1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/IVDescriptors.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/GenericDomTreeConstruction.h"
39 #include "llvm/Support/GraphWriter.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include <cassert>
43 #include <iterator>
44 #include <string>
45 #include <vector>
46 
47 using namespace llvm;
48 extern cl::opt<bool> EnableVPlanNativePath;
49 
50 #define DEBUG_TYPE "vplan"
51 
operator <<(raw_ostream & OS,const VPValue & V)52 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
53   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
54   VPSlotTracker SlotTracker(
55       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
56   V.print(OS, SlotTracker);
57   return OS;
58 }
59 
VPValue(const unsigned char SC,Value * UV,VPDef * Def)60 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
61     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
62   if (Def)
63     Def->addDefinedValue(this);
64 }
65 
~VPValue()66 VPValue::~VPValue() {
67   assert(Users.empty() && "trying to delete a VPValue with remaining users");
68   if (Def)
69     Def->removeDefinedValue(this);
70 }
71 
print(raw_ostream & OS,VPSlotTracker & SlotTracker) const72 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
73   if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this))
74     Instr->print(OS, SlotTracker);
75   else
76     printAsOperand(OS, SlotTracker);
77 }
78 
dump() const79 void VPValue::dump() const {
80   const VPInstruction *Instr = dyn_cast<VPInstruction>(this);
81   VPSlotTracker SlotTracker(
82       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
83   print(dbgs(), SlotTracker);
84   dbgs() << "\n";
85 }
86 
dump() const87 void VPRecipeBase::dump() const {
88   VPSlotTracker SlotTracker(nullptr);
89   print(dbgs(), "", SlotTracker);
90   dbgs() << "\n";
91 }
92 
toVPUser()93 VPUser *VPRecipeBase::toVPUser() {
94   if (auto *U = dyn_cast<VPInstruction>(this))
95     return U;
96   if (auto *U = dyn_cast<VPWidenRecipe>(this))
97     return U;
98   if (auto *U = dyn_cast<VPWidenCallRecipe>(this))
99     return U;
100   if (auto *U = dyn_cast<VPWidenSelectRecipe>(this))
101     return U;
102   if (auto *U = dyn_cast<VPWidenGEPRecipe>(this))
103     return U;
104   if (auto *U = dyn_cast<VPBlendRecipe>(this))
105     return U;
106   if (auto *U = dyn_cast<VPInterleaveRecipe>(this))
107     return U;
108   if (auto *U = dyn_cast<VPReplicateRecipe>(this))
109     return U;
110   if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this))
111     return U;
112   if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this))
113     return U;
114   if (auto *U = dyn_cast<VPReductionRecipe>(this))
115     return U;
116   if (auto *U = dyn_cast<VPPredInstPHIRecipe>(this))
117     return U;
118   return nullptr;
119 }
120 
toVPValue()121 VPValue *VPRecipeBase::toVPValue() {
122   if (auto *V = dyn_cast<VPInstruction>(this))
123     return V;
124   if (auto *V = dyn_cast<VPReductionRecipe>(this))
125     return V;
126   if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this))
127     return V;
128   if (auto *V = dyn_cast<VPWidenCallRecipe>(this))
129     return V;
130   if (auto *V = dyn_cast<VPWidenSelectRecipe>(this))
131     return V;
132   if (auto *V = dyn_cast<VPWidenGEPRecipe>(this))
133     return V;
134   if (auto *V = dyn_cast<VPWidenRecipe>(this))
135     return V;
136   if (auto *V = dyn_cast<VPReplicateRecipe>(this))
137     return V;
138   return nullptr;
139 }
140 
toVPValue() const141 const VPValue *VPRecipeBase::toVPValue() const {
142   if (auto *V = dyn_cast<VPInstruction>(this))
143     return V;
144   if (auto *V = dyn_cast<VPReductionRecipe>(this))
145     return V;
146   if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this))
147     return V;
148   if (auto *V = dyn_cast<VPWidenCallRecipe>(this))
149     return V;
150   if (auto *V = dyn_cast<VPWidenSelectRecipe>(this))
151     return V;
152   if (auto *V = dyn_cast<VPWidenGEPRecipe>(this))
153     return V;
154   if (auto *V = dyn_cast<VPWidenRecipe>(this))
155     return V;
156   if (auto *V = dyn_cast<VPReplicateRecipe>(this))
157     return V;
158   return nullptr;
159 }
160 
161 // Get the top-most entry block of \p Start. This is the entry block of the
162 // containing VPlan. This function is templated to support both const and non-const blocks
getPlanEntry(T * Start)163 template <typename T> static T *getPlanEntry(T *Start) {
164   T *Next = Start;
165   T *Current = Start;
166   while ((Next = Next->getParent()))
167     Current = Next;
168 
169   SmallSetVector<T *, 8> WorkList;
