1 //
2 // Copyright (c) 2017 The Khronos Group Inc.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //    http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 #include "testBase.h"
17 #include "harness/conversions.h"
18 
19 const char * atomic_index_source =
20 "#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable\n"
21 "// Counter keeps track of which index in counts we are using.\n"
22 "// We get that value, increment it, and then set that index in counts to our thread ID.\n"
23 "// At the end of this we should have all thread IDs in some random location in counts\n"
24 "// exactly once. If atom_add failed then we will write over various thread IDs and we\n"
25 "// will be missing some.\n"
26 "\n"
27 "__kernel void add_index_test(__global int *counter, __global int *counts) {\n"
28 "    int tid = get_global_id(0);\n"
29 "    \n"
30 "    int counter_to_use = atom_add(counter, 1);\n"
31 "    counts[counter_to_use] = tid;\n"
32 "}";
33 
test_atomic_add_index(cl_device_id deviceID,cl_context context,cl_command_queue queue,int num_elements)34 int test_atomic_add_index(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
35 {
36     clProgramWrapper program;
37     clKernelWrapper kernel;
38     clMemWrapper counter, counters;
39     size_t numGlobalThreads, numLocalThreads;
40     int fail = 0, succeed = 0, err;
41 
42   /* Check if atomics are supported. */
43   if (!is_extension_available(deviceID, "cl_khr_global_int32_base_atomics")) {
44     log_info("Base atomics not supported (cl_khr_global_int32_base_atomics). Skipping test.\n");
45     return 0;
46   }
47 
48     //===== add_index test
49     // The index test replicates what particles does.
50     // It uses one memory location to keep track of the current index and then each thread
51     // does an atomic add to it to get its new location. The threads then write to their
52     // assigned location. At the end we check to make sure that each thread's ID shows up
53     // exactly once in the output.
54 
55     numGlobalThreads = 2048;
56 
57     if( create_single_kernel_helper( context, &program, &kernel, 1, &atomic_index_source, "add_index_test" ) )
58         return -1;
59 
60     if( get_max_common_work_group_size( context, kernel, numGlobalThreads, &numLocalThreads ) )
61         return -1;
62 
63     log_info("Execute global_threads:%d local_threads:%d\n",
64              (int)numGlobalThreads, (int)numLocalThreads);
65 
66     // Create the counter that will keep track of where each thread writes.
67     counter = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(cl_int) * 1,
68                              NULL, NULL);
69     // Create the counters that will hold the results of each thread writing
70     // its ID into a (hopefully) unique location.
71     counters = clCreateBuffer(context, CL_MEM_READ_WRITE,
72                               sizeof(cl_int) * numGlobalThreads, NULL, NULL);
73 
74     // Reset all those locations to -1 to indciate they have not been used.
75     cl_int *values = (cl_int*) malloc(sizeof(cl_int)*numGlobalThreads);
76     if (values == NULL) {
77         log_error("add_index_test FAILED to allocate memory for initial values.\n");
78         fail = 1; succeed = -1;
79     } else {
80         memset(values, -1, numLocalThreads);
81         unsigned int i=0;
82         for (i=0; i<numGlobalThreads; i++)
83             values[i] = -1;
84         int init=0;
85         err = clEnqueueWriteBuffer(queue, counters, true, 0, numGlobalThreads*sizeof(cl_int), values, 0, NULL, NULL);
86         err |= clEnqueueWriteBuffer(queue, counter, true, 0,1*sizeof(cl_int), &init, 0, NULL, NULL);
87         if (err) {
88             log_error("add_index_test FAILED to write initial values to arrays: %d\n", err);
89             fail=1; succeed=-1;
90         } else {
91             err = clSetKernelArg(kernel, 0, sizeof(counter), &counter);
92             err |= clSetKernelArg(kernel, 1, sizeof(counters), &counters);
93             if (err) {
94                 log_error("add_index_test FAILED to set kernel arguments: %d\n", err);
95                 fail=1; succeed=-1;
96             } else {
97                 err = clEnqueueNDRangeKernel( queue, kernel, 1, NULL, &numGlobalThreads, &numLocalThreads, 0, NULL, NULL );
98                 if (err) {
99                     log_error("add_index_test FAILED to execute kernel: %d\n", err);
100                     fail=1; succeed=-1;
101                 } else {
102                     err = clEnqueueReadBuffer( queue, counters, true, 0, sizeof(cl_int)*numGlobalThreads, values, 0, NULL, NULL );
