1 //===-- X86DisassemblerDecoder.cpp - Disassembler decoder -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains the implementation of the instruction decoder.
12 // Documentation for the disassembler can be found in X86Disassembler.h.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include <cstdarg> /* for va_*() */
17 #include <cstdio> /* for vsnprintf() */
18 #include <cstdlib> /* for exit() */
19 #include <cstring> /* for memset() */
20
21 #include "X86DisassemblerDecoder.h"
22
23 using namespace llvm::X86Disassembler;
24
25 /// Specifies whether a ModR/M byte is needed and (if so) which
26 /// instruction each possible value of the ModR/M byte corresponds to. Once
27 /// this information is known, we have narrowed down to a single instruction.
28 struct ModRMDecision {
29 uint8_t modrm_type;
30 uint16_t instructionIDs;
31 };
32
33 /// Specifies which set of ModR/M->instruction tables to look at
34 /// given a particular opcode.
35 struct OpcodeDecision {
36 ModRMDecision modRMDecisions[256];
37 };
38
39 /// Specifies which opcode->instruction tables to look at given
40 /// a particular context (set of attributes). Since there are many possible
41 /// contexts, the decoder first uses CONTEXTS_SYM to determine which context
42 /// applies given a specific set of attributes. Hence there are only IC_max
43 /// entries in this table, rather than 2^(ATTR_max).
44 struct ContextDecision {
45 OpcodeDecision opcodeDecisions[IC_max];
46 };
47
48 #include "X86GenDisassemblerTables.inc"
49
50 #ifndef NDEBUG
51 #define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0)
52 #else
53 #define debug(s) do { } while (0)
54 #endif
55
56 /*
57 * contextForAttrs - Client for the instruction context table. Takes a set of
58 * attributes and returns the appropriate decode context.
59 *
60 * @param attrMask - Attributes, from the enumeration attributeBits.
61 * @return - The InstructionContext to use when looking up an
62 * an instruction with these attributes.
63 */
contextForAttrs(uint16_t attrMask)64 static InstructionContext contextForAttrs(uint16_t attrMask) {
65 return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]);
66 }
67
68 /*
69 * modRMRequired - Reads the appropriate instruction table to determine whether
70 * the ModR/M byte is required to decode a particular instruction.
71 *
72 * @param type - The opcode type (i.e., how many bytes it has).
73 * @param insnContext - The context for the instruction, as returned by
74 * contextForAttrs.
75 * @param opcode - The last byte of the instruction's opcode, not counting
76 * ModR/M extensions and escapes.
77 * @return - true if the ModR/M byte is required, false otherwise.
78 */
modRMRequired(OpcodeType type,InstructionContext insnContext,uint16_t opcode)79 static int modRMRequired(OpcodeType type,
80 InstructionContext insnContext,
81 uint16_t opcode) {
82 const struct ContextDecision* decision = nullptr;
83
84 switch (type) {
85 case ONEBYTE:
86 decision = &ONEBYTE_SYM;
87 break;
88 case TWOBYTE:
89 decision = &TWOBYTE_SYM;
90 break;
91 case THREEBYTE_38:
92 decision = &THREEBYTE38_SYM;
93 break;
94 case THREEBYTE_3A:
95 decision = &THREEBYTE3A_SYM;
96 break;
97 case XOP8_MAP:
98 decision = &XOP8_MAP_SYM;
99 break;
100 case XOP9_MAP:
101 decision = &XOP9_MAP_SYM;
102 break;
103 case XOPA_MAP:
104 decision = &XOPA_MAP_SYM;
105 break;
106 }
107
108 return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
109 modrm_type != MODRM_ONEENTRY;
110 }
111
112 /*
113 * decode - Reads the appropriate instruction table to obtain the unique ID of
114 * an instruction.
115 *
116 * @param type - See modRMRequired().
117 * @param insnContext - See modRMRequired().
118 * @param opcode - See modRMRequired().
119 * @param modRM - The ModR/M byte if required, or any value if not.
120 * @return - The UID of the instruction, or 0 on failure.
121 */
decode(OpcodeType type,InstructionContext insnContext,uint8_t opcode,uint8_t modRM)122 static InstrUID decode(OpcodeType type,
123 InstructionContext insnContext,
124 uint8_t opcode,
125 uint8_t modRM) {
126 const struct ModRMDecision* dec = nullptr;
127
128 switch (type) {
129 case ONEBYTE:
130 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
131 break;
132 case TWOBYTE:
133 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
134 break;
135 case THREEBYTE_38:
136 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
137 break;
138 case THREEBYTE_3A:
139 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
140 break;
141 case XOP8_MAP:
142 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
143 break;
144 case XOP9_MAP:
145 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
146 break;
147 case XOPA_MAP:
148 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
149 break;
150 }
151
152 switch (dec->modrm_type) {
153 default:
154 debug("Corrupt table! Unknown modrm_type");
155 return 0;
156 case MODRM_ONEENTRY:
157 return modRMTable[dec->instructionIDs];
158 case MODRM_SPLITRM:
159 if (modFromModRM(modRM) == 0x3)
160 return modRMTable[dec->instructionIDs+1];
161 return modRMTable[dec->instructionIDs];
162 case MODRM_SPLITREG:
163 if (modFromModRM(modRM) == 0x3)
164 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
165 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
166 case MODRM_SPLITMISC:
167 if (modFromModRM(modRM) == 0x3)
168 return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
169 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
170 case MODRM_FULL:
171 return modRMTable[dec->instructionIDs+modRM];
172 }
173 }
174
175 /*
176 * specifierForUID - Given a UID, returns the name and operand specification for
177 * that instruction.
178 *
179 * @param uid - The unique ID for the instruction. This should be returned by
180 * decode(); specifierForUID will not check bounds.
181 * @return - A pointer to the specification for that instruction.
182 */
specifierForUID(InstrUID uid)183 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
184 return &INSTRUCTIONS_SYM[uid];
185 }
186
187 /*
188 * consumeByte - Uses the reader function provided by the user to consume one
189 * byte from the instruction's memory and advance the cursor.
190 *
191 * @param insn - The instruction with the reader function to use. The cursor
192 * for this instruction is advanced.
193 * @param byte - A pointer to a pre-allocated memory buffer to be populated
194 * with the data read.
195 * @return - 0 if the read was successful; nonzero otherwise.
196 */
consumeByte(struct InternalInstruction * insn,uint8_t * byte)197 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
198 int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
199
200 if (!ret)
201 ++(insn->readerCursor);
202
203 return ret;
204 }
205
206 /*
207 * lookAtByte - Like consumeByte, but does not advance the cursor.
208 *
209 * @param insn - See consumeByte().
210 * @param byte - See consumeByte().
211 * @return - See consumeByte().
212 */
lookAtByte(struct InternalInstruction * insn,uint8_t * byte)213 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
214 return insn->reader(insn->readerArg, byte, insn->readerCursor);
215 }
216
unconsumeByte(struct InternalInstruction * insn)217 static void unconsumeByte(struct InternalInstruction* insn) {
218 insn->readerCursor--;
219 }
220
221 #define CONSUME_FUNC(name, type) \
222 static int name(struct InternalInstruction* insn, type* ptr) { \
223 type combined = 0; \
224 unsigned offset; \
225 for (offset = 0; offset < sizeof(type); ++offset) { \
226 uint8_t byte; \
227 int ret = insn->reader(insn->readerArg, \
228 &byte, \
229 insn->readerCursor + offset); \
230 if (ret) \
231 return ret; \
232 combined = combined | ((uint64_t)byte << (offset * 8)); \
233 } \
234 *ptr = combined; \
235 insn->readerCursor += sizeof(type); \
236 return 0; \
237 }
238
239 /*
240 * consume* - Use the reader function provided by the user to consume data
241 * values of various sizes from the instruction's memory and advance the
242 * cursor appropriately. These readers perform endian conversion.
