1 /*
2  * Copyright (C) 2018-2020, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <libfdt.h>
13 
14 #include <platform_def.h>
15 
16 #include <arch.h>
17 #include <arch_helpers.h>
18 #include <common/debug.h>
19 #include <common/fdt_wrappers.h>
20 #include <drivers/delay_timer.h>
21 #include <drivers/generic_delay_timer.h>
22 #include <drivers/st/stm32mp_clkfunc.h>
23 #include <drivers/st/stm32mp1_clk.h>
24 #include <drivers/st/stm32mp1_rcc.h>
25 #include <dt-bindings/clock/stm32mp1-clksrc.h>
26 #include <lib/mmio.h>
27 #include <lib/spinlock.h>
28 #include <lib/utils_def.h>
29 #include <plat/common/platform.h>
30 
31 #define MAX_HSI_HZ		64000000
32 #define USB_PHY_48_MHZ		48000000
33 
34 #define TIMEOUT_US_200MS	U(200000)
35 #define TIMEOUT_US_1S		U(1000000)
36 
37 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
39 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
41 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
42 
43 const char *stm32mp_osc_node_label[NB_OSC] = {
44 	[_LSI] = "clk-lsi",
45 	[_LSE] = "clk-lse",
46 	[_HSI] = "clk-hsi",
47 	[_HSE] = "clk-hse",
48 	[_CSI] = "clk-csi",
49 	[_I2S_CKIN] = "i2s_ckin",
50 };
51 
52 enum stm32mp1_parent_id {
53 /* Oscillators are defined in enum stm32mp_osc_id */
54 
55 /* Other parent source */
56 	_HSI_KER = NB_OSC,
57 	_HSE_KER,
58 	_HSE_KER_DIV2,
59 	_CSI_KER,
60 	_PLL1_P,
61 	_PLL1_Q,
62 	_PLL1_R,
63 	_PLL2_P,
64 	_PLL2_Q,
65 	_PLL2_R,
66 	_PLL3_P,
67 	_PLL3_Q,
68 	_PLL3_R,
69 	_PLL4_P,
70 	_PLL4_Q,
71 	_PLL4_R,
72 	_ACLK,
73 	_PCLK1,
74 	_PCLK2,
75 	_PCLK3,
76 	_PCLK4,
77 	_PCLK5,
78 	_HCLK6,
79 	_HCLK2,
80 	_CK_PER,
81 	_CK_MPU,
82 	_CK_MCU,
83 	_USB_PHY_48,
84 	_PARENT_NB,
85 	_UNKNOWN_ID = 0xff,
86 };
87 
88 /* Lists only the parent clock we are interested in */
89 enum stm32mp1_parent_sel {
90 	_I2C12_SEL,
91 	_I2C35_SEL,
92 	_STGEN_SEL,
93 	_I2C46_SEL,
94 	_SPI6_SEL,
95 	_UART1_SEL,
96 	_RNG1_SEL,
97 	_UART6_SEL,
98 	_UART24_SEL,
99 	_UART35_SEL,
100 	_UART78_SEL,
101 	_SDMMC12_SEL,
102 	_SDMMC3_SEL,
103 	_QSPI_SEL,
104 	_FMC_SEL,
105 	_AXIS_SEL,
106 	_MCUS_SEL,
107 	_USBPHY_SEL,
108 	_USBO_SEL,
109 	_MPU_SEL,
110 	_PER_SEL,
111 	_RTC_SEL,
112 	_PARENT_SEL_NB,
113 	_UNKNOWN_SEL = 0xff,
114 };
115 
116 /* State the parent clock ID straight related to a clock */
117 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
118 	[_HSE] = CK_HSE,
119 	[_HSI] = CK_HSI,
120 	[_CSI] = CK_CSI,
121 	[_LSE] = CK_LSE,
122 	[_LSI] = CK_LSI,
123 	[_I2S_CKIN] = _UNKNOWN_ID,
124 	[_USB_PHY_48] = _UNKNOWN_ID,
125 	[_HSI_KER] = CK_HSI,
126 	[_HSE_KER] = CK_HSE,
127 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
128 	[_CSI_KER] = CK_CSI,
129 	[_PLL1_P] = PLL1_P,
130 	[_PLL1_Q] = PLL1_Q,
131 	[_PLL1_R] = PLL1_R,
132 	[_PLL2_P] = PLL2_P,
133 	[_PLL2_Q] = PLL2_Q,
134 	[_PLL2_R] = PLL2_R,
135 	[_PLL3_P] = PLL3_P,
136 	[_PLL3_Q] = PLL3_Q,
137 	[_PLL3_R] = PLL3_R,
138 	[_PLL4_P] = PLL4_P,
139 	[_PLL4_Q] = PLL4_Q,
140 	[_PLL4_R] = PLL4_R,
141 	[_ACLK] = CK_AXI,
142 	[_PCLK1] = CK_AXI,
143 	[_PCLK2] = CK_AXI,
144 	[_PCLK3] = CK_AXI,
145 	[_PCLK4] = CK_AXI,
146 	[_PCLK5] = CK_AXI,
147 	[_CK_PER] = CK_PER,
148 	[_CK_MPU] = CK_MPU,
149 	[_CK_MCU] = CK_MCU,
150 };
151 
clock_id2parent_id(unsigned long id)152 static unsigned int clock_id2parent_id(unsigned long id)
153 {
154 	unsigned int n;
155 
156 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
157 		if (parent_id_clock_id[n] == id) {
158 			return n;
159 		}
160 	}
161 
162 	return _UNKNOWN_ID;
163 }
164 
165 enum stm32mp1_pll_id {
166 	_PLL1,
167 	_PLL2,
168 	_PLL3,
169 	_PLL4,
170 	_PLL_NB
171 };
172 
173 enum stm32mp1_div_id {
174 	_DIV_P,
175 	_DIV_Q,
176 	_DIV_R,
177 	_DIV_NB,
178 };
179 
180 enum stm32mp1_clksrc_id {
181 	CLKSRC_MPU,
182 	CLKSRC_AXI,
183 	CLKSRC_MCU,
184 	CLKSRC_PLL12,
185 	CLKSRC_PLL3,
186 	CLKSRC_PLL4,
187 	CLKSRC_RTC,
188 	CLKSRC_MCO1,
189 	CLKSRC_MCO2,
190 	CLKSRC_NB
191 };
192 
193 enum stm32mp1_clkdiv_id {
194 	CLKDIV_MPU,
195 	CLKDIV_AXI,
196 	CLKDIV_MCU,
197 	CLKDIV_APB1,
198 	CLKDIV_APB2,
199 	CLKDIV_APB3,
200 	CLKDIV_APB4,
201 	CLKDIV_APB5,
202 	CLKDIV_RTC,
203 	CLKDIV_MCO1,
204 	CLKDIV_MCO2,
205 	CLKDIV_NB
206 };
207 
208 enum stm32mp1_pllcfg {
209 	PLLCFG_M,
210 	PLLCFG_N,
211 	PLLCFG_P,
212 	PLLCFG_Q,
213 	PLLCFG_R,
214 	PLLCFG_O,
215 	PLLCFG_NB
216 };
217 
218 enum stm32mp1_pllcsg {
219 	PLLCSG_MOD_PER,
220 	PLLCSG_INC_STEP,
221 	PLLCSG_SSCG_MODE,
222 	PLLCSG_NB
223 };
224 
225 enum stm32mp1_plltype {
226 	PLL_800,
227 	PLL_1600,
228 	PLL_TYPE_NB
229 };
230 
231 struct stm32mp1_pll {
232 	uint8_t refclk_min;
233 	uint8_t refclk_max;
234 	uint8_t divn_max;
235 };
236 
237 struct stm32mp1_clk_gate {
238 	uint16_t offset;
239 	uint8_t bit;
240 	uint8_t index;
241 	uint8_t set_clr;
242 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
243 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
244 };
245 
246 struct stm32mp1_clk_sel {
247 	uint16_t offset;
248 	uint8_t src;
249 	uint8_t msk;
250 	uint8_t nb_parent;
251 	const uint8_t *parent;
252 };
253 
254 #define REFCLK_SIZE 4
255 struct stm32mp1_clk_pll {
256 	enum stm32mp1_plltype plltype;
257 	uint16_t rckxselr;
258 	uint16_t pllxcfgr1;
259 	uint16_t pllxcfgr2;
260 	uint16_t pllxfracr;
261 	uint16_t pllxcr;
262 	uint16_t pllxcsgr;
263 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
264 };
265 
266 /* Clocks with selectable source and non set/clr register access */
267 #define _CLK_SELEC(off, b, idx, s)			\
268 	{						\
269 		.offset = (off),			\
270 		.bit = (b),				\
271 		.index = (idx),				\
272 		.set_clr = 0,				\
273 		.sel = (s),				\
274 		.fixed = _UNKNOWN_ID,			\
275 	}
276 
277 /* Clocks with fixed source and non set/clr register access */
278 #define _CLK_FIXED(off, b, idx, f)			\
279 	{						\
280 		.offset = (off),			\
281 		.bit = (b),				\
282 		.index = (idx),				\
283 		.set_clr = 0,				\
284 		.sel = _UNKNOWN_SEL,			\
285 		.fixed = (f),				\
286 	}
287 
288 /* Clocks with selectable source and set/clr register access */
289 #define _CLK_SC_SELEC(off, b, idx, s)			\
290 	{						\
291 		.offset = (off),			\
292 		.bit = (b),				\
293 		.index = (idx),				\
294 		.set_clr = 1,				\
295 		.sel = (s),				\
296 		.fixed = _UNKNOWN_ID,			\
297 	}
298 
299 /* Clocks with fixed source and set/clr register access */
300 #define _CLK_SC_FIXED(off, b, idx, f)			\
301 	{						\
302 		.offset = (off),			\
303 		.bit = (b),				\
304 		.index = (idx),				\
305 		.set_clr = 1,				\
306 		.sel = _UNKNOWN_SEL,			\
307 		.fixed = (f),				\
308 	}
309 
310 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
311 	[_ ## _label ## _SEL] = {				\
312 		.offset = _rcc_selr,				\
313 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
314 		.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
315 		       (_rcc_selr ## _ ## _label ## SRC_SHIFT), \
316 		.parent = (_parents),				\
317 		.nb_parent = ARRAY_SIZE(_parents)		\
318 	}
319 
320 #define _CLK_PLL(idx, type, off1, off2, off3,		\
321 		 off4, off5, off6,			\
322 		 p1, p2, p3, p4)			\
323 	[(idx)] = {					\
324 		.plltype = (type),			\
325 		.rckxselr = (off1),			\
326 		.pllxcfgr1 = (off2),			\
327 		.pllxcfgr2 = (off3),			\
328 		.pllxfracr = (off4),			\
329 		.pllxcr = (off5),			\
330 		.pllxcsgr = (off6),			\
331 		.refclk[0] = (p1),			\
332 		.refclk[1] = (p2),			\
333 		.refclk[2] = (p3),			\
334 		.refclk[3] = (p4),			\
335 	}
336 
337 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
338 
339 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
340 	_CLK_FIXED(RCC_DDRITFCR, 0, DDRC1, _ACLK),
341 	_CLK_FIXED(RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
342 	_CLK_FIXED(RCC_DDRITFCR, 2, DDRC2, _ACLK),
343 	_CLK_FIXED(RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
344 	_CLK_FIXED(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
345 	_CLK_FIXED(RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
346 	_CLK_FIXED(RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
347 	_CLK_FIXED(RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
348 	_CLK_FIXED(RCC_DDRITFCR, 8, AXIDCG, _ACLK),
349 	_CLK_FIXED(RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
350 	_CLK_FIXED(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
351 
352 	_CLK_SC_FIXED(RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
353 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
354 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
355 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
356 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
357 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
358 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
359 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
360 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
361 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
362 	_CLK_SC_SELEC(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