170   WorkList.insert(Current);
171 
172   for (unsigned i = 0; i < WorkList.size(); i++) {
173     T *Current = WorkList[i];
174     if (Current->getNumPredecessors() == 0)
175       return Current;
176     auto &Predecessors = Current->getPredecessors();
177     WorkList.insert(Predecessors.begin(), Predecessors.end());
178   }
179 
180   llvm_unreachable("VPlan without any entry node without predecessors");
181 }
182 
getPlan()183 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
184 
getPlan() const185 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
186 
187 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
getEntryBasicBlock() const188 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
189   const VPBlockBase *Block = this;
190   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
191     Block = Region->getEntry();
192   return cast<VPBasicBlock>(Block);
193 }
194 
getEntryBasicBlock()195 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
196   VPBlockBase *Block = this;
197   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
198     Block = Region->getEntry();
199   return cast<VPBasicBlock>(Block);
200 }
201 
setPlan(VPlan * ParentPlan)202 void VPBlockBase::setPlan(VPlan *ParentPlan) {
203   assert(ParentPlan->getEntry() == this &&
204          "Can only set plan on its entry block.");
205   Plan = ParentPlan;
206 }
207 
208 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
getExitBasicBlock() const209 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
210   const VPBlockBase *Block = this;
211   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
212     Block = Region->getExit();
213   return cast<VPBasicBlock>(Block);
214 }
215 
getExitBasicBlock()216 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
217   VPBlockBase *Block = this;
218   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
219     Block = Region->getExit();
220   return cast<VPBasicBlock>(Block);
221 }
222 
getEnclosingBlockWithSuccessors()223 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
224   if (!Successors.empty() || !Parent)
225     return this;
226   assert(Parent->getExit() == this &&
227          "Block w/o successors not the exit of its parent.");
228   return Parent->getEnclosingBlockWithSuccessors();
229 }
230 
getEnclosingBlockWithPredecessors()231 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
232   if (!Predecessors.empty() || !Parent)
233     return this;
234   assert(Parent->getEntry() == this &&
235          "Block w/o predecessors not the entry of its parent.");
236   return Parent->getEnclosingBlockWithPredecessors();
237 }
238 
deleteCFG(VPBlockBase * Entry)239 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
240   SmallVector<VPBlockBase *, 8> Blocks;
241 
242   for (VPBlockBase *Block : depth_first(Entry))
243     Blocks.push_back(Block);
244 
245   for (VPBlockBase *Block : Blocks)
246     delete Block;
247 }
248 
getFirstNonPhi()249 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
250   iterator It = begin();
251   while (It != end() && (isa<VPWidenPHIRecipe>(&*It) ||
252                          isa<VPWidenIntOrFpInductionRecipe>(&*It) ||
253                          isa<VPPredInstPHIRecipe>(&*It) ||
254                          isa<VPWidenCanonicalIVRecipe>(&*It)))
255     It++;
256   return It;
257 }
258 
259 BasicBlock *
createEmptyBasicBlock(VPTransformState::CFGState & CFG)260 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
261   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
262   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
263   BasicBlock *PrevBB = CFG.PrevBB;
264   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
265                                          PrevBB->getParent(), CFG.LastBB);
266   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
267 
268   // Hook up the new basic block to its predecessors.
269   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
270     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
271     auto &PredVPSuccessors = PredVPBB->getSuccessors();
272     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
273 
274     // In outer loop vectorization scenario, the predecessor BBlock may not yet
275     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
276     // vectorization. We do not encounter this case in inner loop vectorization
277     // as we start out by building a loop skeleton with the vector loop header
278     // and latch blocks. As a result, we never enter this function for the
279     // header block in the non VPlan-native path.