243 *
244 * @param insn - See consumeByte().
245 * @param ptr - A pointer to a pre-allocated memory of appropriate size to
246 * be populated with the data read.
247 * @return - See consumeByte().
248 */
CONSUME_FUNC(consumeInt8,int8_t)249 CONSUME_FUNC(consumeInt8, int8_t)
250 CONSUME_FUNC(consumeInt16, int16_t)
251 CONSUME_FUNC(consumeInt32, int32_t)
252 CONSUME_FUNC(consumeUInt16, uint16_t)
253 CONSUME_FUNC(consumeUInt32, uint32_t)
254 CONSUME_FUNC(consumeUInt64, uint64_t)
255
256 /*
257 * dbgprintf - Uses the logging function provided by the user to log a single
258 * message, typically without a carriage-return.
259 *
260 * @param insn - The instruction containing the logging function.
261 * @param format - See printf().
262 * @param ... - See printf().
263 */
264 static void dbgprintf(struct InternalInstruction* insn,
265 const char* format,
266 ...) {
267 char buffer[256];
268 va_list ap;
269
270 if (!insn->dlog)
271 return;
272
273 va_start(ap, format);
274 (void)vsnprintf(buffer, sizeof(buffer), format, ap);
275 va_end(ap);
276
277 insn->dlog(insn->dlogArg, buffer);
278 }
279
280 /*
281 * setPrefixPresent - Marks that a particular prefix is present at a particular
282 * location.
283 *
284 * @param insn - The instruction to be marked as having the prefix.
285 * @param prefix - The prefix that is present.
286 * @param location - The location where the prefix is located (in the address
287 * space of the instruction's reader).
288 */
setPrefixPresent(struct InternalInstruction * insn,uint8_t prefix,uint64_t location)289 static void setPrefixPresent(struct InternalInstruction* insn,
290 uint8_t prefix,
291 uint64_t location)
292 {
293 insn->prefixPresent[prefix] = 1;
294 insn->prefixLocations[prefix] = location;
295 }
296
297 /*
298 * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
299 * present at a given location.
300 *
301 * @param insn - The instruction to be queried.
302 * @param prefix - The prefix.
303 * @param location - The location to query.
304 * @return - Whether the prefix is at that location.
305 */
isPrefixAtLocation(struct InternalInstruction * insn,uint8_t prefix,uint64_t location)306 static bool isPrefixAtLocation(struct InternalInstruction* insn,
307 uint8_t prefix,
308 uint64_t location)
309 {
310 return insn->prefixPresent[prefix] == 1 &&
311 insn->prefixLocations[prefix] == location;
312 }
313
314 /*
315 * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
316 * instruction as having them. Also sets the instruction's default operand,
317 * address, and other relevant data sizes to report operands correctly.
318 *
319 * @param insn - The instruction whose prefixes are to be read.
320 * @return - 0 if the instruction could be read until the end of the prefix
321 * bytes, and no prefixes conflicted; nonzero otherwise.
322 */
readPrefixes(struct InternalInstruction * insn)323 static int readPrefixes(struct InternalInstruction* insn) {
324 bool isPrefix = true;
325 bool prefixGroups[4] = { false };
326 uint64_t prefixLocation;
327 uint8_t byte = 0;
328 uint8_t nextByte;
329
330 bool hasAdSize = false;
331 bool hasOpSize = false;
332
333 dbgprintf(insn, "readPrefixes()");
334
335 while (isPrefix) {
336 prefixLocation = insn->readerCursor;
337
338 /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
339 if (consumeByte(insn, &byte))
340 break;
341
342 /*
343 * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
344 * break and let it be disassembled as a normal "instruction".
345 */
346 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
347 break;
348
349 if (insn->readerCursor - 1 == insn->startLocation
350 && (byte == 0xf2 || byte == 0xf3)
351 && !lookAtByte(insn, &nextByte))
352 {
353 /*
354 * If the byte is 0xf2 or 0xf3, and any of the following conditions are
355 * met:
356 * - it is followed by a LOCK (0xf0) prefix
357 * - it is followed by an xchg instruction
358 * then it should be disassembled as a xacquire/xrelease not repne/rep.
359 */
360 if ((byte == 0xf2 || byte == 0xf3) &&
361 ((nextByte == 0xf0) ||
362 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
363 insn->xAcquireRelease = true;
364 /*
365 * Also if the byte is 0xf3, and the following condition is met:
366 * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
367 * "mov mem, imm" (opcode 0xc6/0xc7) instructions.
368 * then it should be disassembled as an xrelease not rep.
369 */
370 if (byte == 0xf3 &&
371 (nextByte == 0x88 || nextByte == 0x89 ||
372 nextByte == 0xc6 || nextByte == 0xc7))
373 insn->xAcquireRelease = true;
374 if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
375 if (consumeByte(insn, &nextByte))
376 return -1;
377 if (lookAtByte(insn, &nextByte))
378 return -1;
379 unconsumeByte(insn);
380 }
381 if (nextByte != 0x0f && nextByte != 0x90)
382 break;
383 }
384
385 switch (byte) {
386 case 0xf0: /* LOCK */
387 case 0xf2: /* REPNE/REPNZ */
388 case 0xf3: /* REP or REPE/REPZ */
389 if (prefixGroups[0])
390 dbgprintf(insn, "Redundant Group 1 prefix");
391 prefixGroups[0] = true;
392 setPrefixPresent(insn, byte, prefixLocation);
393 break;
394 case 0x2e: /* CS segment override -OR- Branch not taken */
395 case 0x36: /* SS segment override -OR- Branch taken */
396 case 0x3e: /* DS segment override */
397 case 0x26: /* ES segment override */
398 case 0x64: /* FS segment override */
399 case 0x65: /* GS segment override */
400 switch (byte) {
401 case 0x2e:
402 insn->segmentOverride = SEG_OVERRIDE_CS;
403 break;
404 case 0x36:
405 insn->segmentOverride = SEG_OVERRIDE_SS;
406 break;
407 case 0x3e:
408 insn->segmentOverride = SEG_OVERRIDE_DS;
409 break;
410 case 0x26:
411 insn->segmentOverride = SEG_OVERRIDE_ES;
412 break;
413 case 0x64:
414 insn->segmentOverride = SEG_OVERRIDE_FS;
415 break;
416 case 0x65:
417 insn->segmentOverride = SEG_OVERRIDE_GS;
418 break;
419 default:
420 debug("Unhandled override");
421 return -1;
422 }
423 if (prefixGroups[1])
424 dbgprintf(insn, "Redundant Group 2 prefix");
425 prefixGroups[1] = true;
426 setPrefixPresent(insn, byte, prefixLocation);
427 break;
428 case 0x66: /* Operand-size override */
429 if (prefixGroups[2])
430 dbgprintf(insn, "Redundant Group 3 prefix");
431 prefixGroups[2] = true;
432 hasOpSize = true;
433 setPrefixPresent(insn, byte, prefixLocation);
434 break;
435 case 0x67: /* Address-size override */
436 if (prefixGroups[3])
437 dbgprintf(insn, "Redundant Group 4 prefix");
438 prefixGroups[3] = true;
439 hasAdSize = true;
440 setPrefixPresent(insn, byte, prefixLocation);
441 break;
442 default: /* Not a prefix byte */
443 isPrefix = false;
444 break;
445 }
446
447 if (isPrefix)
448 dbgprintf(insn, "Found prefix 0x%hhx", byte);
449 }
450
451 insn->vectorExtensionType = TYPE_NO_VEX_XOP;
452
453 if (byte == 0x62) {
454 uint8_t byte1, byte2;
455
456 if (consumeByte(insn, &byte1)) {
457 dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
458 return -1;
459 }
460
461 if (lookAtByte(insn, &byte2)) {
462 dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
463 return -1;
464 }
465
466 if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
467 ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
468 insn->vectorExtensionType = TYPE_EVEX;
469 } else {
470 unconsumeByte(insn); /* unconsume byte1 */
471 unconsumeByte(insn); /* unconsume byte */
472 insn->necessaryPrefixLocation = insn->readerCursor - 2;
473 }
474
475 if (insn->vectorExtensionType == TYPE_EVEX) {
476 insn->vectorExtensionPrefix[0] = byte;
477 insn->vectorExtensionPrefix[1] = byte1;
478 if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
479 dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
480 return -1;
481 }
482 if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
483 dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
484 return -1;
485 }
486
487 /* We simulate the REX prefix for simplicity's sake */
488 if (insn->mode == MODE_64BIT) {
489 insn->rexPrefix = 0x40
490 | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
491 | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
492 | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
493 | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
494 }
495
496 dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
497 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
498 insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
499 }