363 
364 	_CLK_SC_FIXED(RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
365 	_CLK_SC_SELEC(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
366 
367 	_CLK_SC_FIXED(RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
368 
369 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
370 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
371 	_CLK_SC_SELEC(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
372 
373 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
374 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
375 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
376 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
377 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
378 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
379 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
380 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
381 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
382 	_CLK_SC_FIXED(RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
383 	_CLK_SC_SELEC(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
384 
385 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
386 	_CLK_SC_SELEC(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
387 
388 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
389 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
390 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
391 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
392 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
393 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
394 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
395 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
396 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
397 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
398 	_CLK_SC_SELEC(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
399 
400 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
401 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
402 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
403 	_CLK_SC_SELEC(RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
404 	_CLK_SC_FIXED(RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
405 
406 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
407 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
408 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
409 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
410 	_CLK_SC_SELEC(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
411 
412 	_CLK_SELEC(RCC_BDCR, 20, RTC, _RTC_SEL),
413 	_CLK_SELEC(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
414 };
415 
416 static const uint8_t i2c12_parents[] = {
417 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
418 };
419 
420 static const uint8_t i2c35_parents[] = {
421 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
422 };
423 
424 static const uint8_t stgen_parents[] = {
425 	_HSI_KER, _HSE_KER
426 };
427 
428 static const uint8_t i2c46_parents[] = {
429 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
430 };
431 
432 static const uint8_t spi6_parents[] = {
433 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
434 };
435 
436 static const uint8_t usart1_parents[] = {
437 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
438 };
439 
440 static const uint8_t rng1_parents[] = {
441 	_CSI, _PLL4_R, _LSE, _LSI
442 };
443 
444 static const uint8_t uart6_parents[] = {
445 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
446 };
447 
448 static const uint8_t uart234578_parents[] = {
449 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
450 };
451 
452 static const uint8_t sdmmc12_parents[] = {
453 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
454 };
455 
456 static const uint8_t sdmmc3_parents[] = {
457 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
458 };
459 
460 static const uint8_t qspi_parents[] = {
461 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
462 };
463 
464 static const uint8_t fmc_parents[] = {
465 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
466 };
467 
468 static const uint8_t ass_parents[] = {
469 	_HSI, _HSE, _PLL2
470 };
471 
472 static const uint8_t mss_parents[] = {
473 	_HSI, _HSE, _CSI, _PLL3
474 };
475 
476 static const uint8_t usbphy_parents[] = {
477 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
478 };
479 
480 static const uint8_t usbo_parents[] = {
481 	_PLL4_R, _USB_PHY_48
482 };
483 
484 static const uint8_t mpu_parents[] = {
485 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
486 };
487 
488 static const uint8_t per_parents[] = {
489 	_HSI, _HSE, _CSI,
490 };
491 
492 static const uint8_t rtc_parents[] = {
493 	_UNKNOWN_ID, _LSE, _LSI, _HSE
494 };
495 
496 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
497 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
498 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
499 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
500 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
501 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
502 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
503 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
504 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
505 	_CLK_PARENT_SEL(PER, RCC_CPERCKSELR, per_parents),
506 	_CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents),
507 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
508 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
509 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
510 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
511 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
512 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
513 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
514 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
515 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, ass_parents),
516 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mss_parents),
517 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
518 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
519 };
520 
521 /* Define characteristic of PLL according type */
522 #define DIVN_MIN	24
523 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
524 	[PLL_800] = {
525 		.refclk_min = 4,
526 		.refclk_max = 16,
527 		.divn_max = 99,
528 	},
529 	[PLL_1600] = {
530 		.refclk_min = 8,
531 		.refclk_max = 16,
532 		.divn_max = 199,
533 	},
534 };
535 
536 /* PLLNCFGR2 register divider by output */
537 static const uint8_t pllncfgr2[_DIV_NB] = {
538 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
539 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
540 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
541 };
542 
543 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
544 	_CLK_PLL(_PLL1, PLL_1600,
545 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
546 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
547 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
548 	_CLK_PLL(_PLL2, PLL_1600,
549 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
550 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
551 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
552 	_CLK_PLL(_PLL3, PLL_800,
553 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
554 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
555 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
556 	_CLK_PLL(_PLL4, PLL_800,
557 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
558 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
559 		 _HSI, _HSE, _CSI, _I2S_CKIN),
560 };
561 
562 /* Prescaler table lookups for clock computation */
563 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
564 static const uint8_t stm32mp1_mcu_div[16] = {
565 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
566 };
567 
568 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
569 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
570 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
571 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
572 	0, 1, 2, 3, 4, 4, 4, 4
573 };
574 
575 /* div = /1 /2 /3 /4 */
576 static const uint8_t stm32mp1_axi_div[8] = {
577 	1, 2, 3, 4, 4, 4, 4, 4
578 };
579 
580 static const char * const stm32mp1_clk_parent_name[_PARENT_NB] __unused = {
581 	[_HSI] = "HSI",
582 	[_HSE] = "HSE",
583 	[_CSI] = "CSI",
584 	[_LSI] = "LSI",
585 	[_LSE] = "LSE",
586 	[_I2S_CKIN] = "I2S_CKIN",
587 	[_HSI_KER] = "HSI_KER",
588 	[_HSE_KER] = "HSE_KER",
589 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
590 	[_CSI_KER] = "CSI_KER",
591 	[_PLL1_P] = "PLL1_P",
592 	[_PLL1_Q] = "PLL1_Q",
593 	[_PLL1_R] = "PLL1_R",
594 	[_PLL2_P] = "PLL2_P",
595 	[_PLL2_Q] = "PLL2_Q",
596 	[_PLL2_R] = "PLL2_R",
597 	[_PLL3_P] = "PLL3_P",
598 	[_PLL3_Q] = "PLL3_Q",