103                     if (err) {
104                         log_error("add_index_test FAILED to read back results: %d\n", err);
105                         fail = 1; succeed=-1;
106                     } else {
107                         unsigned int looking_for, index;
108                         for (looking_for=0; looking_for<numGlobalThreads; looking_for++) {
109                             int instances_found=0;
110                             for (index=0; index<numGlobalThreads; index++) {
111                                 if (values[index]==(int)looking_for)
112                                     instances_found++;
113                             }
114                             if (instances_found != 1) {
115                                 log_error("add_index_test FAILED: wrong number of instances (%d!=1) for counter %d.\n", instances_found, looking_for);
116                                 fail = 1; succeed=-1;
117                             }
118                         }
119                     }
120                 }
121             }
122         }
123         if (!fail) {
124             log_info("add_index_test passed. Each thread used exactly one index.\n");
125         }
126         free(values);
127     }
128     return fail;
129 }
130 
131 const char *add_index_bin_kernel[] = {
132 "#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable\n"
133 "// This test assigns a bunch of values to bins and then tries to put them in the bins in parallel\n"
134 "// using an atomic add to keep track of the current location to write into in each bin.\n"
135 "// This is the same as the memory update for the particles demo.\n"
136 "\n"
137 "__kernel void add_index_bin_test(__global int *bin_counters, __global int *bins, __global int *bin_assignments, int max_counts_per_bin) {\n"
138 "    int tid = get_global_id(0);\n"
139 "\n"
140 "    int location = bin_assignments[tid];\n"
141 "    int counter = atom_add(&bin_counters[location], 1);\n"
142 "    bins[location*max_counts_per_bin + counter] = tid;\n"
143 "}" };
144 
145 // This test assigns a bunch of values to bins and then tries to put them in the bins in parallel
146 // using an atomic add to keep track of the current location to write into in each bin.
147 // This is the same as the memory update for the particles demo.
add_index_bin_test(size_t * global_threads,cl_command_queue queue,cl_context context,MTdata d)148 int add_index_bin_test(size_t *global_threads, cl_command_queue queue, cl_context context, MTdata d)
149 {
150     int number_of_items = (int)global_threads[0];
151     size_t local_threads[1];
152     int divisor = 12;
153     int number_of_bins = number_of_items/divisor;
154     int max_counts_per_bin = divisor*2;
155 
156     int fail = 0;
157     int succeed = 0;
158     int err;
159 
160     clProgramWrapper program;
161     clKernelWrapper kernel;
162 
163     //  log_info("add_index_bin_test: %d items, into %d bins, with a max of %d items per bin (bins is %d long).\n",
164     //           number_of_items, number_of_bins, max_counts_per_bin, number_of_bins*max_counts_per_bin);
165 
166     //===== add_index_bin test
167     // The index test replicates what particles does.
168     err = create_single_kernel_helper(context, &program, &kernel, 1, add_index_bin_kernel, "add_index_bin_test" );
169     test_error( err, "Unable to create testing kernel" );
170 
171     if( get_max_common_work_group_size( context, kernel, global_threads[0], &local_threads[0] ) )
172         return -1;
173 
174     log_info("Execute global_threads:%d local_threads:%d\n",
175              (int)global_threads[0], (int)local_threads[0]);
176 
177     // Allocate our storage
178     cl_mem bin_counters =
179         clCreateBuffer(context, CL_MEM_READ_WRITE,
180                        sizeof(cl_int) * number_of_bins, NULL, NULL);
181     cl_mem bins = clCreateBuffer(
182         context, CL_MEM_READ_WRITE,
183         sizeof(cl_int) * number_of_bins * max_counts_per_bin, NULL, NULL);
184     cl_mem bin_assignments =
185         clCreateBuffer(context, CL_MEM_READ_ONLY,
186                        sizeof(cl_int) * number_of_items, NULL, NULL);
187 
188     if (bin_counters == NULL) {
189         log_error("add_index_bin_test FAILED to allocate bin_counters.\n");
190         return -1;
191     }
192     if (bins == NULL) {
193         log_error("add_index_bin_test FAILED to allocate bins.\n");
194         return -1;
195     }
196     if (bin_assignments == NULL) {
197         log_error("add_index_bin_test FAILED to allocate bin_assignments.\n");
198         return -1;
199     }
200 