280     if (!PredBB) {
281       assert(EnableVPlanNativePath &&
282              "Unexpected null predecessor in non VPlan-native path");
283       CFG.VPBBsToFix.push_back(PredVPBB);
284       continue;
285     }
286 
287     assert(PredBB && "Predecessor basic-block not found building successor.");
288     auto *PredBBTerminator = PredBB->getTerminator();
289     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
290     if (isa<UnreachableInst>(PredBBTerminator)) {
291       assert(PredVPSuccessors.size() == 1 &&
292              "Predecessor ending w/o branch must have single successor.");
293       PredBBTerminator->eraseFromParent();
294       BranchInst::Create(NewBB, PredBB);
295     } else {
296       assert(PredVPSuccessors.size() == 2 &&
297              "Predecessor ending with branch must have two successors.");
298       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
299       assert(!PredBBTerminator->getSuccessor(idx) &&
300              "Trying to reset an existing successor block.");
301       PredBBTerminator->setSuccessor(idx, NewBB);
302     }
303   }
304   return NewBB;
305 }
306 
execute(VPTransformState * State)307 void VPBasicBlock::execute(VPTransformState *State) {
308   bool Replica = State->Instance &&
309                  !(State->Instance->Part == 0 && State->Instance->Lane == 0);
310   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
311   VPBlockBase *SingleHPred = nullptr;
312   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
313 
314   // 1. Create an IR basic block, or reuse the last one if possible.
315   // The last IR basic block is reused, as an optimization, in three cases:
316   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
317   // B. when the current VPBB has a single (hierarchical) predecessor which
318   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
319   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
320   //    is the exit of this region from a previous instance, or the predecessor
321   //    of this region.
322   if (PrevVPBB && /* A */
323       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
324         SingleHPred->getExitBasicBlock() == PrevVPBB &&
325         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
326       !(Replica && getPredecessors().empty())) {       /* C */
327     NewBB = createEmptyBasicBlock(State->CFG);
328     State->Builder.SetInsertPoint(NewBB);
329     // Temporarily terminate with unreachable until CFG is rewired.
330     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
331     State->Builder.SetInsertPoint(Terminator);
332     // Register NewBB in its loop. In innermost loops its the same for all BB's.
333     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
334     L->addBasicBlockToLoop(NewBB, *State->LI);
335     State->CFG.PrevBB = NewBB;
336   }
337 
338   // 2. Fill the IR basic block with IR instructions.
339   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
340                     << " in BB:" << NewBB->getName() << '\n');
341 
342   State->CFG.VPBB2IRBB[this] = NewBB;
343   State->CFG.PrevVPBB = this;
344 
345   for (VPRecipeBase &Recipe : Recipes)
346     Recipe.execute(*State);
347 
348   VPValue *CBV;
349   if (EnableVPlanNativePath && (CBV = getCondBit())) {
350     Value *IRCBV = CBV->getUnderlyingValue();
351     assert(IRCBV && "Unexpected null underlying value for condition bit");
352 
353     // Condition bit value in a VPBasicBlock is used as the branch selector. In
354     // the VPlan-native path case, since all branches are uniform we generate a
355     // branch instruction using the condition value from vector lane 0 and dummy
356     // successors. The successors are fixed later when the successor blocks are
357     // visited.
358     Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
359     NewCond = State->Builder.CreateExtractElement(NewCond,
360                                                   State->Builder.getInt32(0));
361 
362     // Replace the temporary unreachable terminator with the new conditional
363     // branch.
364     auto *CurrentTerminator = NewBB->getTerminator();
365     assert(isa<UnreachableInst>(CurrentTerminator) &&
366            "Expected to replace unreachable terminator with conditional "
367            "branch.");
368     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
369     CondBr->setSuccessor(0, nullptr);
370     ReplaceInstWithInst(CurrentTerminator, CondBr);
371   }
372 
373   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
374 }
375 
dropAllReferences(VPValue * NewValue)376 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
377   for (VPRecipeBase &R : Recipes) {
378     if (auto *VPV = R.toVPValue())
379       VPV->replaceAllUsesWith(NewValue);
380 
381     if (auto *User = R.toVPUser())
382       for (unsigned I = 0, E = User->getNumOperands(); I != E; I++)
383         User->setOperand(I, NewValue);
384   }
385 }
386 
dropAllReferences(VPValue * NewValue)387 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
388   for (VPBlockBase *Block : depth_first(Entry))
389     // Drop all references in VPBasicBlocks and replace all uses with
390     // DummyValue.