599 	[_PLL3_R] = "PLL3_R",
600 	[_PLL4_P] = "PLL4_P",
601 	[_PLL4_Q] = "PLL4_Q",
602 	[_PLL4_R] = "PLL4_R",
603 	[_ACLK] = "ACLK",
604 	[_PCLK1] = "PCLK1",
605 	[_PCLK2] = "PCLK2",
606 	[_PCLK3] = "PCLK3",
607 	[_PCLK4] = "PCLK4",
608 	[_PCLK5] = "PCLK5",
609 	[_HCLK6] = "KCLK6",
610 	[_HCLK2] = "HCLK2",
611 	[_CK_PER] = "CK_PER",
612 	[_CK_MPU] = "CK_MPU",
613 	[_CK_MCU] = "CK_MCU",
614 	[_USB_PHY_48] = "USB_PHY_48",
615 };
616 
617 /* RCC clock device driver private */
618 static unsigned long stm32mp1_osc[NB_OSC];
619 static struct spinlock reg_lock;
620 static unsigned int gate_refcounts[NB_GATES];
621 static struct spinlock refcount_lock;
622 
gate_ref(unsigned int idx)623 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
624 {
625 	return &stm32mp1_clk_gate[idx];
626 }
627 
clk_sel_ref(unsigned int idx)628 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
629 {
630 	return &stm32mp1_clk_sel[idx];
631 }
632 
pll_ref(unsigned int idx)633 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
634 {
635 	return &stm32mp1_clk_pll[idx];
636 }
637 
stm32mp1_clk_lock(struct spinlock * lock)638 static void stm32mp1_clk_lock(struct spinlock *lock)
639 {
640 	if (stm32mp_lock_available()) {
641 		/* Assume interrupts are masked */
642 		spin_lock(lock);
643 	}
644 }
645 
stm32mp1_clk_unlock(struct spinlock * lock)646 static void stm32mp1_clk_unlock(struct spinlock *lock)
647 {
648 	if (stm32mp_lock_available()) {
649 		spin_unlock(lock);
650 	}
651 }
652 
stm32mp1_rcc_is_secure(void)653 bool stm32mp1_rcc_is_secure(void)
654 {
655 	uintptr_t rcc_base = stm32mp_rcc_base();
656 	uint32_t mask = RCC_TZCR_TZEN;
657 
658 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
659 }
660 
stm32mp1_rcc_is_mckprot(void)661 bool stm32mp1_rcc_is_mckprot(void)
662 {
663 	uintptr_t rcc_base = stm32mp_rcc_base();
664 	uint32_t mask = RCC_TZCR_TZEN | RCC_TZCR_MCKPROT;
665 
666 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
667 }
668 
stm32mp1_clk_rcc_regs_lock(void)669 void stm32mp1_clk_rcc_regs_lock(void)
670 {
671 	stm32mp1_clk_lock(&reg_lock);
672 }
673 
stm32mp1_clk_rcc_regs_unlock(void)674 void stm32mp1_clk_rcc_regs_unlock(void)
675 {
676 	stm32mp1_clk_unlock(&reg_lock);
677 }
678 
stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)679 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
680 {
681 	if (idx >= NB_OSC) {
682 		return 0;
683 	}
684 
685 	return stm32mp1_osc[idx];
686 }
687 
stm32mp1_clk_get_gated_id(unsigned long id)688 static int stm32mp1_clk_get_gated_id(unsigned long id)
689 {
690 	unsigned int i;
691 
692 	for (i = 0U; i < NB_GATES; i++) {
693 		if (gate_ref(i)->index == id) {
694 			return i;
695 		}
696 	}
697 
698 	ERROR("%s: clk id %d not found\n", __func__, (uint32_t)id);
699 
700 	return -EINVAL;
701 }
702 
stm32mp1_clk_get_sel(int i)703 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
704 {
705 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
706 }
707 
stm32mp1_clk_get_fixed_parent(int i)708 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
709 {
710 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
711 }
712 
stm32mp1_clk_get_parent(unsigned long id)713 static int stm32mp1_clk_get_parent(unsigned long id)
714 {
715 	const struct stm32mp1_clk_sel *sel;
716 	uint32_t p_sel;
717 	int i;
718 	enum stm32mp1_parent_id p;
719 	enum stm32mp1_parent_sel s;
720 	uintptr_t rcc_base = stm32mp_rcc_base();
721 
722 	/* Few non gateable clock have a static parent ID, find them */
723 	i = (int)clock_id2parent_id(id);
724 	if (i != _UNKNOWN_ID) {
725 		return i;
726 	}
727 
728 	i = stm32mp1_clk_get_gated_id(id);
729 	if (i < 0) {
730 		panic();
731 	}
732 
733 	p = stm32mp1_clk_get_fixed_parent(i);
734 	if (p < _PARENT_NB) {
735 		return (int)p;
736 	}
737 
738 	s = stm32mp1_clk_get_sel(i);
739 	if (s == _UNKNOWN_SEL) {
740 		return -EINVAL;
741 	}
742 	if (s >= _PARENT_SEL_NB) {
743 		panic();
744 	}
745 
746 	sel = clk_sel_ref(s);
747 	p_sel = (mmio_read_32(rcc_base + sel->offset) &
748 		 (sel->msk << sel->src)) >> sel->src;
749 	if (p_sel < sel->nb_parent) {
750 		return (int)sel->parent[p_sel];
751 	}
752 
753 	return -EINVAL;
754 }
755 
stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll * pll)756 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
757 {
758 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
759 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
760 
761 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
762 }
763 
764 /*
765  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
766  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
767  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
768  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
769  */
stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll * pll)770 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
771 {
772 	unsigned long refclk, fvco;
773 	uint32_t cfgr1, fracr, divm, divn;
774 	uintptr_t rcc_base = stm32mp_rcc_base();
775 
776 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
777 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
778 
779 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
780 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
781 
782 	refclk = stm32mp1_pll_get_fref(pll);
783 
784 	/*
785 	 * With FRACV :
786 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
787 	 * Without FRACV
788 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
789 	 */
790 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
791 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
792 				 RCC_PLLNFRACR_FRACV_SHIFT;
793 		unsigned long long numerator, denominator;
794 
795 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
796 		numerator = refclk * numerator;
797 		denominator = ((unsigned long long)divm + 1U) << 13;
798 		fvco = (unsigned long)(numerator / denominator);
799 	} else {
800 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
801 	}
802 
803 	return fvco;
804 }
805 
stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,enum stm32mp1_div_id div_id)806 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
807 					    enum stm32mp1_div_id div_id)
808 {
809 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
810 	unsigned long dfout;
811 	uint32_t cfgr2, divy;
812 
813 	if (div_id >= _DIV_NB) {
814 		return 0;
815 	}
816 
817 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
818 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
819 
820 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
821 
822 	return dfout;
823 }
824 
get_clock_rate(int p)825 static unsigned long get_clock_rate(int p)
826 {
827 	uint32_t reg, clkdiv;
828 	unsigned long clock = 0;
829 	uintptr_t rcc_base = stm32mp_rcc_base();
830 
831 	switch (p) {
832 	case _CK_MPU:
833 	/* MPU sub system */
834 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
835 		switch (reg & RCC_SELR_SRC_MASK) {
836 		case RCC_MPCKSELR_HSI:
837 			clock = stm32mp1_clk_get_fixed(_HSI);
838 			break;
839 		case RCC_MPCKSELR_HSE:
840 			clock = stm32mp1_clk_get_fixed(_HSE);
841 			break;
842 		case RCC_MPCKSELR_PLL:
843 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
844 			break;
845 		case RCC_MPCKSELR_PLL_MPUDIV:
846 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
847 
848 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
849 			clkdiv = reg & RCC_MPUDIV_MASK;
850 			if (clkdiv != 0U) {
851 				clock /= stm32mp1_mpu_div[clkdiv];
852 			}
853 			break;
854 		default:
855 			break;
856 		}
857 		break;
858 	/* AXI sub system */
859 	case _ACLK:
860 	case _HCLK2:
861 	case _HCLK6:
862 	case _PCLK4:
863 	case _PCLK5:
864 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
865 		switch (reg & RCC_SELR_SRC_MASK) {
866 		case RCC_ASSCKSELR_HSI:
867 			clock = stm32mp1_clk_get_fixed(_HSI);
868 			break;
869 		case RCC_ASSCKSELR_HSE:
870 			clock = stm32mp1_clk_get_fixed(_HSE);
871 			break;
872 		case RCC_ASSCKSELR_PLL:
873 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
874 			break;
875 		default:
876 			break;
877 		}
878 
879 		/* System clock divider */
880 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
881 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
882 
883 		switch (p) {
884 		case _PCLK4:
885 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
886 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
887 			break;
888 		case _PCLK5:
889 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
890 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
891 			break;
892 		default:
893 			break;
894 		}
895 		break;
896 	/* MCU sub system */
897 	case _CK_MCU:
898 	case _PCLK1:
899 	case _PCLK2:
900 	case _PCLK3:
901 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
902 		switch (reg & RCC_SELR_SRC_MASK) {
903 		case RCC_MSSCKSELR_HSI:
904 			clock = stm32mp1_clk_get_fixed(_HSI);
