {
465         let j: u32 = rng.gen_range(i..length);
466         indices.swap(i as usize, j as usize);
467     }
468     indices.truncate(amount as usize);
469     debug_assert_eq!(indices.len(), amount as usize);
470     IndexVec::from(indices)
471 }
472 
473 trait UInt: Copy + PartialOrd + Ord + PartialEq + Eq + SampleUniform
474     + core::hash::Hash + core::ops::AddAssign {
zero() -> Self475     fn zero() -> Self;
one() -> Self476     fn one() -> Self;
as_usize(self) -> usize477     fn as_usize(self) -> usize;
478 }
479 impl UInt for u32 {
480     #[inline]
zero() -> Self481     fn zero() -> Self {
482         0
483     }
484 
485     #[inline]
one() -> Self486     fn one() -> Self {
487         1
488     }
489 
490     #[inline]
as_usize(self) -> usize491     fn as_usize(self) -> usize {
492         self as usize
493     }
494 }
495 impl UInt for usize {
496     #[inline]
zero() -> Self497     fn zero() -> Self {
498         0
499     }
500 
501     #[inline]
one() -> Self502     fn one() -> Self {
503         1
504     }
505 
506     #[inline]
as_usize(self) -> usize507     fn as_usize(self) -> usize {
508         self
509     }
510 }
511 
512 /// Randomly sample exactly `amount` indices from `0..length`, using rejection
513 /// sampling.
514 ///
515 /// Since `amount <<< length` there is a low chance of a random sample in
516 /// `0..length` being a duplicate. We test for duplicates and resample where
517 /// necessary. The algorithm is `O(amount)` time and memory.
518 ///
519 /// This function  is generic over X primarily so that results are value-stable
520 /// over 32-bit and 64-bit platforms.
sample_rejection<X: UInt, R>(rng: &mut R, length: X, amount: X) -> IndexVec where R: Rng + ?Sized, IndexVec: From<Vec<X>>,521 fn sample_rejection<X: UInt, R>(rng: &mut R, length: X, amount: X) -> IndexVec
522 where
523     R: Rng + ?Sized,
524     IndexVec: From<Vec<X>>,
525 {
526     debug_assert!(amount < length);
527     #[cfg(feature = "std")]
528     let mut cache = HashSet::with_capacity(amount.as_usize());
529     #[cfg(not(feature = "std"))]
530     let mut cache = BTreeSet::new();
531     let distr = Uniform::new(X::zero(), length);
532     let mut indices = Vec::with_capacity(amount.as_usize());
533     for _ in 0..amount.as_usize() {
534         let mut pos = distr.sample(rng);
535         while !cache.insert(pos) {
536             pos = distr.sample(rng);
537         }
538         indices.push(pos);
539     }
540 
541     debug_assert_eq!(indices.len(), amount.as_usize());
542     IndexVec::from(indices)
543 }
544 
545 #[cfg(test)]
546 mod test {
547     use super::*;
548 
549     #[test]
550     #[cfg(feature = "serde1")]
test_serialization_index_vec()551     fn test_serialization_index_vec() {
552         let some_index_vec = IndexVec::from(vec![254_usize, 234, 2, 1]);
553         let de_some_index_vec: IndexVec = bincode::deserialize(&bincode::serialize(&some_index_vec).unwrap()).unwrap();
554         match (some_index_vec, de_some_index_vec) {
555             (IndexVec::U32(a), IndexVec::U32(b)) => {
556                 assert_eq!(a, b);
557             },
558             (IndexVec::USize(a), IndexVec::USize(b)) => {
559                 assert_eq!(a, b);
560             },
561             _ => {panic!("failed to seralize/deserialize `IndexVec`")}
562         }
563     }
564 
565     #[cfg(feature = "alloc")] use alloc::vec;
566 
567     #[test]
test_sample_boundaries()568     fn test_sample_boundaries() {
569         let mut r = crate::test::rng(404);
570 
571         assert_eq!(sample_inplace(&mut r, 0, 0).len(), 0);
572         assert_eq!(sample_inplace(&mut r, 1, 0).len(), 0);
573         assert_eq!(sample_inplace(&mut r, 1, 1).into_vec(), vec![0]);
574 
575         assert_eq!(sample_rejection(&mut r, 1u32, 0).len(), 0);
576 
577         assert_eq!(sample_floyd(&mut r, 0, 0).len(), 0);
578         assert_eq!(sample_floyd(&mut r, 1, 0).len(), 0);
579         assert_eq!(sample_floyd(&mut r, 1, 1).into_vec(), vec![0]);
580 
581         // These algorithms should be fast with big numbers. Test average.