391     Block->dropAllReferences(NewValue);
392 }
393 
execute(VPTransformState * State)394 void VPRegionBlock::execute(VPTransformState *State) {
395   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
396 
397   if (!isReplicator()) {
398     // Visit the VPBlocks connected to "this", starting from it.
399     for (VPBlockBase *Block : RPOT) {
400       if (EnableVPlanNativePath) {
401         // The inner loop vectorization path does not represent loop preheader
402         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
403         // vectorizing loop preheader block. In future, we may replace this
404         // check with the check for loop preheader.
405         if (Block->getNumPredecessors() == 0)
406           continue;
407 
408         // Skip vectorizing loop exit block. In future, we may replace this
409         // check with the check for loop exit.
410         if (Block->getNumSuccessors() == 0)
411           continue;
412       }
413 
414       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
415       Block->execute(State);
416     }
417     return;
418   }
419 
420   assert(!State->Instance && "Replicating a Region with non-null instance.");
421 
422   // Enter replicating mode.
423   State->Instance = {0, 0};
424 
425   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
426     State->Instance->Part = Part;
427     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
428     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
429          ++Lane) {
430       State->Instance->Lane = Lane;
431       // Visit the VPBlocks connected to \p this, starting from it.
432       for (VPBlockBase *Block : RPOT) {
433         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
434         Block->execute(State);
435       }
436     }
437   }
438 
439   // Exit replicating mode.
440   State->Instance.reset();
441 }
442 
insertBefore(VPRecipeBase * InsertPos)443 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
444   assert(!Parent && "Recipe already in some VPBasicBlock");
445   assert(InsertPos->getParent() &&
446          "Insertion position not in any VPBasicBlock");
447   Parent = InsertPos->getParent();
448   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
449 }
450 
insertAfter(VPRecipeBase * InsertPos)451 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
452   assert(!Parent && "Recipe already in some VPBasicBlock");
453   assert(InsertPos->getParent() &&
454          "Insertion position not in any VPBasicBlock");
455   Parent = InsertPos->getParent();
456   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
457 }
458 
removeFromParent()459 void VPRecipeBase::removeFromParent() {
460   assert(getParent() && "Recipe not in any VPBasicBlock");
461   getParent()->getRecipeList().remove(getIterator());
462   Parent = nullptr;
463 }
464 
eraseFromParent()465 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
466   assert(getParent() && "Recipe not in any VPBasicBlock");
467   return getParent()->getRecipeList().erase(getIterator());
468 }
469 
moveAfter(VPRecipeBase * InsertPos)470 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
471   removeFromParent();
472   insertAfter(InsertPos);
473 }
474 
generateInstruction(VPTransformState & State,unsigned Part)475 void VPInstruction::generateInstruction(VPTransformState &State,
476                                         unsigned Part) {
477   IRBuilder<> &Builder = State.Builder;
478 
479   if (Instruction::isBinaryOp(getOpcode())) {
480     Value *A = State.get(getOperand(0), Part);
481     Value *B = State.get(getOperand(1), Part);
482     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
483     State.set(this, V, Part);
484     return;
485   }
486 
487   switch (getOpcode()) {
488   case VPInstruction::Not: {
489     Value *A = State.get(getOperand(0), Part);
490     Value *V = Builder.CreateNot(A);
491     State.set(this, V, Part);
492     break;
493   }
494   case VPInstruction::ICmpULE: {
495     Value *IV = State.get(getOperand(0), Part);
496     Value *TC = State.get(getOperand(1), Part);
497     Value *V = Builder.CreateICmpULE(IV, TC);
498     State.set(this, V, Part);
499     break;
500   }
501   case Instruction::Select: {
502     Value *Cond = State.get(getOperand(0), Part);
503     Value *Op1 = State.get(getOperand(1), Part);
504     Value *Op2 = State.get(getOperand(2), Part);
505     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
506     State.set(this, V, Part);
507     break;
508   }
509   case VPInstruction::ActiveLaneMask: {
510     // Get first lane of vector induction variable.