905 			break;
906 		case RCC_MSSCKSELR_HSE:
907 			clock = stm32mp1_clk_get_fixed(_HSE);
908 			break;
909 		case RCC_MSSCKSELR_CSI:
910 			clock = stm32mp1_clk_get_fixed(_CSI);
911 			break;
912 		case RCC_MSSCKSELR_PLL:
913 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
914 			break;
915 		default:
916 			break;
917 		}
918 
919 		/* MCU clock divider */
920 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
921 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
922 
923 		switch (p) {
924 		case _PCLK1:
925 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
926 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
927 			break;
928 		case _PCLK2:
929 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
930 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
931 			break;
932 		case _PCLK3:
933 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
934 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
935 			break;
936 		case _CK_MCU:
937 		default:
938 			break;
939 		}
940 		break;
941 	case _CK_PER:
942 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
943 		switch (reg & RCC_SELR_SRC_MASK) {
944 		case RCC_CPERCKSELR_HSI:
945 			clock = stm32mp1_clk_get_fixed(_HSI);
946 			break;
947 		case RCC_CPERCKSELR_HSE:
948 			clock = stm32mp1_clk_get_fixed(_HSE);
949 			break;
950 		case RCC_CPERCKSELR_CSI:
951 			clock = stm32mp1_clk_get_fixed(_CSI);
952 			break;
953 		default:
954 			break;
955 		}
956 		break;
957 	case _HSI:
958 	case _HSI_KER:
959 		clock = stm32mp1_clk_get_fixed(_HSI);
960 		break;
961 	case _CSI:
962 	case _CSI_KER:
963 		clock = stm32mp1_clk_get_fixed(_CSI);
964 		break;
965 	case _HSE:
966 	case _HSE_KER:
967 		clock = stm32mp1_clk_get_fixed(_HSE);
968 		break;
969 	case _HSE_KER_DIV2:
970 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
971 		break;
972 	case _LSI:
973 		clock = stm32mp1_clk_get_fixed(_LSI);
974 		break;
975 	case _LSE:
976 		clock = stm32mp1_clk_get_fixed(_LSE);
977 		break;
978 	/* PLL */
979 	case _PLL1_P:
980 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
981 		break;
982 	case _PLL1_Q:
983 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
984 		break;
985 	case _PLL1_R:
986 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
987 		break;
988 	case _PLL2_P:
989 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
990 		break;
991 	case _PLL2_Q:
992 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
993 		break;
994 	case _PLL2_R:
995 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
996 		break;
997 	case _PLL3_P:
998 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
999 		break;
1000 	case _PLL3_Q:
1001 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
1002 		break;
1003 	case _PLL3_R:
1004 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
1005 		break;
1006 	case _PLL4_P:
1007 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
1008 		break;
1009 	case _PLL4_Q:
1010 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
1011 		break;
1012 	case _PLL4_R:
1013 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
1014 		break;
1015 	/* Other */
1016 	case _USB_PHY_48:
1017 		clock = USB_PHY_48_MHZ;
1018 		break;
1019 	default:
1020 		break;
1021 	}
1022 
1023 	return clock;
1024 }
1025 
__clk_enable(struct stm32mp1_clk_gate const * gate)1026 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
1027 {
1028 	uintptr_t rcc_base = stm32mp_rcc_base();
1029 
1030 	VERBOSE("Enable clock %u\n", gate->index);
1031 
1032 	if (gate->set_clr != 0U) {
1033 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
1034 	} else {
1035 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
1036 	}
1037 }
1038 
__clk_disable(struct stm32mp1_clk_gate const * gate)1039 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
1040 {
1041 	uintptr_t rcc_base = stm32mp_rcc_base();
1042 
1043 	VERBOSE("Disable clock %u\n", gate->index);
1044 
1045 	if (gate->set_clr != 0U) {
1046 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
1047 			      BIT(gate->bit));
1048 	} else {
1049 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1050 	}
1051 }
1052 
__clk_is_enabled(struct stm32mp1_clk_gate const * gate)1053 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1054 {
1055 	uintptr_t rcc_base = stm32mp_rcc_base();
1056 
1057 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1058 }
1059 
stm32mp1_clk_get_refcount(unsigned long id)1060 unsigned int stm32mp1_clk_get_refcount(unsigned long id)
1061 {
1062 	int i = stm32mp1_clk_get_gated_id(id);
1063 
1064 	if (i < 0) {
1065 		panic();
1066 	}
1067 
1068 	return gate_refcounts[i];
1069 }
1070 
1071 /* Oscillators and PLLs are not gated at runtime */
clock_is_always_on(unsigned long id)1072 static bool clock_is_always_on(unsigned long id)
1073 {
1074 	switch (id) {
1075 	case CK_HSE:
1076 	case CK_CSI:
1077 	case CK_LSI:
1078 	case CK_LSE:
1079 	case CK_HSI:
1080 	case CK_HSE_DIV2:
1081 	case PLL1_Q:
1082 	case PLL1_R:
1083 	case PLL2_P:
1084 	case PLL2_Q:
1085 	case PLL2_R:
1086 	case PLL3_P:
1087 	case PLL3_Q:
1088 	case PLL3_R:
1089 		return true;
1090 	default:
1091 		return false;
1092 	}
1093 }
1094 
__stm32mp1_clk_enable(unsigned long id,bool secure)1095 void __stm32mp1_clk_enable(unsigned long id, bool secure)
1096 {
1097 	const struct stm32mp1_clk_gate *gate;
1098 	int i;
1099 	unsigned int *refcnt;
1100 
1101 	if (clock_is_always_on(id)) {
1102 		return;
1103 	}
1104 
1105 	i = stm32mp1_clk_get_gated_id(id);
1106 	if (i < 0) {
1107 		ERROR("Clock %d can't be enabled\n", (uint32_t)id);
1108 		panic();
1109 	}
1110 
1111 	gate = gate_ref(i);
1112 	refcnt = &gate_refcounts[i];
1113 
1114 	stm32mp1_clk_lock(&refcount_lock);
1115 
1116 	if (stm32mp_incr_shrefcnt(refcnt, secure) != 0) {
1117 		__clk_enable(gate);
1118 	}
1119 
1120 	stm32mp1_clk_unlock(&refcount_lock);
1121 }
1122 
__stm32mp1_clk_disable(unsigned long id,bool secure)1123 void __stm32mp1_clk_disable(unsigned long id, bool secure)
1124 {
1125 	const struct stm32mp1_clk_gate *gate;
1126 	int i;
1127 	unsigned int *refcnt;
1128 
1129 	if (clock_is_always_on(id)) {
1130 		return;
1131 	}
1132 
1133 	i = stm32mp1_clk_get_gated_id(id);
1134 	if (i < 0) {
1135 		ERROR("Clock %d can't be disabled\n", (uint32_t)id);
1136 		panic();
1137 	}
1138 
1139 	gate = gate_ref(i);
1140 	refcnt = &gate_refcounts[i];
1141 
1142 	stm32mp1_clk_lock(&refcount_lock);
1143 
1144 	if (stm32mp_decr_shrefcnt(refcnt, secure) != 0) {
1145 		__clk_disable(gate);
1146 	}
1147 
1148 	stm32mp1_clk_unlock(&refcount_lock);
1149 }
1150 
stm32mp_clk_enable(unsigned long id)1151 void stm32mp_clk_enable(unsigned long id)
1152 {
1153 	__stm32mp1_clk_enable(id, true);
1154 }
1155 
stm32mp_clk_disable(unsigned long id)1156 void stm32mp_clk_disable(unsigned long id)
1157 {
1158 	__stm32mp1_clk_disable(id, true);
1159 }
1160 
stm32mp_clk_is_enabled(unsigned long id)1161 bool stm32mp_clk_is_enabled(unsigned long id)
1162 {
1163 	int i;
1164 
1165 	if (clock_is_always_on(id)) {
1166 		return true;
1167 	}
1168 
1169 	i = stm32mp1_clk_get_gated_id(id);
1170 	if (i < 0) {
1171 		panic();
1172 	}
1173 
1174 	return __clk_is_enabled(gate_ref(i));
1175 }
1176 
stm32mp_clk_get_rate(unsigned long id)1177 unsigned long stm32mp_clk_get_rate(unsigned long id)
1178 {
1179 	int p = stm32mp1_clk_get_parent(id);
1180 
1181 	if (p < 0) {
1182 		return 0;
1183 	}
1184 
1185 	return get_clock_rate(p);
1186 }
1187 
stm32mp1_ls_osc_set(bool enable,uint32_t offset,uint32_t mask_on)1188 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1189 {
1190 	uintptr_t address = stm32mp_rcc_base() + offset;
1191 
1192 	if (enable) {
1193 		mmio_setbits_32(address, mask_on);
1194 	} else {
1195 		mmio_clrbits_32(address, mask_on);
1196 	}
1197 }
1198 
stm32mp1_hs_ocs_set(bool enable,uint32_t mask_on)1199 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1200 {
1201 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1202 	uintptr_t address = stm32mp_rcc_base() + offset;
1203 
1204 	mmio_write_32(address, mask_on);
1205 }
1206 
stm32mp1_osc_wait(bool enable,uint32_t offset,uint32_t mask_rdy)1207 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1208 {
1209 	uint64_t timeout;
1210 	uint32_t mask_test;
1211 	uintptr_t address = stm32mp_rcc_base() + offset;
1212 
1213 	if (enable) {
1214 		mask_test = mask_rdy;
1215 	} else {
1216 		mask_test = 0;
1217 	}
1218 
1219 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1220 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1221 		if (timeout_elapsed(timeout)) {
1222 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1223 			      mask_rdy, address, enable, mmio_read_32(address));
1224 			return -ETIMEDOUT;
1225 		}
1226 	}
1227 
1228 	return 0;
1229 }
1230 
stm32mp1_lse_enable(bool bypass,bool digbyp,uint32_t lsedrv)1231 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1232 {