500 } else if (byte == 0xc4) {
501 uint8_t byte1;
502
503 if (lookAtByte(insn, &byte1)) {
504 dbgprintf(insn, "Couldn't read second byte of VEX");
505 return -1;
506 }
507
508 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
509 insn->vectorExtensionType = TYPE_VEX_3B;
510 insn->necessaryPrefixLocation = insn->readerCursor - 1;
511 } else {
512 unconsumeByte(insn);
513 insn->necessaryPrefixLocation = insn->readerCursor - 1;
514 }
515
516 if (insn->vectorExtensionType == TYPE_VEX_3B) {
517 insn->vectorExtensionPrefix[0] = byte;
518 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
519 consumeByte(insn, &insn->vectorExtensionPrefix[2]);
520
521 /* We simulate the REX prefix for simplicity's sake */
522
523 if (insn->mode == MODE_64BIT) {
524 insn->rexPrefix = 0x40
525 | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
526 | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
527 | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
528 | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
529 }
530
531 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
532 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
533 insn->vectorExtensionPrefix[2]);
534 }
535 } else if (byte == 0xc5) {
536 uint8_t byte1;
537
538 if (lookAtByte(insn, &byte1)) {
539 dbgprintf(insn, "Couldn't read second byte of VEX");
540 return -1;
541 }
542
543 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
544 insn->vectorExtensionType = TYPE_VEX_2B;
545 } else {
546 unconsumeByte(insn);
547 }
548
549 if (insn->vectorExtensionType == TYPE_VEX_2B) {
550 insn->vectorExtensionPrefix[0] = byte;
551 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
552
553 if (insn->mode == MODE_64BIT) {
554 insn->rexPrefix = 0x40
555 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
556 }
557
558 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
559 default:
560 break;
561 case VEX_PREFIX_66:
562 hasOpSize = true;
563 break;
564 }
565
566 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
567 insn->vectorExtensionPrefix[0],
568 insn->vectorExtensionPrefix[1]);
569 }
570 } else if (byte == 0x8f) {
571 uint8_t byte1;
572
573 if (lookAtByte(insn, &byte1)) {
574 dbgprintf(insn, "Couldn't read second byte of XOP");
575 return -1;
576 }
577
578 if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
579 insn->vectorExtensionType = TYPE_XOP;
580 insn->necessaryPrefixLocation = insn->readerCursor - 1;
581 } else {
582 unconsumeByte(insn);
583 insn->necessaryPrefixLocation = insn->readerCursor - 1;
584 }
585
586 if (insn->vectorExtensionType == TYPE_XOP) {
587 insn->vectorExtensionPrefix[0] = byte;
588 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
589 consumeByte(insn, &insn->vectorExtensionPrefix[2]);
590
591 /* We simulate the REX prefix for simplicity's sake */
592
593 if (insn->mode == MODE_64BIT) {
594 insn->rexPrefix = 0x40
595 | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
596 | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
597 | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
598 | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
599 }
600
601 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
602 default:
603 break;
604 case VEX_PREFIX_66:
605 hasOpSize = true;
606 break;
607 }
608
609 dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
610 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
611 insn->vectorExtensionPrefix[2]);
612 }
613 } else {
614 if (insn->mode == MODE_64BIT) {
615 if ((byte & 0xf0) == 0x40) {
616 uint8_t opcodeByte;
617
618 if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
619 dbgprintf(insn, "Redundant REX prefix");
620 return -1;
621 }
622
623 insn->rexPrefix = byte;
624 insn->necessaryPrefixLocation = insn->readerCursor - 2;
625
626 dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
627 } else {
628 unconsumeByte(insn);
629 insn->necessaryPrefixLocation = insn->readerCursor - 1;
630 }
631 } else {
632 unconsumeByte(insn);
633 insn->necessaryPrefixLocation = insn->readerCursor - 1;
634 }
635 }
636
637 if (insn->mode == MODE_16BIT) {
638 insn->registerSize = (hasOpSize ? 4 : 2);
639 insn->addressSize = (hasAdSize ? 4 : 2);
640 insn->displacementSize = (hasAdSize ? 4 : 2);
641 insn->immediateSize = (hasOpSize ? 4 : 2);
642 } else if (insn->mode == MODE_32BIT) {
643 insn->registerSize = (hasOpSize ? 2 : 4);
644 insn->addressSize = (hasAdSize ? 2 : 4);
645 insn->displacementSize = (hasAdSize ? 2 : 4);
646 insn->immediateSize = (hasOpSize ? 2 : 4);
647 } else if (insn->mode == MODE_64BIT) {
648 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
649 insn->registerSize = 8;
650 insn->addressSize = (hasAdSize ? 4 : 8);
651 insn->displacementSize = 4;
652 insn->immediateSize = 4;
653 } else if (insn->rexPrefix) {
654 insn->registerSize = (hasOpSize ? 2 : 4);
655 insn->addressSize = (hasAdSize ? 4 : 8);
656 insn->displacementSize = (hasOpSize ? 2 : 4);
657 insn->immediateSize = (hasOpSize ? 2 : 4);
658 } else {
659 insn->registerSize = (hasOpSize ? 2 : 4);
660 insn->addressSize = (hasAdSize ? 4 : 8);
661 insn->displacementSize = (hasOpSize ? 2 : 4);
662 insn->immediateSize = (hasOpSize ? 2 : 4);
663 }
664 }
665
666 return 0;
667 }
668
669 /*
670 * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
671 * extended or escape opcodes).
672 *
673 * @param insn - The instruction whose opcode is to be read.
674 * @return - 0 if the opcode could be read successfully; nonzero otherwise.
675 */
readOpcode(struct InternalInstruction * insn)676 static int readOpcode(struct InternalInstruction* insn) {
677 /* Determine the length of the primary opcode */
678
679 uint8_t current;
680
681 dbgprintf(insn, "readOpcode()");
682
683 insn->opcodeType = ONEBYTE;
684
685 if (insn->vectorExtensionType == TYPE_EVEX) {
686 switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
687 default:
688 dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
689 mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
690 return -1;
691 case VEX_LOB_0F:
692 insn->opcodeType = TWOBYTE;
693 return consumeByte(insn, &insn->opcode);
694 case VEX_LOB_0F38:
695 insn->opcodeType = THREEBYTE_38;
696 return consumeByte(insn, &insn->opcode);
697 case VEX_LOB_0F3A:
698 insn->opcodeType = THREEBYTE_3A;
699 return consumeByte(insn, &insn->opcode);
700 }
701 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
702 switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
703 default:
704 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
705 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
706 return -1;
707 case VEX_LOB_0F:
708 insn->opcodeType = TWOBYTE;
709 return consumeByte(insn, &insn->opcode);
710 case VEX_LOB_0F38:
711 insn->opcodeType = THREEBYTE_38;
712 return consumeByte(insn, &insn->opcode);
713 case VEX_LOB_0F3A:
714 insn->opcodeType = THREEBYTE_3A;
715 return consumeByte(insn, &insn->opcode);
716 }
717 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
718 insn->opcodeType = TWOBYTE;
719 return consumeByte(insn, &insn->opcode);
720 } else if (insn->vectorExtensionType == TYPE_XOP) {
721 switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
722 default:
723 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
724 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
725 return -1;
726 case XOP_MAP_SELECT_8:
727 insn->opcodeType = XOP8_MAP;
728 return consumeByte(insn, &insn->opcode);
729 case XOP_MAP_SELECT_9:
730 insn->opcodeType = XOP9_MAP;
731 return consumeByte(insn, &insn->opcode);
732 case XOP_MAP_SELECT_A:
733 insn->opcodeType = XOPA_MAP;
734 return consumeByte(insn, &insn->opcode);
735 }
736 }
737
738 if (consumeByte(insn, ¤t))
739 return -1;
740
741 if (current == 0x0f) {
742 dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
743
744 if (consumeByte(insn, ¤t))
745 return -1;
746
747 if (current == 0x38) {
748 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
749
750 if (consumeByte(insn, ¤t))
751 return -1;
752
753 insn->opcodeType = THREEBYTE_38;
754 } else if (current == 0x3a) {
755 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
756
757 if (consumeByte(insn, ¤t))
758 return -1;
759
760 insn->opcodeType = THREEBYTE_3A;
761 } else {
762 dbgprintf(insn, "Didn't find a three-byte escape prefix");
763
764 insn->opcodeType = TWOBYTE;
765 }
766 }
767
768 /*
769 * At this point we have consumed the full opcode.
