1 //===- Symbols.h ------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLD_COFF_SYMBOLS_H
10 #define LLD_COFF_SYMBOLS_H
11 
12 #include "Chunks.h"
13 #include "Config.h"
14 #include "lld/Common/LLVM.h"
15 #include "lld/Common/Memory.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/Object/Archive.h"
18 #include "llvm/Object/COFF.h"
19 #include <atomic>
20 #include <memory>
21 #include <vector>
22 
23 namespace lld {
24 
25 std::string toString(coff::Symbol &b);
26 
27 // There are two different ways to convert an Archive::Symbol to a string:
28 // One for Microsoft name mangling and one for Itanium name mangling.
29 // Call the functions toCOFFString and toELFString, not just toString.
30 std::string toCOFFString(const coff::Archive::Symbol &b);
31 
32 namespace coff {
33 
34 using llvm::object::Archive;
35 using llvm::object::COFFSymbolRef;
36 using llvm::object::coff_import_header;
37 using llvm::object::coff_symbol_generic;
38 
39 class ArchiveFile;
40 class InputFile;
41 class ObjFile;
42 class SymbolTable;
43 
44 // The base class for real symbol classes.
45 class Symbol {
46 public:
47   enum Kind {
48     // The order of these is significant. We start with the regular defined
49     // symbols as those are the most prevalent and the zero tag is the cheapest
50     // to set. Among the defined kinds, the lower the kind is preferred over
51     // the higher kind when testing whether one symbol should take precedence
52     // over another.
53     DefinedRegularKind = 0,
54     DefinedCommonKind,
55     DefinedLocalImportKind,
56     DefinedImportThunkKind,
57     DefinedImportDataKind,
58     DefinedAbsoluteKind,
59     DefinedSyntheticKind,
60 
61     UndefinedKind,
62     LazyArchiveKind,
63     LazyObjectKind,
64 
65     LastDefinedCOFFKind = DefinedCommonKind,
66     LastDefinedKind = DefinedSyntheticKind,
67   };
68 
kind()69   Kind kind() const { return static_cast<Kind>(symbolKind); }
70 
71   // Returns the symbol name.
getName()72   StringRef getName() {
73     // COFF symbol names are read lazily for a performance reason.
74     // Non-external symbol names are never used by the linker except for logging
75     // or debugging. Their internal references are resolved not by name but by
76     // symbol index. And because they are not external, no one can refer them by
77     // name. Object files contain lots of non-external symbols, and creating
78     // StringRefs for them (which involves lots of strlen() on the string table)
79     // is a waste of time.
80     if (nameData == nullptr)
81       computeName();
82     return StringRef(nameData, nameSize);
83   }
84 
85   void replaceKeepingName(Symbol *other, size_t size);
86 
87   // Returns the file from which this symbol was created.
88   InputFile *getFile();
89 
90   // Indicates that this symbol will be included in the final image. Only valid
91   // after calling markLive.
92   bool isLive() const;
93 
isLazy()94   bool isLazy() const {
95     return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind;
96   }
97 
98 private:
99   void computeName();
100 
101 protected:
102   friend SymbolTable;
103   explicit Symbol(Kind k, StringRef n = "")
symbolKind(k)104       : symbolKind(k), isExternal(true), isCOMDAT(false),
105         writtenToSymtab(false), pendingArchiveLoad(false), isGCRoot(false),
106         isRuntimePseudoReloc(false), deferUndefined(false), canInline(true),
107         nameSize(n.size()), nameData(n.empty() ? nullptr : n.data()) {}
108 
109   const unsigned symbolKind : 8;
110   unsigned isExternal : 1;
111 
112 public:
113   // This bit is used by the \c DefinedRegular subclass.
114   unsigned isCOMDAT : 1;
115 
116   // This bit is used by Writer::createSymbolAndStringTable() to prevent
117   // symbols from being written to the symbol table more than once.
118   unsigned writtenToSymtab : 1;
119 
120   // True if this symbol was referenced by a regular (non-bitcode) object.