1233 	uint32_t value;
1234 	uintptr_t rcc_base = stm32mp_rcc_base();
1235 
1236 	if (digbyp) {
1237 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1238 	}
1239 
1240 	if (bypass || digbyp) {
1241 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1242 	}
1243 
1244 	/*
1245 	 * Warning: not recommended to switch directly from "high drive"
1246 	 * to "medium low drive", and vice-versa.
1247 	 */
1248 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1249 		RCC_BDCR_LSEDRV_SHIFT;
1250 
1251 	while (value != lsedrv) {
1252 		if (value > lsedrv) {
1253 			value--;
1254 		} else {
1255 			value++;
1256 		}
1257 
1258 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1259 				   RCC_BDCR_LSEDRV_MASK,
1260 				   value << RCC_BDCR_LSEDRV_SHIFT);
1261 	}
1262 
1263 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1264 }
1265 
stm32mp1_lse_wait(void)1266 static void stm32mp1_lse_wait(void)
1267 {
1268 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1269 		VERBOSE("%s: failed\n", __func__);
1270 	}
1271 }
1272 
stm32mp1_lsi_set(bool enable)1273 static void stm32mp1_lsi_set(bool enable)
1274 {
1275 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1276 
1277 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1278 		VERBOSE("%s: failed\n", __func__);
1279 	}
1280 }
1281 
stm32mp1_hse_enable(bool bypass,bool digbyp,bool css)1282 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1283 {
1284 	uintptr_t rcc_base = stm32mp_rcc_base();
1285 
1286 	if (digbyp) {
1287 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1288 	}
1289 
1290 	if (bypass || digbyp) {
1291 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1292 	}
1293 
1294 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1295 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1296 		VERBOSE("%s: failed\n", __func__);
1297 	}
1298 
1299 	if (css) {
1300 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1301 	}
1302 }
1303 
stm32mp1_csi_set(bool enable)1304 static void stm32mp1_csi_set(bool enable)
1305 {
1306 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1307 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1308 		VERBOSE("%s: failed\n", __func__);
1309 	}
1310 }
1311 
stm32mp1_hsi_set(bool enable)1312 static void stm32mp1_hsi_set(bool enable)
1313 {
1314 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1315 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1316 		VERBOSE("%s: failed\n", __func__);
1317 	}
1318 }
1319 
stm32mp1_set_hsidiv(uint8_t hsidiv)1320 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1321 {
1322 	uint64_t timeout;
1323 	uintptr_t rcc_base = stm32mp_rcc_base();
1324 	uintptr_t address = rcc_base + RCC_OCRDYR;
1325 
1326 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1327 			   RCC_HSICFGR_HSIDIV_MASK,
1328 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1329 
1330 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1331 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1332 		if (timeout_elapsed(timeout)) {
1333 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1334 			      address, mmio_read_32(address));
1335 			return -ETIMEDOUT;
1336 		}
1337 	}
1338 
1339 	return 0;
1340 }
1341 
stm32mp1_hsidiv(unsigned long hsifreq)1342 static int stm32mp1_hsidiv(unsigned long hsifreq)
1343 {
1344 	uint8_t hsidiv;
1345 	uint32_t hsidivfreq = MAX_HSI_HZ;
1346 
1347 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1348 		if (hsidivfreq == hsifreq) {
1349 			break;
1350 		}
1351 
1352 		hsidivfreq /= 2U;
1353 	}
1354 
1355 	if (hsidiv == 4U) {
1356 		ERROR("Invalid clk-hsi frequency\n");
1357 		return -1;
1358 	}
1359 
1360 	if (hsidiv != 0U) {
1361 		return stm32mp1_set_hsidiv(hsidiv);
1362 	}
1363 
1364 	return 0;
1365 }
1366 
stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,unsigned int clksrc,uint32_t * pllcfg,int plloff)1367 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1368 				    unsigned int clksrc,
1369 				    uint32_t *pllcfg, int plloff)
1370 {
1371 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1372 	uintptr_t rcc_base = stm32mp_rcc_base();
1373 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1374 	enum stm32mp1_plltype type = pll->plltype;
1375 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1376 	unsigned long refclk;
1377 	uint32_t ifrge = 0U;
1378 	uint32_t src, value, fracv = 0;
1379 	void *fdt;
1380 
1381 	/* Check PLL output */
1382 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1383 		return false;
1384 	}
1385 
1386 	/* Check current clksrc */
1387 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1388 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1389 		return false;
1390 	}
1391 
1392 	/* Check Div */
1393 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1394 
1395 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1396 		 (pllcfg[PLLCFG_M] + 1U);
1397 
1398 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1399 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1400 		return false;
1401 	}
1402 
1403 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1404 		ifrge = 1U;
1405 	}
1406 
1407 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1408 		RCC_PLLNCFGR1_DIVN_MASK;
1409 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1410 		 RCC_PLLNCFGR1_DIVM_MASK;
1411 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1412 		 RCC_PLLNCFGR1_IFRGE_MASK;
1413 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1414 		return false;
1415 	}
1416 
1417 	/* Fractional configuration */
1418 	if (fdt_get_address(&fdt) == 1) {
1419 		fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1420 	}
1421 
1422 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1423 	value |= RCC_PLLNFRACR_FRACLE;
1424 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1425 		return false;
1426 	}
1427 
1428 	/* Output config */
1429 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1430 		RCC_PLLNCFGR2_DIVP_MASK;
1431 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1432 		 RCC_PLLNCFGR2_DIVQ_MASK;
1433 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1434 		 RCC_PLLNCFGR2_DIVR_MASK;
1435 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1436 		return false;
1437 	}
1438 
1439 	return true;
1440 }
1441 
stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)1442 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1443 {
1444 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1445 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1446 
1447 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1448 	mmio_clrsetbits_32(pllxcr,
1449 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1450 			   RCC_PLLNCR_DIVREN,
1451 			   RCC_PLLNCR_PLLON);
1452 }
1453 
stm32mp1_pll_output(enum stm32mp1_pll_id pll_id,uint32_t output)1454 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1455 {
1456 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1457 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1458 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1459 
1460 	/* Wait PLL lock */
1461 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1462 		if (timeout_elapsed(timeout)) {
1463 			ERROR("PLL%d start failed @ 0x%lx: 0x%x\n",
1464 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1465 			return -ETIMEDOUT;
1466 		}
1467 	}
1468 
1469 	/* Start the requested output */
1470 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1471 
1472 	return 0;
1473 }
1474 
stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)1475 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1476 {
1477 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1478 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1479 	uint64_t timeout;
1480 
1481 	/* Stop all output */
1482 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1483 			RCC_PLLNCR_DIVREN);
1484 
1485 	/* Stop PLL */
1486 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1487 
1488 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1489 	/* Wait PLL stopped */
1490 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1491 		if (timeout_elapsed(timeout)) {
1492 			ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
1493 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1494 			return -ETIMEDOUT;
1495 		}
1496 	}
1497 
1498 	return 0;
1499 }
1500 
stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,uint32_t * pllcfg)1501 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1502 				       uint32_t *pllcfg)
1503 {
1504 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1505 	uintptr_t rcc_base = stm32mp_rcc_base();
1506 	uint32_t value;
1507 
1508 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1509 		RCC_PLLNCFGR2_DIVP_MASK;
1510 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1511 		 RCC_PLLNCFGR2_DIVQ_MASK;