770 * Anything we consume from here on must be unconsumed.
771 */
772
773 insn->opcode = current;
774
775 return 0;
776 }
777
778 static int readModRM(struct InternalInstruction* insn);
779
780 /*
781 * getIDWithAttrMask - Determines the ID of an instruction, consuming
782 * the ModR/M byte as appropriate for extended and escape opcodes,
783 * and using a supplied attribute mask.
784 *
785 * @param instructionID - A pointer whose target is filled in with the ID of the
786 * instruction.
787 * @param insn - The instruction whose ID is to be determined.
788 * @param attrMask - The attribute mask to search.
789 * @return - 0 if the ModR/M could be read when needed or was not
790 * needed; nonzero otherwise.
791 */
getIDWithAttrMask(uint16_t * instructionID,struct InternalInstruction * insn,uint16_t attrMask)792 static int getIDWithAttrMask(uint16_t* instructionID,
793 struct InternalInstruction* insn,
794 uint16_t attrMask) {
795 bool hasModRMExtension;
796
797 InstructionContext instructionClass = contextForAttrs(attrMask);
798
799 hasModRMExtension = modRMRequired(insn->opcodeType,
800 instructionClass,
801 insn->opcode);
802
803 if (hasModRMExtension) {
804 if (readModRM(insn))
805 return -1;
806
807 *instructionID = decode(insn->opcodeType,
808 instructionClass,
809 insn->opcode,
810 insn->modRM);
811 } else {
812 *instructionID = decode(insn->opcodeType,
813 instructionClass,
814 insn->opcode,
815 0);
816 }
817
818 return 0;
819 }
820
821 /*
822 * is16BitEquivalent - Determines whether two instruction names refer to
823 * equivalent instructions but one is 16-bit whereas the other is not.
824 *
825 * @param orig - The instruction that is not 16-bit
826 * @param equiv - The instruction that is 16-bit
827 */
is16BitEquivalent(const char * orig,const char * equiv)828 static bool is16BitEquivalent(const char* orig, const char* equiv) {
829 off_t i;
830
831 for (i = 0;; i++) {
832 if (orig[i] == '\0' && equiv[i] == '\0')
833 return true;
834 if (orig[i] == '\0' || equiv[i] == '\0')
835 return false;
836 if (orig[i] != equiv[i]) {
837 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
838 continue;
839 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
840 continue;
841 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
842 continue;
843 return false;
844 }
845 }
846 }
847
848 /*
849 * is64Bit - Determines whether this instruction is a 64-bit instruction.
850 *
851 * @param name - The instruction that is not 16-bit
852 */
is64Bit(const char * name)853 static bool is64Bit(const char* name) {
854 off_t i;
855
856 for (i = 0;; ++i) {
857 if (name[i] == '\0')
858 return false;
859 if (name[i] == '6' && name[i+1] == '4')
860 return true;
861 }
862 }
863
864 /*
865 * getID - Determines the ID of an instruction, consuming the ModR/M byte as
866 * appropriate for extended and escape opcodes. Determines the attributes and
867 * context for the instruction before doing so.
868 *
869 * @param insn - The instruction whose ID is to be determined.
870 * @return - 0 if the ModR/M could be read when needed or was not needed;
871 * nonzero otherwise.
872 */
getID(struct InternalInstruction * insn,const void * miiArg)873 static int getID(struct InternalInstruction* insn, const void *miiArg) {
874 uint16_t attrMask;
875 uint16_t instructionID;
876
877 dbgprintf(insn, "getID()");
878
879 attrMask = ATTR_NONE;
880
881 if (insn->mode == MODE_64BIT)
882 attrMask |= ATTR_64BIT;
883
884 if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
885 attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
886
887 if (insn->vectorExtensionType == TYPE_EVEX) {
888 switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
889 case VEX_PREFIX_66:
890 attrMask |= ATTR_OPSIZE;
891 break;
892 case VEX_PREFIX_F3:
893 attrMask |= ATTR_XS;
894 break;
895 case VEX_PREFIX_F2:
896 attrMask |= ATTR_XD;
897 break;
898 }
899
900 if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
901 attrMask |= ATTR_EVEXKZ;
902 if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
903 attrMask |= ATTR_EVEXB;
904 if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
905 attrMask |= ATTR_EVEXK;
906 if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
907 attrMask |= ATTR_EVEXL;
908 if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
909 attrMask |= ATTR_EVEXL2;
910 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
911 switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
912 case VEX_PREFIX_66:
913 attrMask |= ATTR_OPSIZE;
914 break;
915 case VEX_PREFIX_F3:
916 attrMask |= ATTR_XS;
917 break;
918 case VEX_PREFIX_F2:
919 attrMask |= ATTR_XD;
920 break;
921 }
922
923 if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
924 attrMask |= ATTR_VEXL;
925 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
926 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
927 case VEX_PREFIX_66:
928 attrMask |= ATTR_OPSIZE;
929 break;
930 case VEX_PREFIX_F3:
931 attrMask |= ATTR_XS;
932 break;
933 case VEX_PREFIX_F2:
934 attrMask |= ATTR_XD;
935 break;
936 }
937
938 if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
939 attrMask |= ATTR_VEXL;
940 } else if (insn->vectorExtensionType == TYPE_XOP) {
941 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
942 case VEX_PREFIX_66:
943 attrMask |= ATTR_OPSIZE;
944 break;
945 case VEX_PREFIX_F3:
946 attrMask |= ATTR_XS;
947 break;
948 case VEX_PREFIX_F2:
949 attrMask |= ATTR_XD;
950 break;
951 }
952
953 if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
954 attrMask |= ATTR_VEXL;
955 } else {
956 return -1;
957 }
958 } else {
959 if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
960 attrMask |= ATTR_OPSIZE;
961 else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
962 attrMask |= ATTR_ADSIZE;
963 else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
964 attrMask |= ATTR_XS;
965 else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
966 attrMask |= ATTR_XD;
967 }
968
969 if (insn->rexPrefix & 0x08)
970 attrMask |= ATTR_REXW;
971
972 /*
973 * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
974 * of the AdSize prefix is inverted w.r.t. 32-bit mode.
975 */
976 if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE &&
977 insn->opcode == 0xE3)
978 attrMask ^= ATTR_ADSIZE;
979
980 /*
981 * In 64-bit mode all f64 superscripted opcodes ignore opcode size prefix
982 * CALL/JMP/JCC instructions need to ignore 0x66 and consume 4 bytes
983 */
984
985 if (insn->mode == MODE_64BIT &&
986 isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation)) {
987 switch (insn->opcode) {
988 case 0xE8:
989 case 0xE9:
990 // Take care of psubsb and other mmx instructions.