121   unsigned isUsedInRegularObj : 1;
122 
123   // True if we've seen both a lazy and an undefined symbol with this symbol
124   // name, which means that we have enqueued an archive member load and should
125   // not load any more archive members to resolve the same symbol.
126   unsigned pendingArchiveLoad : 1;
127 
128   /// True if we've already added this symbol to the list of GC roots.
129   unsigned isGCRoot : 1;
130 
131   unsigned isRuntimePseudoReloc : 1;
132 
133   // True if we want to allow this symbol to be undefined in the early
134   // undefined check pass in SymbolTable::reportUnresolvable(), as it
135   // might be fixed up later.
136   unsigned deferUndefined : 1;
137 
138   // False if LTO shouldn't inline whatever this symbol points to. If a symbol
139   // is overwritten after LTO, LTO shouldn't inline the symbol because it
140   // doesn't know the final contents of the symbol.
141   unsigned canInline : 1;
142 
143 protected:
144   // Symbol name length. Assume symbol lengths fit in a 32-bit integer.
145   uint32_t nameSize;
146 
147   const char *nameData;
148 };
149 
150 // The base class for any defined symbols, including absolute symbols,
151 // etc.
152 class Defined : public Symbol {
153 public:
Defined(Kind k,StringRef n)154   Defined(Kind k, StringRef n) : Symbol(k, n) {}
155 
classof(const Symbol * s)156   static bool classof(const Symbol *s) { return s->kind() <= LastDefinedKind; }
157 
158   // Returns the RVA (relative virtual address) of this symbol. The
159   // writer sets and uses RVAs.
160   uint64_t getRVA();
161 
162   // Returns the chunk containing this symbol. Absolute symbols and __ImageBase
163   // do not have chunks, so this may return null.
164   Chunk *getChunk();
165 };
166 
167 // Symbols defined via a COFF object file or bitcode file.  For COFF files, this
168 // stores a coff_symbol_generic*, and names of internal symbols are lazily
169 // loaded through that. For bitcode files, Sym is nullptr and the name is stored
170 // as a decomposed StringRef.
171 class DefinedCOFF : public Defined {
172   friend Symbol;
173 
174 public:
DefinedCOFF(Kind k,InputFile * f,StringRef n,const coff_symbol_generic * s)175   DefinedCOFF(Kind k, InputFile *f, StringRef n, const coff_symbol_generic *s)
176       : Defined(k, n), file(f), sym(s) {}
177 
classof(const Symbol * s)178   static bool classof(const Symbol *s) {
179     return s->kind() <= LastDefinedCOFFKind;
180   }
181 
getFile()182   InputFile *getFile() { return file; }
183 
184   COFFSymbolRef getCOFFSymbol();
185 
186   InputFile *file;
187 
188 protected:
189   const coff_symbol_generic *sym;
190 };
191 
192 // Regular defined symbols read from object file symbol tables.
193 class DefinedRegular : public DefinedCOFF {
194 public:
195   DefinedRegular(InputFile *f, StringRef n, bool isCOMDAT,
196                  bool isExternal = false,
197                  const coff_symbol_generic *s = nullptr,
198                  SectionChunk *c = nullptr)
DefinedCOFF(DefinedRegularKind,f,n,s)199       : DefinedCOFF(DefinedRegularKind, f, n, s), data(c ? &c->repl : nullptr) {
200     this->isExternal = isExternal;
201     this->isCOMDAT = isCOMDAT;
202   }
203 
classof(const Symbol * s)204   static bool classof(const Symbol *s) {
205     return s->kind() == DefinedRegularKind;
206   }
207 
getRVA()208   uint64_t getRVA() const { return (*data)->getRVA() + sym->Value; }
getChunk()209   SectionChunk *getChunk() const { return *data; }
getValue()210   uint32_t getValue() const { return sym->Value; }
211 
212   SectionChunk **data;
213 };
214 
215 class DefinedCommon : public DefinedCOFF {
216 public:
217   DefinedCommon(InputFile *f, StringRef n, uint64_t size,
218                 const coff_symbol_generic *s = nullptr,
219                 CommonChunk *c = nullptr)
DefinedCOFF(DefinedCommonKind,f,n,s)220       : DefinedCOFF(DefinedCommonKind, f, n, s), data(c), size(size) {
221     this->isExternal = true;
222   }
223 
classof(const Symbol * s)224   static bool classof(const Symbol *s) {
225     return s->kind() == DefinedCommonKind;
226   }
227 
getRVA()228   uint64_t getRVA() { return data->getRVA(); }
getChunk()229   CommonChunk *getChunk() { return data; }
230 
231 private:
232   friend SymbolTable;
getSize()233   uint64_t getSize() const { return size; }
234   CommonChunk *data;
235   uint64_t size;
236 };
237 
238 // Absolute symbols.