201     // Initialize our storage
202     cl_int *l_bin_counts = (cl_int*)malloc(sizeof(cl_int)*number_of_bins);
203     if (!l_bin_counts) {
204         log_error("add_index_bin_test FAILED to allocate initial values for bin_counters.\n");
205         return -1;
206     }
207     int i;
208     for (i=0; i<number_of_bins; i++)
209         l_bin_counts[i] = 0;
210     err = clEnqueueWriteBuffer(queue, bin_counters, true, 0, sizeof(cl_int)*number_of_bins, l_bin_counts, 0, NULL, NULL);
211     if (err) {
212         log_error("add_index_bin_test FAILED to set initial values for bin_counters: %d\n", err);
213         return -1;
214     }
215 
216     cl_int *values = (cl_int*)malloc(sizeof(cl_int)*number_of_bins*max_counts_per_bin);
217     if (!values) {
218         log_error("add_index_bin_test FAILED to allocate initial values for bins.\n");
219         return -1;
220     }
221     for (i=0; i<number_of_bins*max_counts_per_bin; i++)
222         values[i] = -1;
223     err = clEnqueueWriteBuffer(queue, bins, true, 0, sizeof(cl_int)*number_of_bins*max_counts_per_bin, values, 0, NULL, NULL);
224     if (err) {
225         log_error("add_index_bin_test FAILED to set initial values for bins: %d\n", err);
226         return -1;
227     }
228     free(values);
229 
230     cl_int *l_bin_assignments = (cl_int*)malloc(sizeof(cl_int)*number_of_items);
231     if (!l_bin_assignments) {
232         log_error("add_index_bin_test FAILED to allocate initial values for l_bin_assignments.\n");
233         return -1;
234     }
235     for (i=0; i<number_of_items; i++) {
236         int bin = random_in_range(0, number_of_bins-1, d);
237         while (l_bin_counts[bin] >= max_counts_per_bin) {
238             bin = random_in_range(0, number_of_bins-1, d);
239         }
240         if (bin >= number_of_bins)
241             log_error("add_index_bin_test internal error generating bin assignments: bin %d >= number_of_bins %d.\n", bin, number_of_bins);
242         if (l_bin_counts[bin]+1 > max_counts_per_bin)
243             log_error("add_index_bin_test internal error generating bin assignments: bin %d has more entries (%d) than max_counts_per_bin (%d).\n", bin, l_bin_counts[bin], max_counts_per_bin);
244         l_bin_counts[bin]++;
245         l_bin_assignments[i] = bin;
246         //     log_info("item %d assigned to bin %d (%d items)\n", i, bin, l_bin_counts[bin]);
247     }
248     err = clEnqueueWriteBuffer(queue, bin_assignments, true, 0, sizeof(cl_int)*number_of_items, l_bin_assignments, 0, NULL, NULL);
249     if (err) {
250         log_error("add_index_bin_test FAILED to set initial values for bin_assignments: %d\n", err);
251         return -1;
252     }
253     // Setup the kernel
254     err = clSetKernelArg(kernel, 0, sizeof(bin_counters), &bin_counters);
255     err |= clSetKernelArg(kernel, 1, sizeof(bins), &bins);
256     err |= clSetKernelArg(kernel, 2, sizeof(bin_assignments), &bin_assignments);
257     err |= clSetKernelArg(kernel, 3, sizeof(max_counts_per_bin), &max_counts_per_bin);
258     if (err) {
259         log_error("add_index_bin_test FAILED to set kernel arguments: %d\n", err);
260         fail=1; succeed=-1;
261         return -1;
262     }
263 
264     err = clEnqueueNDRangeKernel( queue, kernel, 1, NULL, global_threads, local_threads, 0, NULL, NULL );
265     if (err) {
266         log_error("add_index_bin_test FAILED to execute kernel: %d\n", err);
267         fail=1; succeed=-1;
268     }
269 
270     cl_int *final_bin_assignments = (cl_int*)malloc(sizeof(cl_int)*number_of_bins*max_counts_per_bin);
271     if (!final_bin_assignments) {
272         log_error("add_index_bin_test FAILED to allocate initial values for final_bin_assignments.\n");
273         return -1;
274     }
275     err = clEnqueueReadBuffer( queue, bins, true, 0, sizeof(cl_int)*number_of_bins*max_counts_per_bin, final_bin_assignments, 0, NULL, NULL );
276     if (err) {
277         log_error("add_index_bin_test FAILED to read back bins: %d\n", err);
278         fail = 1; succeed=-1;
279     }
280 
281     cl_int *final_bin_counts = (cl_int*)malloc(sizeof(cl_int)*number_of_bins);
282     if (!final_bin_counts) {
283         log_error("add_index_bin_test FAILED to allocate initial values for final_bin_counts.\n");
284         return -1;
285     }
286     err = clEnqueueReadBuffer( queue, bin_counters, true, 0, sizeof(cl_int)*number_of_bins, final_bin_counts, 0, NULL, NULL );
287     if (err) {
288         log_error("add_index_bin_test FAILED to read back bin_counters: %d\n", err);
289         fail = 1; succeed=-1;
290     }
291 
292     // Verification.
