1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include "tensorflow/compiler/tf2xla/sharding_util.h"
16 
17 #include <functional>
18 
19 #include "tensorflow/core/lib/core/status_test_util.h"
20 #include "tensorflow/core/platform/test.h"
21 
22 namespace tensorflow {
23 
TEST(CoreUtilTest,ParseShardingFromDevice)24 TEST(CoreUtilTest, ParseShardingFromDevice) {
25   Graph graph(OpRegistry::Global());
26 
27   auto core_from_sharding =
28       [](absl::optional<xla::OpSharding> sharding) -> int64 {
29     if (sharding.has_value() &&
30         sharding.value().type() == xla::OpSharding::MAXIMAL) {
31       return sharding.value().tile_assignment_devices(0);
32     } else {
33       return -1;
34     }
35   };
36 
37   auto parse_status = ParseShardingFromDevice("", 1);
38   TF_EXPECT_OK(parse_status.status());
39   EXPECT_EQ(-1, core_from_sharding(parse_status.ValueOrDie()));
40   parse_status = ParseShardingFromDevice("", 100);
41   TF_EXPECT_OK(parse_status.status());
42   EXPECT_EQ(-1, core_from_sharding(parse_status.ValueOrDie()));
43 
44   parse_status = ParseShardingFromDevice("/device:A_REPLICATED_CORE:-1", 100);
45   EXPECT_FALSE(parse_status.ok());
46 
47   parse_status = ParseShardingFromDevice("/device:A_REPLICATED_CORE:55", 100);
48   TF_EXPECT_OK(parse_status.status());
49   EXPECT_EQ(55, core_from_sharding(parse_status.ValueOrDie()));
50 
51   parse_status = ParseShardingFromDevice("/device:A_REPLICATED_CORE:100", 100);
52   EXPECT_FALSE(parse_status.ok());
53 
54   parse_status = ParseShardingFromDevice("/cpu:0", 100);
55   TF_EXPECT_OK(parse_status.status());
56   EXPECT_EQ(-1, core_from_sharding(parse_status.ValueOrDie()));
57 }
58 
59 class ShardingWithMetadataTest
60     : public ::testing::TestWithParam<xla::OpSharding> {};
61 
TEST_P(ShardingWithMetadataTest,GetShardingFromNode)62 TEST_P(ShardingWithMetadataTest, GetShardingFromNode) {
63   NodeDef node_def;
64   {
65     node_def.set_op("_Arg");
66     node_def.set_name("arg");
67     AttrValue xla_sharding;
68     xla_sharding.set_s("");
69     AttrValue index;
70     index.set_i(0);
71     AttrValue type;
72     type.set_type(DataType::DT_FLOAT);
73     node_def.mutable_attr()->insert(
74         {{"_XlaSharding", xla_sharding}, {"index", index}, {"T", type}});
75   }
76 
77   auto check_metadata = [](const xla::OpSharding& sharding) {
78     ASSERT_EQ(sharding.metadata_size(), 1);
79     const auto& metadata = sharding.metadata(0);
80     EXPECT_EQ(metadata.op_type(), "_Arg");
81     EXPECT_EQ(metadata.op_name(), "arg");
82   };
83 
84   auto test_sharding_metadata =
85       [&check_metadata](
86           const std::function<xla::StatusOr<absl::optional<xla::OpSharding>>()>&
87               fn) {
88         auto status_or_sharding = fn();
89         TF_ASSERT_OK(status_or_sharding.status());
90         ASSERT_TRUE(status_or_sharding.ValueOrDie().has_value());
91         auto& sharding = status_or_sharding.ValueOrDie();
92         ASSERT_TRUE(sharding.has_value());
93         if (sharding->type() == xla::OpSharding::TUPLE) {
94           EXPECT_TRUE(sharding->metadata().empty());
95           for (const auto& sharding_element : sharding->tuple_shardings()) {
96             check_metadata(sharding_element);
97           }
98         } else {
99           check_metadata(sharding.value());
100         }
101       };
102 
103   {
104     test_sharding_metadata([&node_def]() {
105       return GetShardingFromNodeDef(node_def, /*add_metadata=*/true);
106     });
107   }
108 
109   {
110     test_sharding_metadata([&node_def]() {
111       return ParseShardingFromDevice(node_def, /*num_cores_per_replica=*/1,
112                                      /*add_metadata=*/true);
113     });
114   }
115 
116   {
117     Graph graph(OpRegistry::Global());
118     Status status;
119     Node* node = graph.AddNode(node_def, &status);
120     TF_ASSERT_OK(status);
121 
122     test_sharding_metadata([node]() {
123       return ParseShardingFromDevice(*node, /*num_cores_per_replica=*/1,
124                                      /*add_metadata=*/true);
125     });
126   }
127 }
128 
CreateTupleSharding()129 xla::OpSharding CreateTupleSharding() {
130   xla::OpSharding sharding;
131   sharding.set_type(xla::OpSharding::TUPLE);
132   sharding.add_tuple_shardings()->set_type(xla::OpSharding::REPLICATED);
133   sharding.add_tuple_shardings()->set_type(xla::OpSharding::REPLICATED);
134   return sharding;
135 }
136 
137 INSTANTIATE_TEST_SUITE_P(GetShardingFromNode, ShardingWithMetadataTest,
138                          ::testing::Values(xla::sharding_builder::Replicate(),
139                                            CreateTupleSharding()));
140 
141 }  // namespace tensorflow
142