239 class DefinedAbsolute : public Defined {
240 public:
DefinedAbsolute(StringRef n,COFFSymbolRef s)241   DefinedAbsolute(StringRef n, COFFSymbolRef s)
242       : Defined(DefinedAbsoluteKind, n), va(s.getValue()) {
243     isExternal = s.isExternal();
244   }
245 
DefinedAbsolute(StringRef n,uint64_t v)246   DefinedAbsolute(StringRef n, uint64_t v)
247       : Defined(DefinedAbsoluteKind, n), va(v) {}
248 
classof(const Symbol * s)249   static bool classof(const Symbol *s) {
250     return s->kind() == DefinedAbsoluteKind;
251   }
252 
getRVA()253   uint64_t getRVA() { return va - config->imageBase; }
setVA(uint64_t v)254   void setVA(uint64_t v) { va = v; }
getVA()255   uint64_t getVA() const { return va; }
256 
257   // Section index relocations against absolute symbols resolve to
258   // this 16 bit number, and it is the largest valid section index
259   // plus one. This variable keeps it.
260   static uint16_t numOutputSections;
261 
262 private:
263   uint64_t va;
264 };
265 
266 // This symbol is used for linker-synthesized symbols like __ImageBase and
267 // __safe_se_handler_table.
268 class DefinedSynthetic : public Defined {
269 public:
DefinedSynthetic(StringRef name,Chunk * c)270   explicit DefinedSynthetic(StringRef name, Chunk *c)
271       : Defined(DefinedSyntheticKind, name), c(c) {}
272 
classof(const Symbol * s)273   static bool classof(const Symbol *s) {
274     return s->kind() == DefinedSyntheticKind;
275   }
276 
277   // A null chunk indicates that this is __ImageBase. Otherwise, this is some
278   // other synthesized chunk, like SEHTableChunk.
getRVA()279   uint32_t getRVA() { return c ? c->getRVA() : 0; }
getChunk()280   Chunk *getChunk() { return c; }
281 
282 private:
283   Chunk *c;
284 };
285 
286 // This class represents a symbol defined in an archive file. It is
287 // created from an archive file header, and it knows how to load an
288 // object file from an archive to replace itself with a defined
289 // symbol. If the resolver finds both Undefined and LazyArchive for
290 // the same name, it will ask the LazyArchive to load a file.
291 class LazyArchive : public Symbol {
292 public:
LazyArchive(ArchiveFile * f,const Archive::Symbol s)293   LazyArchive(ArchiveFile *f, const Archive::Symbol s)
294       : Symbol(LazyArchiveKind, s.getName()), file(f), sym(s) {}
295 
classof(const Symbol * s)296   static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }
297 
298   MemoryBufferRef getMemberBuffer();
299 
300   ArchiveFile *file;
301   const Archive::Symbol sym;
302 };
303 
304 class LazyObject : public Symbol {
305 public:
LazyObject(LazyObjFile * f,StringRef n)306   LazyObject(LazyObjFile *f, StringRef n)
307       : Symbol(LazyObjectKind, n), file(f) {}
classof(const Symbol * s)308   static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
309   LazyObjFile *file;
310 };
311 
312 // Undefined symbols.