582         let sum: usize = sample_rejection(&mut r, 1 << 25, 10u32).into_iter().sum();
583         assert!(1 << 25 < sum && sum < (1 << 25) * 25);
584 
585         let sum: usize = sample_floyd(&mut r, 1 << 25, 10).into_iter().sum();
586         assert!(1 << 25 < sum && sum < (1 << 25) * 25);
587     }
588 
589     #[test]
590     #[cfg_attr(miri, ignore)] // Miri is too slow
test_sample_alg()591     fn test_sample_alg() {
592         let seed_rng = crate::test::rng;
593 
594         // We can't test which algorithm is used directly, but Floyd's alg
595         // should produce different results from the others. (Also, `inplace`
596         // and `cached` currently use different sizes thus produce different results.)
597 
598         // A small length and relatively large amount should use inplace
599         let (length, amount): (usize, usize) = (100, 50);
600         let v1 = sample(&mut seed_rng(420), length, amount);
601         let v2 = sample_inplace(&mut seed_rng(420), length as u32, amount as u32);
602         assert!(v1.iter().all(|e| e < length));
603         assert_eq!(v1, v2);
604 
605         // Test Floyd's alg does produce different results
606         let v3 = sample_floyd(&mut seed_rng(420), length as u32, amount as u32);
607         assert!(v1 != v3);
608 
609         // A large length and small amount should use Floyd
610         let (length, amount): (usize, usize) = (1 << 20, 50);
611         let v1 = sample(&mut seed_rng(421), length, amount);
612         let v2 = sample_floyd(&mut seed_rng(421), length as u32, amount as u32);
613         assert!(v1.iter().all(|e| e < length));
614         assert_eq!(v1, v2);
615 
616         // A large length and larger amount should use cache
617         let (length, amount): (usize, usize) = (1 << 20, 600);
618         let v1 = sample(&mut seed_rng(422), length, amount);
619         let v2 = sample_rejection(&mut seed_rng(422), length as u32, amount as u32);
620         assert!(v1.iter().all(|e| e < length));
621         assert_eq!(v1, v2);
622     }
623 
624     #[cfg(feature = "std")]
625     #[test]
test_sample_weighted()626     fn test_sample_weighted() {
627         let seed_rng = crate::test::rng;
628         for &(amount, len) in &[(0, 10), (5, 10), (10, 10)] {
629             let v = sample_weighted(&mut seed_rng(423), len, |i| i as f64, amount).unwrap();
630             match v {
631                 IndexVec::U32(mut indices) => {
632                     assert_eq!(indices.len(), amount);
633                     indices.sort();
634                     indices.dedup();
635                     assert_eq!(indices.len(), amount);
636                     for &i in &indices {
637                         assert!((i as usize) < len);
638                     }
639                 },
640                 IndexVec::USize(_) => panic!("expected `IndexVec::U32`"),
641             }
642         }
643     }
644 
645     #[test]
value_stability_sample()646     fn value_stability_sample() {
647         let do_test = |length, amount, values: &[u32]| {
648             let mut buf = [0u32; 8];
649             let mut rng = crate::test::rng(410);
650 
651             let res = sample(&mut rng, length, amount);
652             let len = res.len().min(buf.len());
653             for (x, y) in res.into_iter().zip(buf.iter_mut()) {
654                 *y = x as u32;
655             }
656             assert_eq!(
657                 &buf[0..len],
658                 values,
659                 "failed sampling {}, {}",
660                 length,
661                 amount
662             );
663         };
664 
665         do_test(10, 6, &[8, 0, 3, 5, 9, 6]); // floyd
666         do_test(25, 10, &[18, 15, 14, 9, 0, 13, 5, 24]); // floyd
667         do_test(300, 8, &[30, 283, 150, 1, 73, 13, 285, 35]); // floyd
668         do_test(300, 80, &[31, 289, 248, 154, 5, 78, 19, 286]); // inplace
669         do_test(300, 180, &[31, 289, 248, 154, 5, 78, 19, 286]); // inplace
670 
671         do_test(1000_000, 8, &[
672             103717, 963485, 826422, 509101, 736394, 807035, 5327, 632573,
673         ]); // floyd
674         do_test(1000_000, 180, &[
675             103718, 963490, 826426, 509103, 736396, 807036, 5327, 632573,
676         ]); // rejection
677     }
678 }
679