511     Value *VIVElem0 = State.get(getOperand(0), {Part, 0});
512     // Get the original loop tripcount.
513     Value *ScalarTC = State.TripCount;
514 
515     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
516     auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
517     Instruction *Call = Builder.CreateIntrinsic(
518         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
519         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
520     State.set(this, Call, Part);
521     break;
522   }
523   default:
524     llvm_unreachable("Unsupported opcode for instruction");
525   }
526 }
527 
execute(VPTransformState & State)528 void VPInstruction::execute(VPTransformState &State) {
529   assert(!State.Instance && "VPInstruction executing an Instance");
530   for (unsigned Part = 0; Part < State.UF; ++Part)
531     generateInstruction(State, Part);
532 }
533 
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const534 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
535                           VPSlotTracker &SlotTracker) const {
536   O << "\"EMIT ";
537   print(O, SlotTracker);
538 }
539 
print(raw_ostream & O) const540 void VPInstruction::print(raw_ostream &O) const {
541   VPSlotTracker SlotTracker(getParent()->getPlan());
542   print(O, SlotTracker);
543 }
544 
print(raw_ostream & O,VPSlotTracker & SlotTracker) const545 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const {
546   if (hasResult()) {
547     printAsOperand(O, SlotTracker);
548     O << " = ";
549   }
550 
551   switch (getOpcode()) {
552   case VPInstruction::Not:
553     O << "not";
554     break;
555   case VPInstruction::ICmpULE:
556     O << "icmp ule";
557     break;
558   case VPInstruction::SLPLoad:
559     O << "combined load";
560     break;
561   case VPInstruction::SLPStore:
562     O << "combined store";
563     break;
564   case VPInstruction::ActiveLaneMask:
565     O << "active lane mask";
566     break;
567 
568   default:
569     O << Instruction::getOpcodeName(getOpcode());
570   }
571 
572   for (const VPValue *Operand : operands()) {
573     O << " ";
574     Operand->printAsOperand(O, SlotTracker);
575   }
576 }
577 
578 /// Generate the code inside the body of the vectorized loop. Assumes a single
579 /// LoopVectorBody basic-block was created for this. Introduce additional
580 /// basic-blocks as needed, and fill them all.
execute(VPTransformState * State)581 void VPlan::execute(VPTransformState *State) {
582   // -1. Check if the backedge taken count is needed, and if so build it.
583   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
584     Value *TC = State->TripCount;
585     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
586     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
587                                    "trip.count.minus.1");
588     auto VF = State->VF;
589     Value *VTCMO =
590         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
591     for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
592       State->set(BackedgeTakenCount, VTCMO, Part);
593   }
594 
595   // 0. Set the reverse mapping from VPValues to Values for code generation.
596   for (auto &Entry : Value2VPValue)
597     State->VPValue2Value[Entry.second] = Entry.first;
598 
599   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
600   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
601   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
602 
603   // 1. Make room to generate basic-blocks inside loop body if needed.
604   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
605       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
606   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
607   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
608   // Remove the edge between Header and Latch to allow other connections.
609   // Temporarily terminate with unreachable until CFG is rewired.
610   // Note: this asserts the generated code's assumption that
611   // getFirstInsertionPt() can be dereferenced into an Instruction.
612   VectorHeaderBB->getTerminator()->eraseFromParent();
613   State->Builder.SetInsertPoint(VectorHeaderBB);
614   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
615   State->Builder.SetInsertPoint(Terminator);
616 
617   // 2. Generate code in loop body.
618   State->CFG.PrevVPBB = nullptr;
619   State->CFG.PrevBB = VectorHeaderBB;
620   State->CFG.LastBB = VectorLatchBB;
621 
622   for (VPBlockBase *Block : depth_first(Entry))
623     Block->execute(State);
624 
625   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
626   // VPBB's successors.
627   for (auto VPBB : State->CFG.VPBBsToFix) {
628     assert(EnableVPlanNativePath &&
629            "Unexpected VPBBsToFix in non VPlan-native path");
630     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
631     assert(BB && "Unexpected null basic block for VPBB");
632 
633     unsigned Idx = 0;
634     auto *BBTerminator = BB->getTerminator();
635 
636     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
637       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
638       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
639       ++Idx;
640     }
641   }
642 
643   // 3. Merge the temporary latch created with the last basic-block filled.
