1# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Random functions."""
16
17# pylint: disable=g-direct-tensorflow-import
18
19from __future__ import absolute_import
20from __future__ import division
21from __future__ import print_function
22
23import numpy as onp
24
25from tensorflow.python.framework import random_seed
26from tensorflow.python.ops import array_ops
27from tensorflow.python.ops import random_ops
28from tensorflow.python.ops.numpy_ops import np_array_ops
29from tensorflow.python.ops.numpy_ops import np_dtypes
30from tensorflow.python.ops.numpy_ops import np_utils
31
32# TODO(agarwal): deprecate this.
33DEFAULT_RANDN_DTYPE = onp.float32
34
35
36@np_utils.np_doc('random.seed')
37def seed(s):
38  """Sets the seed for the random number generator.
39
40  Uses `tf.set_random_seed`.
41
42  Args:
43    s: an integer.
44  """
45  try:
46    s = int(s)
47  except TypeError:
48    # TODO(wangpeng): support this?
49    raise ValueError('np.seed currently only support integer arguments.')
50  random_seed.set_seed(s)
51
52
53@np_utils.np_doc('random.randn')
54def randn(*args):
55  """Returns samples from a normal distribution.
56
57  Uses `tf.random_normal`.
58
59  Args:
60    *args: The shape of the output array.
61
62  Returns:
63    An ndarray with shape `args` and dtype `float64`.
64  """
65  return standard_normal(size=args)
66
67
68@np_utils.np_doc('random.standard_normal')
69def standard_normal(size=None):
70  # TODO(wangpeng): Use new stateful RNG
71  if size is None:
72    size = ()
73  elif np_utils.isscalar(size):
74    size = (size,)
75  dtype = np_dtypes.default_float_type()
76  return random_ops.random_normal(size, dtype=dtype)
77
78
79@np_utils.np_doc('random.uniform')
80def uniform(low=0.0, high=1.0, size=None):
81  dtype = np_dtypes.default_float_type()
82  low = np_array_ops.asarray(low, dtype=dtype)
83  high = np_array_ops.asarray(high, dtype=dtype)
84  if size is None:
85    size = array_ops.broadcast_dynamic_shape(low.shape, high.shape)
86  return random_ops.random_uniform(
87      shape=size, minval=low, maxval=high, dtype=dtype)
88
89
90@np_utils.np_doc('random.poisson')
91def poisson(lam=1.0, size=None):
92  if size is None:
93    size = ()
94  elif np_utils.isscalar(size):
95    size = (size,)
96  return random_ops.random_poisson(shape=size, lam=lam, dtype=np_dtypes.int_)
97
98
99@np_utils.np_doc('random.random')
100def random(size=None):
101  return uniform(0., 1., size)
102
103
104@np_utils.np_doc('random.rand')
105def rand(*size):
106  return uniform(0., 1., size)
107
108
109@np_utils.np_doc('random.randint')
110def randint(low, high=None, size=None, dtype=onp.int):  # pylint: disable=missing-function-docstring
111  low = int(low)
112  if high is None:
113    high = low
114    low = 0
115  if size is None:
116    size = ()
117  elif isinstance(size, int):
118    size = (size,)
119  dtype = np_utils.result_type(dtype)
120  if dtype not in (onp.int32, onp.int64):
121    raise ValueError('Only np.int32 or np.int64 types are supported')
122  return random_ops.random_uniform(
123      shape=size, minval=low, maxval=high, dtype=dtype)
124