313 class Undefined : public Symbol {
314 public:
Undefined(StringRef n)315   explicit Undefined(StringRef n) : Symbol(UndefinedKind, n) {}
316 
classof(const Symbol * s)317   static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
318 
319   // An undefined symbol can have a fallback symbol which gives an
320   // undefined symbol a second chance if it would remain undefined.
321   // If it remains undefined, it'll be replaced with whatever the
322   // Alias pointer points to.
323   Symbol *weakAlias = nullptr;
324 
325   // If this symbol is external weak, try to resolve it to a defined
326   // symbol by searching the chain of fallback symbols. Returns the symbol if
327   // successful, otherwise returns null.
328   Defined *getWeakAlias();
329 };
330 
331 // Windows-specific classes.
332 
333 // This class represents a symbol imported from a DLL. This has two
334 // names for internal use and external use. The former is used for
335 // name resolution, and the latter is used for the import descriptor
336 // table in an output. The former has "__imp_" prefix.
337 class DefinedImportData : public Defined {
338 public:
DefinedImportData(StringRef n,ImportFile * f)339   DefinedImportData(StringRef n, ImportFile *f)
340       : Defined(DefinedImportDataKind, n), file(f) {
341   }
342 
classof(const Symbol * s)343   static bool classof(const Symbol *s) {
344     return s->kind() == DefinedImportDataKind;
345   }
346 
getRVA()347   uint64_t getRVA() { return file->location->getRVA(); }
getChunk()348   Chunk *getChunk() { return file->location; }
setLocation(Chunk * addressTable)349   void setLocation(Chunk *addressTable) { file->location = addressTable; }
350 
getDLLName()351   StringRef getDLLName() { return file->dllName; }
getExternalName()352   StringRef getExternalName() { return file->externalName; }
getOrdinal()353   uint16_t getOrdinal() { return file->hdr->OrdinalHint; }
354 
355   ImportFile *file;
356 
357   // This is a pointer to the synthetic symbol associated with the load thunk
358   // for this symbol that will be called if the DLL is delay-loaded. This is
359   // needed for Control Flow Guard because if this DefinedImportData symbol is a
360   // valid call target, the corresponding load thunk must also be marked as a
361   // valid call target.
362   DefinedSynthetic *loadThunkSym = nullptr;
363 };
364 
365 // This class represents a symbol for a jump table entry which jumps
366 // to a function in a DLL. Linker are supposed to create such symbols
367 // without "__imp_" prefix for all function symbols exported from
368 // DLLs, so that you can call DLL functions as regular functions with
369 // a regular name. A function pointer is given as a DefinedImportData.
370 class DefinedImportThunk : public Defined {
371 public:
372   DefinedImportThunk(StringRef name, DefinedImportData *s, uint16_t machine);
373 
classof(const Symbol * s)374   static bool classof(const Symbol *s) {
375     return s->kind() == DefinedImportThunkKind;
376   }
377 
getRVA()378   uint64_t getRVA() { return data->getRVA(); }
getChunk()379   Chunk *getChunk() { return data; }
380 
381   DefinedImportData *wrappedSym;
382 
383 private:
384   Chunk *data;
385 };
386 
387 // If you have a symbol "foo" in your object file, a symbol name
388 // "__imp_foo" becomes automatically available as a pointer to "foo".
389 // This class is for such automatically-created symbols.
390 // Yes, this is an odd feature. We didn't intend to implement that.
391 // This is here just for compatibility with MSVC.