1512 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1513 		 RCC_PLLNCFGR2_DIVR_MASK;
1514 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1515 }
1516 
stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,uint32_t * pllcfg,uint32_t fracv)1517 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1518 			       uint32_t *pllcfg, uint32_t fracv)
1519 {
1520 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1521 	uintptr_t rcc_base = stm32mp_rcc_base();
1522 	enum stm32mp1_plltype type = pll->plltype;
1523 	unsigned long refclk;
1524 	uint32_t ifrge = 0;
1525 	uint32_t src, value;
1526 
1527 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1528 		RCC_SELR_REFCLK_SRC_MASK;
1529 
1530 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1531 		 (pllcfg[PLLCFG_M] + 1U);
1532 
1533 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1534 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1535 		return -EINVAL;
1536 	}
1537 
1538 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1539 		ifrge = 1U;
1540 	}
1541 
1542 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1543 		RCC_PLLNCFGR1_DIVN_MASK;
1544 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1545 		 RCC_PLLNCFGR1_DIVM_MASK;
1546 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1547 		 RCC_PLLNCFGR1_IFRGE_MASK;
1548 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1549 
1550 	/* Fractional configuration */
1551 	value = 0;
1552 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1553 
1554 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1555 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1556 
1557 	value |= RCC_PLLNFRACR_FRACLE;
1558 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1559 
1560 	stm32mp1_pll_config_output(pll_id, pllcfg);
1561 
1562 	return 0;
1563 }
1564 
stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id,uint32_t * csg)1565 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1566 {
1567 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1568 	uint32_t pllxcsg = 0;
1569 
1570 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1571 		    RCC_PLLNCSGR_MOD_PER_MASK;
1572 
1573 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1574 		    RCC_PLLNCSGR_INC_STEP_MASK;
1575 
1576 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1577 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1578 
1579 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1580 
1581 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1582 			RCC_PLLNCR_SSCG_CTRL);
1583 }
1584 
stm32mp1_set_clksrc(unsigned int clksrc)1585 static int stm32mp1_set_clksrc(unsigned int clksrc)
1586 {
1587 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1588 	uint64_t timeout;
1589 
1590 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1591 			   clksrc & RCC_SELR_SRC_MASK);
1592 
1593 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1594 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1595 		if (timeout_elapsed(timeout)) {
1596 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1597 			      clksrc_address, mmio_read_32(clksrc_address));
1598 			return -ETIMEDOUT;
1599 		}
1600 	}
1601 
1602 	return 0;
1603 }
1604 
stm32mp1_set_clkdiv(unsigned int clkdiv,uintptr_t address)1605 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1606 {
1607 	uint64_t timeout;
1608 
1609 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1610 			   clkdiv & RCC_DIVR_DIV_MASK);
1611 
1612 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1613 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1614 		if (timeout_elapsed(timeout)) {
1615 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1616 			      clkdiv, address, mmio_read_32(address));
1617 			return -ETIMEDOUT;
1618 		}
1619 	}
1620 
1621 	return 0;
1622 }
1623 
stm32mp1_mco_csg(uint32_t clksrc,uint32_t clkdiv)1624 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1625 {
1626 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1627 
1628 	/*
1629 	 * Binding clksrc :
1630 	 *      bit15-4 offset
1631 	 *      bit3:   disable
1632 	 *      bit2-0: MCOSEL[2:0]
1633 	 */
1634 	if ((clksrc & 0x8U) != 0U) {
1635 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1636 	} else {
1637 		mmio_clrsetbits_32(clksrc_address,
1638 				   RCC_MCOCFG_MCOSRC_MASK,
1639 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1640 		mmio_clrsetbits_32(clksrc_address,
1641 				   RCC_MCOCFG_MCODIV_MASK,
1642 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1643 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1644 	}
1645 }
1646 
stm32mp1_set_rtcsrc(unsigned int clksrc,bool lse_css)1647 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1648 {
1649 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1650 
1651 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1652 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1653 		mmio_clrsetbits_32(address,
1654 				   RCC_BDCR_RTCSRC_MASK,
1655 				   clksrc << RCC_BDCR_RTCSRC_SHIFT);
1656 
1657 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1658 	}
1659 
1660 	if (lse_css) {
1661 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1662 	}
1663 }
1664 
stm32mp1_stgen_config(void)1665 static void stm32mp1_stgen_config(void)
1666 {
1667 	uint32_t cntfid0;
1668 	unsigned long rate;
1669 	unsigned long long counter;
1670 
1671 	cntfid0 = mmio_read_32(STGEN_BASE + CNTFID_OFF);
1672 	rate = get_clock_rate(stm32mp1_clk_get_parent(STGEN_K));
1673 
1674 	if (cntfid0 == rate) {
1675 		return;
1676 	}
1677 
1678 	mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1679 	counter = (unsigned long long)mmio_read_32(STGEN_BASE + CNTCVL_OFF);
1680 	counter |= ((unsigned long long)mmio_read_32(STGEN_BASE + CNTCVU_OFF)) << 32;
1681 	counter = (counter * rate / cntfid0);
1682 
1683 	mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)counter);
1684 	mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(counter >> 32));
1685 	mmio_write_32(STGEN_BASE + CNTFID_OFF, rate);
1686 	mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1687 
1688 	write_cntfrq((u_register_t)rate);
1689 
1690 	/* Need to update timer with new frequency */
1691 	generic_delay_timer_init();
1692 }
1693 
stm32mp1_stgen_increment(unsigned long long offset_in_ms)1694 void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
1695 {
1696 	unsigned long long cnt;
1697 
1698 	cnt = ((unsigned long long)mmio_read_32(STGEN_BASE + CNTCVU_OFF) << 32) |
1699 		mmio_read_32(STGEN_BASE + CNTCVL_OFF);
1700 
1701 	cnt += (offset_in_ms * mmio_read_32(STGEN_BASE + CNTFID_OFF)) / 1000U;
1702 
1703 	mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1704 	mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)cnt);
1705 	mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(cnt >> 32));
1706 	mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1707 }
1708 
stm32mp1_pkcs_config(uint32_t pkcs)1709 static void stm32mp1_pkcs_config(uint32_t pkcs)
1710 {
1711 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1712 	uint32_t value = pkcs & 0xFU;
1713 	uint32_t mask = 0xFU;
1714 
1715 	if ((pkcs & BIT(31)) != 0U) {
1716 		mask <<= 4;
1717 		value <<= 4;
1718 	}
1719 
1720 	mmio_clrsetbits_32(address, mask, value);
1721 }
1722 
stm32mp1_clk_init(void)1723 int stm32mp1_clk_init(void)
1724 {
1725 	uintptr_t rcc_base = stm32mp_rcc_base();
1726 	unsigned int clksrc[CLKSRC_NB];
1727 	unsigned int clkdiv[CLKDIV_NB];
1728 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1729 	int plloff[_PLL_NB];
1730 	int ret, len;
1731 	enum stm32mp1_pll_id i;
1732 	bool lse_css = false;
1733 	bool pll3_preserve = false;
1734 	bool pll4_preserve = false;
1735 	bool pll4_bootrom = false;
1736 	const fdt32_t *pkcs_cell;
1737 	void *fdt;
1738 
1739 	if (fdt_get_address(&fdt) == 0) {
1740 		return false;
1741 	}
1742 
1743 	/* Check status field to disable security */
1744 	if (!fdt_get_rcc_secure_status()) {
1745 		mmio_write_32(rcc_base + RCC_TZCR, 0);
1746 	}
1747 
1748 	ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB,
1749 					clksrc);
1750 	if (ret < 0) {
1751 		return -FDT_ERR_NOTFOUND;
1752 	}
1753 
1754 	ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB,
1755 					clkdiv);
1756 	if (ret < 0) {
1757 		return -FDT_ERR_NOTFOUND;
1758 	}
1759 
1760 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1761 		char name[12];
1762 
1763 		snprintf(name, sizeof(name), "st,pll@%d", i);
1764 		plloff[i] = fdt_rcc_subnode_offset(name);
1765 
1766 		if (!fdt_check_node(plloff[i])) {
1767 			continue;
1768 		}
1769 
1770 		ret = fdt_read_uint32_array(fdt, plloff[i], "cfg",
1771 					    (int)PLLCFG_NB, pllcfg[i]);
1772 		if (ret < 0) {
1773 			return -FDT_ERR_NOTFOUND;
1774 		}
1775 	}
1776 
1777 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1778 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1779 
1780 	/*
1781 	 * Switch ON oscillator found in device-tree.