991 if (insn->opcodeType == ONEBYTE) {
992 attrMask ^= ATTR_OPSIZE;
993 insn->immediateSize = 4;
994 insn->displacementSize = 4;
995 }
996 break;
997 case 0x82:
998 case 0x83:
999 case 0x84:
1000 case 0x85:
1001 case 0x86:
1002 case 0x87:
1003 case 0x88:
1004 case 0x89:
1005 case 0x8A:
1006 case 0x8B:
1007 case 0x8C:
1008 case 0x8D:
1009 case 0x8E:
1010 case 0x8F:
1011 // Take care of lea and three byte ops.
1012 if (insn->opcodeType == TWOBYTE) {
1013 attrMask ^= ATTR_OPSIZE;
1014 insn->immediateSize = 4;
1015 insn->displacementSize = 4;
1016 }
1017 break;
1018 }
1019 }
1020
1021 if (getIDWithAttrMask(&instructionID, insn, attrMask))
1022 return -1;
1023
1024 /* The following clauses compensate for limitations of the tables. */
1025
1026 if (insn->mode != MODE_64BIT &&
1027 insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1028 /*
1029 * The tables can't distinquish between cases where the W-bit is used to
1030 * select register size and cases where its a required part of the opcode.
1031 */
1032 if ((insn->vectorExtensionType == TYPE_EVEX &&
1033 wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1034 (insn->vectorExtensionType == TYPE_VEX_3B &&
1035 wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1036 (insn->vectorExtensionType == TYPE_XOP &&
1037 wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1038
1039 uint16_t instructionIDWithREXW;
1040 if (getIDWithAttrMask(&instructionIDWithREXW,
1041 insn, attrMask | ATTR_REXW)) {
1042 insn->instructionID = instructionID;
1043 insn->spec = specifierForUID(instructionID);
1044 return 0;
1045 }
1046
1047 const char *SpecName = GetInstrName(instructionIDWithREXW, miiArg);
1048 // If not a 64-bit instruction. Switch the opcode.
1049 if (!is64Bit(SpecName)) {
1050 insn->instructionID = instructionIDWithREXW;
1051 insn->spec = specifierForUID(instructionIDWithREXW);
1052 return 0;
1053 }
1054 }
1055 }
1056
1057 /*
1058 * Absolute moves need special handling.
1059 * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1060 * inverted w.r.t.
1061 * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1062 * any position.
1063 */
1064 if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) {
1065 /* Make sure we observed the prefixes in any position. */
1066 if (insn->prefixPresent[0x67])
1067 attrMask |= ATTR_ADSIZE;
1068 if (insn->prefixPresent[0x66])
1069 attrMask |= ATTR_OPSIZE;
1070
1071 /* In 16-bit, invert the attributes. */
1072 if (insn->mode == MODE_16BIT)
1073 attrMask ^= ATTR_ADSIZE | ATTR_OPSIZE;
1074
1075 if (getIDWithAttrMask(&instructionID, insn, attrMask))
1076 return -1;
1077
1078 insn->instructionID = instructionID;
1079 insn->spec = specifierForUID(instructionID);
1080 return 0;
1081 }
1082
1083 if ((insn->mode == MODE_16BIT || insn->prefixPresent[0x66]) &&
1084 !(attrMask & ATTR_OPSIZE)) {
1085 /*
1086 * The instruction tables make no distinction between instructions that
1087 * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1088 * particular spot (i.e., many MMX operations). In general we're
1089 * conservative, but in the specific case where OpSize is present but not
1090 * in the right place we check if there's a 16-bit operation.
1091 */
1092
1093 const struct InstructionSpecifier *spec;
1094 uint16_t instructionIDWithOpsize;
1095 const char *specName, *specWithOpSizeName;
1096
1097 spec = specifierForUID(instructionID);
1098
1099 if (getIDWithAttrMask(&instructionIDWithOpsize,
1100 insn,
1101 attrMask | ATTR_OPSIZE)) {
1102 /*
1103 * ModRM required with OpSize but not present; give up and return version
1104 * without OpSize set
1105 */
1106
1107 insn->instructionID = instructionID;
1108 insn->spec = spec;
1109 return 0;
1110 }
1111
1112 specName = GetInstrName(instructionID, miiArg);
1113 specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg);
1114
1115 if (is16BitEquivalent(specName, specWithOpSizeName) &&
1116 (insn->mode == MODE_16BIT) ^ insn->prefixPresent[0x66]) {
1117 insn->instructionID = instructionIDWithOpsize;
1118 insn->spec = specifierForUID(instructionIDWithOpsize);
1119 } else {
1120 insn->instructionID = instructionID;
1121 insn->spec = spec;
1122 }
1123 return 0;
1124 }
1125
1126 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1127 insn->rexPrefix & 0x01) {
1128 /*
1129 * NOOP shouldn't decode as NOOP if REX.b is set. Instead
1130 * it should decode as XCHG %r8, %eax.
1131 */
1132
1133 const struct InstructionSpecifier *spec;
1134 uint16_t instructionIDWithNewOpcode;
1135 const struct InstructionSpecifier *specWithNewOpcode;
1136
1137 spec = specifierForUID(instructionID);
1138
1139 /* Borrow opcode from one of the other XCHGar opcodes */
1140 insn->opcode = 0x91;
1141
1142 if (getIDWithAttrMask(&instructionIDWithNewOpcode,
1143 insn,
1144 attrMask)) {
1145 insn->opcode = 0x90;
1146
1147 insn->instructionID = instructionID;
1148 insn->spec = spec;
1149 return 0;
1150 }
1151
1152 specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
1153
1154 /* Change back */
1155 insn->opcode = 0x90;
1156
1157 insn->instructionID = instructionIDWithNewOpcode;
1158 insn->spec = specWithNewOpcode;
1159
1160 return 0;
1161 }
1162
1163 insn->instructionID = instructionID;
1164 insn->spec = specifierForUID(insn->instructionID);
1165
1166 return 0;
1167 }
1168
1169 /*
1170 * readSIB - Consumes the SIB byte to determine addressing information for an
1171 * instruction.
1172 *
1173 * @param insn - The instruction whose SIB byte is to be read.
1174 * @return - 0 if the SIB byte was successfully read; nonzero otherwise.
1175 */
readSIB(struct InternalInstruction * insn)1176 static int readSIB(struct InternalInstruction* insn) {
1177 SIBIndex sibIndexBase = SIB_INDEX_NONE;
1178 SIBBase sibBaseBase = SIB_BASE_NONE;
1179 uint8_t index, base;
1180
1181 dbgprintf(insn, "readSIB()");
1182
1183 if (insn->consumedSIB)
1184 return 0;
1185
1186 insn->consumedSIB = true;
1187
1188 switch (insn->addressSize) {
1189 case 2:
1190 dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
1191 return -1;
1192 case 4:
1193 sibIndexBase = SIB_INDEX_EAX;
1194 sibBaseBase = SIB_BASE_EAX;
1195 break;
1196 case 8:
1197 sibIndexBase = SIB_INDEX_RAX;
1198 sibBaseBase = SIB_BASE_RAX;
1199 break;
1200 }
1201
1202 if (consumeByte(insn, &insn->sib))
1203 return -1;
1204
1205 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
1206
1207 // FIXME: The fifth bit (bit index 4) is only to be used for instructions
1208 // that understand VSIB indexing. ORing the bit in here is mildy dangerous
1209 // because performing math on an 'enum SIBIndex' can produce garbage.