293     int errors=0;
294     int current_bin;
295     int search;
296     //  Print out all the contents of the bins.
297     //  for (current_bin=0; current_bin<number_of_bins; current_bin++)
298     //        for (search=0; search<max_counts_per_bin; search++)
299     //      log_info("[bin %d, entry %d] = %d\n", current_bin, search, final_bin_assignments[current_bin*max_counts_per_bin+search]);
300 
301     // First verify that there are the correct number in each bin.
302     for (current_bin=0; current_bin<number_of_bins; current_bin++) {
303         int expected_number = l_bin_counts[current_bin];
304         int actual_number = final_bin_counts[current_bin];
305         if (expected_number != actual_number) {
306             log_error("add_index_bin_test FAILED: bin %d reported %d entries when %d were expected.\n", current_bin, actual_number, expected_number);
307             errors++;
308         }
309         for (search=0; search<expected_number; search++) {
310             if (final_bin_assignments[current_bin*max_counts_per_bin+search] == -1) {
311                 log_error("add_index_bin_test FAILED: bin %d had no entry at position %d when it should have had %d entries.\n", current_bin, search, expected_number);
312                 errors++;
313             }
314         }
315         for (search=expected_number; search<max_counts_per_bin; search++) {
316             if (final_bin_assignments[current_bin*max_counts_per_bin+search] != -1) {
317                 log_error("add_index_bin_test FAILED: bin %d had an extra entry at position %d when it should have had only %d entries.\n", current_bin, search, expected_number);
318                 errors++;
319             }
320         }
321     }
322     // Now verify that the correct ones are in each bin
323     int index;
324     for (index=0; index<number_of_items; index++) {
325         int expected_bin = l_bin_assignments[index];
326         int found_it = 0;
327         for (search=0; search<l_bin_counts[expected_bin]; search++) {
328             if (final_bin_assignments[expected_bin*max_counts_per_bin+search] == index) {
329                 found_it = 1;
330             }
331         }
332         if (found_it == 0) {
333             log_error("add_index_bin_test FAILED: did not find item %d in bin %d.\n", index, expected_bin);
334             errors++;
335         }
336     }
337     free(l_bin_counts);
338     free(l_bin_assignments);
339     free(final_bin_assignments);
340     free(final_bin_counts);
341     clReleaseMemObject(bin_counters);
342     clReleaseMemObject(bins);
343     clReleaseMemObject(bin_assignments);
344     if (errors == 0) {
345         log_info("add_index_bin_test passed. Each item was put in the correct bin in parallel.\n");
346         return 0;
347     } else {
348         log_error("add_index_bin_test FAILED: %d errors.\n", errors);
349         return -1;
350     }
351 }
352 
test_atomic_add_index_bin(cl_device_id deviceID,cl_context context,cl_command_queue queue,int num_elements)353 int test_atomic_add_index_bin(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
354 {
355     //===== add_index_bin test
356     size_t numGlobalThreads = 2048;
357     int iteration=0;
358     int err, failed = 0;
359     MTdata d = init_genrand( gRandomSeed );
360 
361   /* Check if atomics are supported. */
362   if (!is_extension_available(deviceID, "cl_khr_global_int32_base_atomics")) {
363     log_info("Base atomics not supported (cl_khr_global_int32_base_atomics). Skipping test.\n");
364     free_mtdata( d );
365     return 0;
366   }
367 
368     for(iteration=0; iteration<10; iteration++) {
369         log_info("add_index_bin_test with %d elements:\n", (int)numGlobalThreads);
370         err = add_index_bin_test(&numGlobalThreads,  queue,  context, d);
371         if (err) {
372             failed++;
373             break;
374         }
375         numGlobalThreads*=2;
376     }
377     free_mtdata( d );
378     return failed;
379 }
380 
381 
382