1782 	 * Note: HSI already ON after BootROM stage.
1783 	 */
1784 	if (stm32mp1_osc[_LSI] != 0U) {
1785 		stm32mp1_lsi_set(true);
1786 	}
1787 	if (stm32mp1_osc[_LSE] != 0U) {
1788 		bool bypass, digbyp;
1789 		uint32_t lsedrv;
1790 
1791 		bypass = fdt_osc_read_bool(_LSE, "st,bypass");
1792 		digbyp = fdt_osc_read_bool(_LSE, "st,digbypass");
1793 		lse_css = fdt_osc_read_bool(_LSE, "st,css");
1794 		lsedrv = fdt_osc_read_uint32_default(_LSE, "st,drive",
1795 						     LSEDRV_MEDIUM_HIGH);
1796 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
1797 	}
1798 	if (stm32mp1_osc[_HSE] != 0U) {
1799 		bool bypass, digbyp, css;
1800 
1801 		bypass = fdt_osc_read_bool(_HSE, "st,bypass");
1802 		digbyp = fdt_osc_read_bool(_HSE, "st,digbypass");
1803 		css = fdt_osc_read_bool(_HSE, "st,css");
1804 		stm32mp1_hse_enable(bypass, digbyp, css);
1805 	}
1806 	/*
1807 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1808 	 * => switch on CSI even if node is not present in device tree
1809 	 */
1810 	stm32mp1_csi_set(true);
1811 
1812 	/* Come back to HSI */
1813 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
1814 	if (ret != 0) {
1815 		return ret;
1816 	}
1817 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
1818 	if (ret != 0) {
1819 		return ret;
1820 	}
1821 	ret = stm32mp1_set_clksrc(CLK_MCU_HSI);
1822 	if (ret != 0) {
1823 		return ret;
1824 	}
1825 
1826 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
1827 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
1828 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
1829 							clksrc[CLKSRC_PLL3],
1830 							pllcfg[_PLL3],
1831 							plloff[_PLL3]);
1832 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
1833 							clksrc[CLKSRC_PLL4],
1834 							pllcfg[_PLL4],
1835 							plloff[_PLL4]);
1836 	}
1837 
1838 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1839 		if (((i == _PLL3) && pll3_preserve) ||
1840 		    ((i == _PLL4) && pll4_preserve)) {
1841 			continue;
1842 		}
1843 
1844 		ret = stm32mp1_pll_stop(i);
1845 		if (ret != 0) {
1846 			return ret;
1847 		}
1848 	}
1849 
1850 	/* Configure HSIDIV */
1851 	if (stm32mp1_osc[_HSI] != 0U) {
1852 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
1853 		if (ret != 0) {
1854 			return ret;
1855 		}
1856 		stm32mp1_stgen_config();
1857 	}
1858 
1859 	/* Select DIV */
1860 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1861 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
1862 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
1863 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
1864 	if (ret != 0) {
1865 		return ret;
1866 	}
1867 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
1868 	if (ret != 0) {
1869 		return ret;
1870 	}
1871 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
1872 	if (ret != 0) {
1873 		return ret;
1874 	}
1875 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR);
1876 	if (ret != 0) {
1877 		return ret;
1878 	}
1879 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
1880 	if (ret != 0) {
1881 		return ret;
1882 	}
1883 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
1884 	if (ret != 0) {
1885 		return ret;
1886 	}
1887 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
1888 	if (ret != 0) {
1889 		return ret;
1890 	}
1891 
1892 	/* No ready bit for RTC */
1893 	mmio_write_32(rcc_base + RCC_RTCDIVR,
1894 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
1895 
1896 	/* Configure PLLs source */
1897 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
1898 	if (ret != 0) {
1899 		return ret;
1900 	}
1901 
1902 	if (!pll3_preserve) {
1903 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
1904 		if (ret != 0) {
1905 			return ret;
1906 		}
1907 	}
1908 
1909 	if (!pll4_preserve) {
1910 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
1911 		if (ret != 0) {
1912 			return ret;
1913 		}
1914 	}
1915 
1916 	/* Configure and start PLLs */
1917 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1918 		uint32_t fracv;
1919 		uint32_t csg[PLLCSG_NB];
1920 
1921 		if (((i == _PLL3) && pll3_preserve) ||
1922 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
1923 			continue;
1924 		}
1925 
1926 		if (!fdt_check_node(plloff[i])) {
1927 			continue;
1928 		}
1929 
1930 		if ((i == _PLL4) && pll4_bootrom) {
1931 			/* Set output divider if not done by the Bootrom */
1932 			stm32mp1_pll_config_output(i, pllcfg[i]);
1933 			continue;
1934 		}
1935 
1936 		fracv = fdt_read_uint32_default(fdt, plloff[i], "frac", 0);
1937 
1938 		ret = stm32mp1_pll_config(i, pllcfg[i], fracv);
1939 		if (ret != 0) {
1940 			return ret;
1941 		}
1942 		ret = fdt_read_uint32_array(fdt, plloff[i], "csg",
1943 					    (uint32_t)PLLCSG_NB, csg);
1944 		if (ret == 0) {
1945 			stm32mp1_pll_csg(i, csg);
1946 		} else if (ret != -FDT_ERR_NOTFOUND) {
1947 			return ret;
1948 		}
1949 
1950 		stm32mp1_pll_start(i);
1951 	}
1952 	/* Wait and start PLLs ouptut when ready */
1953 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1954 		if (!fdt_check_node(plloff[i])) {
1955 			continue;
1956 		}
1957 
1958 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
1959 		if (ret != 0) {
1960 			return ret;
1961 		}
1962 	}
1963 	/* Wait LSE ready before to use it */
1964 	if (stm32mp1_osc[_LSE] != 0U) {
1965 		stm32mp1_lse_wait();
1966 	}
1967 
1968 	/* Configure with expected clock source */
1969 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
1970 	if (ret != 0) {
1971 		return ret;
1972 	}
1973 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
1974 	if (ret != 0) {
1975 		return ret;
1976 	}
1977 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]);
1978 	if (ret != 0) {
1979 		return ret;
1980 	}
1981 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
1982 
1983 	/* Configure PKCK */
1984 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
1985 	if (pkcs_cell != NULL) {
1986 		bool ckper_disabled = false;
1987 		uint32_t j;
1988 
1989 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
1990 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
1991 
1992 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
1993 				ckper_disabled = true;
1994 				continue;
1995 			}
1996 			stm32mp1_pkcs_config(pkcs);
1997 		}
1998 
1999 		/*
2000 		 * CKPER is source for some peripheral clocks
2001 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
2002 		 * only if previous clock is still ON
2003 		 * => deactivated CKPER only after switching clock
2004 		 */
2005 		if (ckper_disabled) {
2006 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
2007 		}
2008 	}
2009 
2010 	/* Switch OFF HSI if not found in device-tree */
2011 	if (stm32mp1_osc[_HSI] == 0U) {
2012 		stm32mp1_hsi_set(false);
2013 	}
2014 	stm32mp1_stgen_config();
2015 
2016 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
2017 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
2018 			   RCC_DDRITFCR_DDRCKMOD_MASK,
2019 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
2020 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
2021 
2022 	return 0;
2023 }
2024 
stm32mp1_osc_clk_init(const char * name,enum stm32mp_osc_id index)2025 static void stm32mp1_osc_clk_init(const char *name,
2026 				  enum stm32mp_osc_id index)
2027 {
2028 	uint32_t frequency;
2029 
2030 	if (fdt_osc_read_freq(name, &frequency) == 0) {
2031 		stm32mp1_osc[index] = frequency;
2032 	}
2033 }
2034 
stm32mp1_osc_init(void)2035 static void stm32mp1_osc_init(void)
2036 {
2037 	enum stm32mp_osc_id i;
2038 
2039 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
2040 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
2041 	}
2042 }
2043 
2044 #ifdef STM32MP_SHARED_RESOURCES
2045 /*
2046  * Get the parent ID of the target parent clock, for tagging as secure
2047  * shared clock dependencies.