392 class DefinedLocalImport : public Defined {
393 public:
DefinedLocalImport(StringRef n,Defined * s)394   DefinedLocalImport(StringRef n, Defined *s)
395       : Defined(DefinedLocalImportKind, n), data(make<LocalImportChunk>(s)) {}
396 
classof(const Symbol * s)397   static bool classof(const Symbol *s) {
398     return s->kind() == DefinedLocalImportKind;
399   }
400 
getRVA()401   uint64_t getRVA() { return data->getRVA(); }
getChunk()402   Chunk *getChunk() { return data; }
403 
404 private:
405   LocalImportChunk *data;
406 };
407 
getRVA()408 inline uint64_t Defined::getRVA() {
409   switch (kind()) {
410   case DefinedAbsoluteKind:
411     return cast<DefinedAbsolute>(this)->getRVA();
412   case DefinedSyntheticKind:
413     return cast<DefinedSynthetic>(this)->getRVA();
414   case DefinedImportDataKind:
415     return cast<DefinedImportData>(this)->getRVA();
416   case DefinedImportThunkKind:
417     return cast<DefinedImportThunk>(this)->getRVA();
418   case DefinedLocalImportKind:
419     return cast<DefinedLocalImport>(this)->getRVA();
420   case DefinedCommonKind:
421     return cast<DefinedCommon>(this)->getRVA();
422   case DefinedRegularKind:
423     return cast<DefinedRegular>(this)->getRVA();
424   case LazyArchiveKind:
425   case LazyObjectKind:
426   case UndefinedKind:
427     llvm_unreachable("Cannot get the address for an undefined symbol.");
428   }
429   llvm_unreachable("unknown symbol kind");
430 }
431 
getChunk()432 inline Chunk *Defined::getChunk() {
433   switch (kind()) {
434   case DefinedRegularKind:
435     return cast<DefinedRegular>(this)->getChunk();
436   case DefinedAbsoluteKind:
437     return nullptr;
438   case DefinedSyntheticKind:
439     return cast<DefinedSynthetic>(this)->getChunk();
440   case DefinedImportDataKind:
441     return cast<DefinedImportData>(this)->getChunk();
442   case DefinedImportThunkKind:
443     return cast<DefinedImportThunk>(this)->getChunk();
444   case DefinedLocalImportKind:
445     return cast<DefinedLocalImport>(this)->getChunk();
446   case DefinedCommonKind:
447     return cast<DefinedCommon>(this)->getChunk();
448   case LazyArchiveKind:
449   case LazyObjectKind:
450   case UndefinedKind:
451     llvm_unreachable("Cannot get the chunk of an undefined symbol.");
452   }
453   llvm_unreachable("unknown symbol kind");
454 }
455 
456 // A buffer class that is large enough to hold any Symbol-derived
457 // object. We allocate memory using this class and instantiate a symbol
458 // using the placement new.
459 union SymbolUnion {
460   alignas(DefinedRegular) char a[sizeof(DefinedRegular)];
461   alignas(DefinedCommon) char b[sizeof(DefinedCommon)];
462   alignas(DefinedAbsolute) char c[sizeof(DefinedAbsolute)];
463   alignas(DefinedSynthetic) char d[sizeof(DefinedSynthetic)];
464   alignas(LazyArchive) char e[sizeof(LazyArchive)];
465   alignas(Undefined) char f[sizeof(Undefined)];
466   alignas(DefinedImportData) char g[sizeof(DefinedImportData)];
467   alignas(DefinedImportThunk) char h[sizeof(DefinedImportThunk)];
468   alignas(DefinedLocalImport) char i[sizeof(DefinedLocalImport)];
469   alignas(LazyObject) char j[sizeof(LazyObject)];
470 };
471 
472 template <typename T, typename... ArgT>
replaceSymbol(Symbol * s,ArgT &&...arg)473 void replaceSymbol(Symbol *s, ArgT &&... arg) {
474   static_assert(std::is_trivially_destructible<T>(),
475                 "Symbol types must be trivially destructible");
476   static_assert(sizeof(T) <= sizeof(SymbolUnion), "Symbol too small");
477   static_assert(alignof(T) <= alignof(SymbolUnion),
478                 "SymbolUnion not aligned enough");
479   assert(static_cast<Symbol *>(static_cast<T *>(nullptr)) == nullptr &&
480          "Not a Symbol");
481   bool canInline = s->canInline;
482   new (s) T(std::forward<ArgT>(arg)...);
483   s->canInline = canInline;
484 }
485 } // namespace coff
486 
487 } // namespace lld
488 
489 #endif
490