1210 // Excluding the "none" value, it should cover 6 spaces of register names:
1211 // - 16 possibilities for 16-bit GPR starting at SIB_INDEX_BX_SI
1212 // - 16 possibilities for 32-bit GPR starting at SIB_INDEX_EAX
1213 // - 16 possibilities for 64-bit GPR starting at SIB_INDEX_RAX
1214 // - 32 possibilities for each of XMM, YMM, ZMM registers
1215 // When sibIndexBase gets assigned SIB_INDEX_RAX as it does in 64-bit mode,
1216 // summing in a fully decoded index between 0 and 31 can end up with a value
1217 // that looks like something in the low half of the XMM range.
1218 // translateRMMemory() tries to reverse the damage, with only partial success,
1219 // as evidenced by known bugs in "test/MC/Disassembler/X86/x86-64.txt"
1220 if (insn->vectorExtensionType == TYPE_EVEX)
1221 index |= v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4;
1222
1223 if (index == 0x4) {
1224 insn->sibIndex = SIB_INDEX_NONE;
1225 } else {
1226 insn->sibIndex = (SIBIndex)(sibIndexBase + index);
1227 }
1228
1229 insn->sibScale = 1 << scaleFromSIB(insn->sib);
1230
1231 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1232
1233 switch (base) {
1234 case 0x5:
1235 case 0xd:
1236 switch (modFromModRM(insn->modRM)) {
1237 case 0x0:
1238 insn->eaDisplacement = EA_DISP_32;
1239 insn->sibBase = SIB_BASE_NONE;
1240 break;
1241 case 0x1:
1242 insn->eaDisplacement = EA_DISP_8;
1243 insn->sibBase = (SIBBase)(sibBaseBase + base);
1244 break;
1245 case 0x2:
1246 insn->eaDisplacement = EA_DISP_32;
1247 insn->sibBase = (SIBBase)(sibBaseBase + base);
1248 break;
1249 case 0x3:
1250 debug("Cannot have Mod = 0b11 and a SIB byte");
1251 return -1;
1252 }
1253 break;
1254 default:
1255 insn->sibBase = (SIBBase)(sibBaseBase + base);
1256 break;
1257 }
1258
1259 return 0;
1260 }
1261
1262 /*
1263 * readDisplacement - Consumes the displacement of an instruction.
1264 *
1265 * @param insn - The instruction whose displacement is to be read.
1266 * @return - 0 if the displacement byte was successfully read; nonzero
1267 * otherwise.
1268 */
readDisplacement(struct InternalInstruction * insn)1269 static int readDisplacement(struct InternalInstruction* insn) {
1270 int8_t d8;
1271 int16_t d16;
1272 int32_t d32;
1273
1274 dbgprintf(insn, "readDisplacement()");
1275
1276 if (insn->consumedDisplacement)
1277 return 0;
1278
1279 insn->consumedDisplacement = true;
1280 insn->displacementOffset = insn->readerCursor - insn->startLocation;
1281
1282 switch (insn->eaDisplacement) {
1283 case EA_DISP_NONE:
1284 insn->consumedDisplacement = false;
1285 break;
1286 case EA_DISP_8:
1287 if (consumeInt8(insn, &d8))
1288 return -1;
1289 insn->displacement = d8;
1290 break;
1291 case EA_DISP_16:
1292 if (consumeInt16(insn, &d16))
1293 return -1;
1294 insn->displacement = d16;
1295 break;
1296 case EA_DISP_32:
1297 if (consumeInt32(insn, &d32))
1298 return -1;
1299 insn->displacement = d32;
1300 break;
1301 }
1302
1303 insn->consumedDisplacement = true;
1304 return 0;
1305 }
1306
1307 /*
1308 * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1309 * displacement) for an instruction and interprets it.
1310 *
1311 * @param insn - The instruction whose addressing information is to be read.
1312 * @return - 0 if the information was successfully read; nonzero otherwise.
1313 */
readModRM(struct InternalInstruction * insn)1314 static int readModRM(struct InternalInstruction* insn) {
1315 uint8_t mod, rm, reg;
1316
1317 dbgprintf(insn, "readModRM()");
1318
1319 if (insn->consumedModRM)
1320 return 0;
1321
1322 if (consumeByte(insn, &insn->modRM))
1323 return -1;
1324 insn->consumedModRM = true;
1325
1326 mod = modFromModRM(insn->modRM);
1327 rm = rmFromModRM(insn->modRM);
1328 reg = regFromModRM(insn->modRM);
1329
1330 /*
1331 * This goes by insn->registerSize to pick the correct register, which messes
1332 * up if we're using (say) XMM or 8-bit register operands. That gets fixed in
1333 * fixupReg().
1334 */
1335 switch (insn->registerSize) {
1336 case 2:
1337 insn->regBase = MODRM_REG_AX;
1338 insn->eaRegBase = EA_REG_AX;
1339 break;
1340 case 4:
1341 insn->regBase = MODRM_REG_EAX;
1342 insn->eaRegBase = EA_REG_EAX;
1343 break;
1344 case 8:
1345 insn->regBase = MODRM_REG_RAX;
1346 insn->eaRegBase = EA_REG_RAX;
1347 break;
1348 }
1349
1350 reg |= rFromREX(insn->rexPrefix) << 3;
1351 rm |= bFromREX(insn->rexPrefix) << 3;
1352 if (insn->vectorExtensionType == TYPE_EVEX) {
1353 reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1354 rm |= xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1355 }
1356
1357 insn->reg = (Reg)(insn->regBase + reg);
1358
1359 switch (insn->addressSize) {
1360 case 2:
1361 insn->eaBaseBase = EA_BASE_BX_SI;
1362
1363 switch (mod) {
1364 case 0x0:
1365 if (rm == 0x6) {
1366 insn->eaBase = EA_BASE_NONE;
1367 insn->eaDisplacement = EA_DISP_16;
1368 if (readDisplacement(insn))
1369 return -1;
1370 } else {
1371 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1372 insn->eaDisplacement = EA_DISP_NONE;
1373 }
1374 break;
1375 case 0x1:
1376 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1377 insn->eaDisplacement = EA_DISP_8;
1378 insn->displacementSize = 1;
1379 if (readDisplacement(insn))
1380 return -1;
1381 break;
1382 case 0x2:
1383 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1384 insn->eaDisplacement = EA_DISP_16;
1385 if (readDisplacement(insn))
1386 return -1;
1387 break;
1388 case 0x3:
1389 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1390 if (readDisplacement(insn))
1391 return -1;
1392 break;
1393 }
1394 break;
1395 case 4:
1396 case 8:
1397 insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1398
1399 switch (mod) {
1400 case 0x0:
1401 insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1402 // In determining whether RIP-relative mode is used (rm=5),
1403 // or whether a SIB byte is present (rm=4),
1404 // the extension bits (REX.b and EVEX.x) are ignored.
1405 switch (rm & 7) {
1406 case 0x4: // SIB byte is present
1407 insn->eaBase = (insn->addressSize == 4 ?