2048  */
get_parent_id_parent(unsigned int parent_id)2049 static int get_parent_id_parent(unsigned int parent_id)
2050 {
2051 	enum stm32mp1_parent_sel s = _UNKNOWN_SEL;
2052 	enum stm32mp1_pll_id pll_id;
2053 	uint32_t p_sel;
2054 	uintptr_t rcc_base = stm32mp_rcc_base();
2055 
2056 	switch (parent_id) {
2057 	case _ACLK:
2058 	case _PCLK4:
2059 	case _PCLK5:
2060 		s = _AXIS_SEL;
2061 		break;
2062 	case _PLL1_P:
2063 	case _PLL1_Q:
2064 	case _PLL1_R:
2065 		pll_id = _PLL1;
2066 		break;
2067 	case _PLL2_P:
2068 	case _PLL2_Q:
2069 	case _PLL2_R:
2070 		pll_id = _PLL2;
2071 		break;
2072 	case _PLL3_P:
2073 	case _PLL3_Q:
2074 	case _PLL3_R:
2075 		pll_id = _PLL3;
2076 		break;
2077 	case _PLL4_P:
2078 	case _PLL4_Q:
2079 	case _PLL4_R:
2080 		pll_id = _PLL4;
2081 		break;
2082 	case _PCLK1:
2083 	case _PCLK2:
2084 	case _HCLK2:
2085 	case _HCLK6:
2086 	case _CK_PER:
2087 	case _CK_MPU:
2088 	case _CK_MCU:
2089 	case _USB_PHY_48:
2090 		/* We do not expect to access these */
2091 		panic();
2092 		break;
2093 	default:
2094 		/* Other parents have no parent */
2095 		return -1;
2096 	}
2097 
2098 	if (s != _UNKNOWN_SEL) {
2099 		const struct stm32mp1_clk_sel *sel = clk_sel_ref(s);
2100 
2101 		p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) &
2102 			sel->msk;
2103 
2104 		if (p_sel < sel->nb_parent) {
2105 			return (int)sel->parent[p_sel];
2106 		}
2107 	} else {
2108 		const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
2109 
2110 		p_sel = mmio_read_32(rcc_base + pll->rckxselr) &
2111 			RCC_SELR_REFCLK_SRC_MASK;
2112 
2113 		if (pll->refclk[p_sel] != _UNKNOWN_OSC_ID) {
2114 			return (int)pll->refclk[p_sel];
2115 		}
2116 	}
2117 
2118 	VERBOSE("No parent selected for %s\n",
2119 		stm32mp1_clk_parent_name[parent_id]);
2120 
2121 	return -1;
2122 }
2123 
secure_parent_clocks(unsigned long parent_id)2124 static void secure_parent_clocks(unsigned long parent_id)
2125 {
2126 	int grandparent_id;
2127 
2128 	switch (parent_id) {
2129 	case _PLL3_P:
2130 	case _PLL3_Q:
2131 	case _PLL3_R:
2132 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2133 		break;
2134 
2135 	/* These clocks are always secure when RCC is secure */
2136 	case _ACLK:
2137 	case _HCLK2:
2138 	case _HCLK6:
2139 	case _PCLK4:
2140 	case _PCLK5:
2141 	case _PLL1_P:
2142 	case _PLL1_Q:
2143 	case _PLL1_R:
2144 	case _PLL2_P:
2145 	case _PLL2_Q:
2146 	case _PLL2_R:
2147 	case _HSI:
2148 	case _HSI_KER:
2149 	case _LSI:
2150 	case _CSI:
2151 	case _CSI_KER:
2152 	case _HSE:
2153 	case _HSE_KER:
2154 	case _HSE_KER_DIV2:
2155 	case _LSE:
2156 		break;
2157 
2158 	default:
2159 		VERBOSE("Cannot secure parent clock %s\n",
2160 			stm32mp1_clk_parent_name[parent_id]);
2161 		panic();
2162 	}
2163 
2164 	grandparent_id = get_parent_id_parent(parent_id);
2165 	if (grandparent_id >= 0) {
2166 		secure_parent_clocks(grandparent_id);
2167 	}
2168 }
2169 
stm32mp1_register_clock_parents_secure(unsigned long clock_id)2170 void stm32mp1_register_clock_parents_secure(unsigned long clock_id)
2171 {
2172 	int parent_id;
2173 
2174 	if (!stm32mp1_rcc_is_secure()) {
2175 		return;
2176 	}
2177 
2178 	switch (clock_id) {
2179 	case PLL1:
2180 	case PLL2:
2181 		/* PLL1/PLL2 are always secure: nothing to do */
2182 		break;
2183 	case PLL3:
2184 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2185 		break;
2186 	case PLL4:
2187 		ERROR("PLL4 cannot be secured\n");
2188 		panic();
2189 		break;
2190 	default:
2191 		/* Others are expected gateable clock */
2192 		parent_id = stm32mp1_clk_get_parent(clock_id);
2193 		if (parent_id < 0) {
2194 			INFO("No parent found for clock %lu\n", clock_id);
2195 		} else {
2196 			secure_parent_clocks(parent_id);
2197 		}
2198 		break;
2199 	}
2200 }
2201 #endif /* STM32MP_SHARED_RESOURCES */
2202 
sync_earlyboot_clocks_state(void)2203 static void sync_earlyboot_clocks_state(void)
2204 {
2205 	unsigned int idx;
2206 	const unsigned long secure_enable[] = {
2207 		AXIDCG,
2208 		BSEC,
2209 		DDRC1, DDRC1LP,
2210 		DDRC2, DDRC2LP,
2211 		DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP,
2212 		DDRPHYC, DDRPHYCLP,
2213 		TZC1, TZC2,
2214 		TZPC,
2215 		STGEN_K,
2216 	};
2217 
2218 	for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) {
2219 		stm32mp_clk_enable(secure_enable[idx]);
2220 	}
2221 
2222 	if (!stm32mp_is_single_core()) {
2223 		stm32mp1_clk_enable_secure(RTCAPB);
2224 	}
2225 }
2226 
stm32mp1_clk_probe(void)2227 int stm32mp1_clk_probe(void)
2228 {
2229 	stm32mp1_osc_init();
2230 
2231 	sync_earlyboot_clocks_state();
2232 
2233 	return 0;
2234 }
2235