1408 EA_BASE_sib : EA_BASE_sib64);
1409 if (readSIB(insn) || readDisplacement(insn))
1410 return -1;
1411 break;
1412 case 0x5: // RIP-relative
1413 insn->eaBase = EA_BASE_NONE;
1414 insn->eaDisplacement = EA_DISP_32;
1415 if (readDisplacement(insn))
1416 return -1;
1417 break;
1418 default:
1419 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1420 break;
1421 }
1422 break;
1423 case 0x1:
1424 insn->displacementSize = 1;
1425 /* FALLTHROUGH */
1426 case 0x2:
1427 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1428 switch (rm & 7) {
1429 case 0x4: // SIB byte is present
1430 insn->eaBase = EA_BASE_sib;
1431 if (readSIB(insn) || readDisplacement(insn))
1432 return -1;
1433 break;
1434 default:
1435 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1436 if (readDisplacement(insn))
1437 return -1;
1438 break;
1439 }
1440 break;
1441 case 0x3:
1442 insn->eaDisplacement = EA_DISP_NONE;
1443 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1444 break;
1445 }
1446 break;
1447 } /* switch (insn->addressSize) */
1448
1449 return 0;
1450 }
1451
1452 #define GENERIC_FIXUP_FUNC(name, base, prefix) \
1453 static uint16_t name(struct InternalInstruction *insn, \
1454 OperandType type, \
1455 uint8_t index, \
1456 uint8_t *valid) { \
1457 *valid = 1; \
1458 switch (type) { \
1459 default: \
1460 debug("Unhandled register type"); \
1461 *valid = 0; \
1462 return 0; \
1463 case TYPE_Rv: \
1464 return base + index; \
1465 case TYPE_R8: \
1466 if (insn->rexPrefix && \
1467 index >= 4 && index <= 7) { \
1468 return prefix##_SPL + (index - 4); \
1469 } else { \
1470 return prefix##_AL + index; \
1471 } \
1472 case TYPE_R16: \
1473 return prefix##_AX + index; \
1474 case TYPE_R32: \
1475 return prefix##_EAX + index; \
1476 case TYPE_R64: \
1477 return prefix##_RAX + index; \
1478 case TYPE_XMM512: \
1479 return prefix##_ZMM0 + index; \
1480 case TYPE_XMM256: \
1481 return prefix##_YMM0 + index; \
1482 case TYPE_XMM128: \
1483 case TYPE_XMM64: \
1484 case TYPE_XMM32: \
1485 return prefix##_XMM0 + index; \
1486 case TYPE_VK1: \
1487 case TYPE_VK2: \
1488 case TYPE_VK4: \
1489 case TYPE_VK8: \
1490 case TYPE_VK16: \
1491 case TYPE_VK32: \
1492 case TYPE_VK64: \
1493 if (index > 7) \
1494 *valid = 0; \
1495 return prefix##_K0 + index; \
1496 case TYPE_MM64: \
1497 return prefix##_MM0 + (index & 0x7); \
1498 case TYPE_SEGMENTREG: \
1499 if (index > 5) \
1500 *valid = 0; \
1501 return prefix##_ES + index; \
1502 case TYPE_DEBUGREG: \
1503 return prefix##_DR0 + index; \
1504 case TYPE_CONTROLREG: \
1505 return prefix##_CR0 + index; \
1506 case TYPE_BNDR: \
1507 if (index > 3) \
1508 *valid = 0; \
1509 return prefix##_BND0 + index; \
1510 } \
1511 }
1512
1513 /*
1514 * fixup*Value - Consults an operand type to determine the meaning of the
1515 * reg or R/M field. If the operand is an XMM operand, for example, an
1516 * operand would be XMM0 instead of AX, which readModRM() would otherwise
1517 * misinterpret it as.
1518 *
1519 * @param insn - The instruction containing the operand.
1520 * @param type - The operand type.
1521 * @param index - The existing value of the field as reported by readModRM().
1522 * @param valid - The address of a uint8_t. The target is set to 1 if the
1523 * field is valid for the register class; 0 if not.
1524 * @return - The proper value.
1525 */
1526 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
1527 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
1528
1529 /*
1530 * fixupReg - Consults an operand specifier to determine which of the
1531 * fixup*Value functions to use in correcting readModRM()'ss interpretation.
1532 *
1533 * @param insn - See fixup*Value().
1534 * @param op - The operand specifier.
1535 * @return - 0 if fixup was successful; -1 if the register returned was
1536 * invalid for its class.
1537 */
fixupReg(struct InternalInstruction * insn,const struct OperandSpecifier * op)1538 static int fixupReg(struct InternalInstruction *insn,
1539 const struct OperandSpecifier *op) {
1540 uint8_t valid;
1541
1542 dbgprintf(insn, "fixupReg()");
1543
1544 switch ((OperandEncoding)op->encoding) {
1545 default:
1546 debug("Expected a REG or R/M encoding in fixupReg");
1547 return -1;
1548 case ENCODING_VVVV:
1549 insn->vvvv = (Reg)fixupRegValue(insn,
1550 (OperandType)op->type,
1551 insn->vvvv,
1552 &valid);
1553 if (!valid)
1554 return -1;
1555 break;
1556 case ENCODING_REG:
1557 insn->reg = (Reg)fixupRegValue(insn,
1558 (OperandType)op->type,
1559 insn->reg - insn->regBase,
1560 &valid);
1561 if (!valid)
1562 return -1;
1563 break;
1564 CASE_ENCODING_RM:
1565 if (insn->eaBase >= insn->eaRegBase) {
1566 insn->eaBase = (EABase)fixupRMValue(insn,
1567 (OperandType)op->type,
1568 insn->eaBase - insn->eaRegBase,
1569 &valid);
1570 if (!valid)
1571 return -1;
1572 }
1573 break;
1574 }
1575
1576 return 0;
1577 }
1578
1579 /*
1580 * readOpcodeRegister - Reads an operand from the opcode field of an
1581 * instruction and interprets it appropriately given the operand width.
1582 * Handles AddRegFrm instructions.
1583 *
1584 * @param insn - the instruction whose opcode field is to be read.
1585 * @param size - The width (in bytes) of the register being specified.
1586 * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1587 * RAX.
1588 * @return - 0 on success; nonzero otherwise.
1589 */
readOpcodeRegister(struct InternalInstruction * insn,uint8_t size)1590 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1591 dbgprintf(insn, "readOpcodeRegister()");
1592
1593 if (size == 0)
1594 size = insn->registerSize;
1595
1596 switch (size) {
1597 case 1:
1598 insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1599 | (insn->opcode & 7)));
1600 if (insn->rexPrefix &&
1601 insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1602 insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1603 insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1604 + (insn->opcodeRegister - MODRM_REG_AL - 4));
1605 }
1606
1607 break;
1608 case 2:
1609 insn->opcodeRegister = (Reg)(MODRM_REG_AX
1610 + ((bFromREX(insn->rexPrefix) << 3)
1611 | (insn->opcode & 7)));
1612 break;
1613 case 4:
1614 insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1615 + ((bFromREX(insn->rexPrefix) << 3)
1616 | (insn->opcode & 7)));
1617 break;
1618 case 8:
1619 insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1620 + ((bFromREX(insn->rexPrefix) << 3)
1621 | (insn->opcode & 7)));
1622 break;
1623 }
1624
1625 return 0;
1626 }
1627
1628 /*
1629 * readImmediate - Consumes an immediate operand from an instruction, given the
1630 * desired operand size.
1631 *
1632 * @param insn - The instruction whose operand is to be read.
1633 * @param size - The width (in bytes) of the operand.
1634 * @return - 0 if the immediate was successfully consumed; nonzero
1635 * otherwise.
1636 */
readImmediate(struct InternalInstruction * insn,uint8_t size)1637 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1638 uint8_t imm8;
1639 uint16_t imm16;
1640 uint32_t imm32;
1641 uint64_t imm64;
1642
1643 dbgprintf(insn, "readImmediate()");
1644
1645 if (insn->numImmediatesConsumed == 2) {
1646 debug("Already consumed two immediates");
1647 return -1;
1648 }
1649
1650 if (size == 0)
1651 size = insn->immediateSize;
1652 else
1653 insn->immediateSize = size;
1654 insn->immediateOffset = insn->readerCursor - insn->startLocation;
1655
1656 switch (size) {
1657 case 1:
1658 if (consumeByte(insn, &imm8))
1659 return -1;
1660 insn->immediates[insn->numImmediatesConsumed] = imm8;
1661 break;
1662 case 2:
1663 if (consumeUInt16(insn, &imm16))
1664 return -1;
1665 insn->immediates[insn->numImmediatesConsumed] = imm16;
1666 break;
1667 case 4:
1668 if (consumeUInt32(insn, &imm32))
1669 return -1;
1670 insn->immediates[insn->numImmediatesConsumed] = imm32;
1671 break;
1672 case 8:
1673 if (consumeUInt64(insn, &imm64))
1674 return -1;
1675 insn->immediates[insn->numImmediatesConsumed] = imm64;
1676 break;
1677 }
1678
1679 insn->numImmediatesConsumed++;
1680
1681 return 0;
1682 }
1683
1684 /*
1685 * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1686 *
1687 * @param insn - The instruction whose operand is to be read.
1688 * @return - 0 if the vvvv was successfully consumed; nonzero
1689 * otherwise.
1690 */
readVVVV(struct InternalInstruction * insn)1691 static int readVVVV(struct InternalInstruction* insn) {
1692 dbgprintf(insn, "readVVVV()");
1693
1694 int vvvv;
1695 if (insn->vectorExtensionType == TYPE_EVEX)
1696 vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1697 vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1698 else if (insn->vectorExtensionType == TYPE_VEX_3B)
1699 vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1700 else if (insn->vectorExtensionType == TYPE_VEX_2B)
1701 vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1702 else if (insn->vectorExtensionType == TYPE_XOP)
1703 vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1704 else
1705 return -1;
1706
1707 if (insn->mode != MODE_64BIT)
1708 vvvv &= 0x7;
1709
1710 insn->vvvv = static_cast<Reg>(vvvv);
1711 return 0;
1712 }
1713
1714 /*
1715 * readMaskRegister - Reads an mask register from the opcode field of an
1716 * instruction.
1717 *
1718 * @param insn - The instruction whose opcode field is to be read.
1719 * @return - 0 on success; nonzero otherwise.
1720 */
readMaskRegister(struct InternalInstruction * insn)1721 static int readMaskRegister(struct InternalInstruction* insn) {
1722 dbgprintf(insn, "readMaskRegister()");
1723
1724 if (insn->vectorExtensionType != TYPE_EVEX)
1725 return -1;
1726
1727 insn->writemask =
1728 static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1729 return 0;
1730 }
1731
1732 /*
1733 * readOperands - Consults the specifier for an instruction and consumes all
1734 * operands for that instruction, interpreting them as it goes.
1735 *
1736 * @param insn - The instruction whose operands are to be read and interpreted.
1737 * @return - 0 if all operands could be read; nonzero otherwise.
1738 */
readOperands(struct InternalInstruction * insn)1739 static int readOperands(struct InternalInstruction* insn) {
1740 int hasVVVV, needVVVV;
1741 int sawRegImm = 0;
1742
1743 dbgprintf(insn, "readOperands()");
1744
1745 /* If non-zero vvvv specified, need to make sure one of the operands
1746 uses it. */
1747 hasVVVV = !readVVVV(insn);
1748 needVVVV = hasVVVV && (insn->vvvv != 0);
1749
1750 for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1751 switch (Op.encoding) {
1752 case ENCODING_NONE:
1753 case ENCODING_SI:
1754 case ENCODING_DI:
1755 break;
1756 case ENCODING_REG:
1757 CASE_ENCODING_RM:
1758 if (readModRM(insn))
1759 return -1;
1760 if (fixupReg(insn, &Op))
1761 return -1;
1762 // Apply the AVX512 compressed displacement scaling factor.
1763 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1764 insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1765 break;
1766 case ENCODING_IB:
1767 if (sawRegImm) {
1768 /* Saw a register immediate so don't read again and instead split the
1769 previous immediate. FIXME: This is a hack. */
1770 insn->immediates[insn->numImmediatesConsumed] =
1771 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1772 ++insn->numImmediatesConsumed;
1773 break;
1774 }
1775 if (readImmediate(insn, 1))
1776 return -1;
1777 if (Op.type == TYPE_XMM128 ||
1778 Op.type == TYPE_XMM256)
1779 sawRegImm = 1;
1780 break;
1781 case ENCODING_IW:
1782 if (readImmediate(insn, 2))
1783 return -1;
1784 break;
1785 case ENCODING_ID:
1786 if (readImmediate(insn, 4))
1787 return -1;
1788 break;
1789 case ENCODING_IO:
1790 if (readImmediate(insn, 8))
1791 return -1;
1792 break;
1793 case ENCODING_Iv:
1794 if (readImmediate(insn, insn->immediateSize))
1795 return -1;
1796 break;
1797 case ENCODING_Ia:
1798 if (readImmediate(insn, insn->addressSize))
1799 return -1;
1800 break;
1801 case ENCODING_RB:
1802 if (readOpcodeRegister(insn, 1))
1803 return -1;
1804 break;
1805 case ENCODING_RW:
1806 if (readOpcodeRegister(insn, 2))
1807 return -1;
1808 break;
1809 case ENCODING_RD:
1810 if (readOpcodeRegister(insn, 4))
1811 return -1;
1812 break;
1813 case ENCODING_RO:
1814 if (readOpcodeRegister(insn, 8))
1815 return -1;
1816 break;
1817 case ENCODING_Rv:
1818 if (readOpcodeRegister(insn, 0))
1819 return -1;
1820 break;
1821 case ENCODING_FP:
1822 break;
1823 case ENCODING_VVVV:
1824 needVVVV = 0; /* Mark that we have found a VVVV operand. */
1825 if (!hasVVVV)
1826 return -1;
1827 if (fixupReg(insn, &Op))
1828 return -1;
1829 break;
1830 case ENCODING_WRITEMASK:
1831 if (readMaskRegister(insn))
1832 return -1;
1833 break;
1834 case ENCODING_DUP:
1835 break;
1836 default:
1837 dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1838 return -1;
1839 }
1840 }
1841
1842 /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1843 if (needVVVV) return -1;
1844
1845 return 0;
1846 }
1847
1848 /*
1849 * decodeInstruction - Reads and interprets a full instruction provided by the
1850 * user.
1851 *
1852 * @param insn - A pointer to the instruction to be populated. Must be
1853 * pre-allocated.
1854 * @param reader - The function to be used to read the instruction's bytes.
1855 * @param readerArg - A generic argument to be passed to the reader to store
1856 * any internal state.
1857 * @param logger - If non-NULL, the function to be used to write log messages
1858 * and warnings.
1859 * @param loggerArg - A generic argument to be passed to the logger to store
1860 * any internal state.
1861 * @param startLoc - The address (in the reader's address space) of the first
1862 * byte in the instruction.
1863 * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1864 * decode the instruction in.
1865 * @return - 0 if the instruction's memory could be read; nonzero if
1866 * not.
1867 */
decodeInstruction(struct InternalInstruction * insn,byteReader_t reader,const void * readerArg,dlog_t logger,void * loggerArg,const void * miiArg,uint64_t startLoc,DisassemblerMode mode)1868 int llvm::X86Disassembler::decodeInstruction(
1869 struct InternalInstruction *insn, byteReader_t reader,
1870 const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg,
1871 uint64_t startLoc, DisassemblerMode mode) {
1872 memset(insn, 0, sizeof(struct InternalInstruction));
1873
1874 insn->reader = reader;
1875 insn->readerArg = readerArg;
1876 insn->dlog = logger;
1877 insn->dlogArg = loggerArg;
1878 insn->startLocation = startLoc;
1879 insn->readerCursor = startLoc;
1880 insn->mode = mode;
1881 insn->numImmediatesConsumed = 0;
1882
1883 if (readPrefixes(insn) ||
1884 readOpcode(insn) ||
1885 getID(insn, miiArg) ||
1886 insn->instructionID == 0 ||
1887 readOperands(insn))
1888 return -1;
1889
1890 insn->operands = x86OperandSets[insn->spec->operands];
1891
1892 insn->length = insn->readerCursor - insn->startLocation;
1893
1894 dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1895 startLoc, insn->readerCursor, insn->length);
1896
1897 if (insn->length > 15)
1898 dbgprintf(insn, "Instruction exceeds 15-byte limit");
1899
1900 return 0;
1901 }
1902