644   BasicBlock *LastBB = State->CFG.PrevBB;
645   // Connect LastBB to VectorLatchBB to facilitate their merge.
646   assert((EnableVPlanNativePath ||
647           isa<UnreachableInst>(LastBB->getTerminator())) &&
648          "Expected InnerLoop VPlan CFG to terminate with unreachable");
649   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
650          "Expected VPlan CFG to terminate with branch in NativePath");
651   LastBB->getTerminator()->eraseFromParent();
652   BranchInst::Create(VectorLatchBB, LastBB);
653 
654   // Merge LastBB with Latch.
655   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
656   (void)Merged;
657   assert(Merged && "Could not merge last basic block with latch.");
658   VectorLatchBB = LastBB;
659 
660   // We do not attempt to preserve DT for outer loop vectorization currently.
661   if (!EnableVPlanNativePath)
662     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
663                         L->getExitBlock());
664 }
665 
666 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
667 LLVM_DUMP_METHOD
dump() const668 void VPlan::dump() const { dbgs() << *this << '\n'; }
669 #endif
670 
updateDominatorTree(DominatorTree * DT,BasicBlock * LoopPreHeaderBB,BasicBlock * LoopLatchBB,BasicBlock * LoopExitBB)671 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
672                                 BasicBlock *LoopLatchBB,
673                                 BasicBlock *LoopExitBB) {
674   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
675   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
676   // The vector body may be more than a single basic-block by this point.
677   // Update the dominator tree information inside the vector body by propagating
678   // it from header to latch, expecting only triangular control-flow, if any.
679   BasicBlock *PostDomSucc = nullptr;
680   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
681     // Get the list of successors of this block.
682     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
683     assert(Succs.size() <= 2 &&
684            "Basic block in vector loop has more than 2 successors.");
685     PostDomSucc = Succs[0];
686     if (Succs.size() == 1) {
687       assert(PostDomSucc->getSinglePredecessor() &&
688              "PostDom successor has more than one predecessor.");
689       DT->addNewBlock(PostDomSucc, BB);
690       continue;
691     }
692     BasicBlock *InterimSucc = Succs[1];
693     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
694       PostDomSucc = Succs[1];
695       InterimSucc = Succs[0];
696     }
697     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
698            "One successor of a basic block does not lead to the other.");
699     assert(InterimSucc->getSinglePredecessor() &&
700            "Interim successor has more than one predecessor.");
701     assert(PostDomSucc->hasNPredecessors(2) &&
702            "PostDom successor has more than two predecessors.");
703     DT->addNewBlock(InterimSucc, BB);
704     DT->addNewBlock(PostDomSucc, BB);
705   }
706   // Latch block is a new dominator for the loop exit.
707   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
708   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
709 }
710 
getUID(const VPBlockBase * Block)711 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
712   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
713          Twine(getOrCreateBID(Block));
714 }
715 
getOrCreateName(const VPBlockBase * Block)716 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
717   const std::string &Name = Block->getName();
718   if (!Name.empty())
719     return Name;
720   return "VPB" + Twine(getOrCreateBID(Block));
721 }
722 
dump()723 void VPlanPrinter::dump() {
724   Depth = 1;
725   bumpIndent(0);
726   OS << "digraph VPlan {\n";
727   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
728   if (!Plan.getName().empty())
729     OS << "\\n" << DOT::EscapeString(Plan.getName());
730   if (Plan.BackedgeTakenCount) {
731     OS << ", where:\\n";
732     Plan.BackedgeTakenCount->print(OS, SlotTracker);
733     OS << " := BackedgeTakenCount";
734   }
735   OS << "\"]\n";
736   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
737   OS << "edge [fontname=Courier, fontsize=30]\n";
738   OS << "compound=true\n";
739 
740   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
741     dumpBlock(Block);
742 
743   OS << "}\n";
744 }
745 
dumpBlock(const VPBlockBase * Block)746 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
747   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
748     dumpBasicBlock(BasicBlock);
749   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
750     dumpRegion(Region);
751   else
752     llvm_unreachable("Unsupported kind of VPBlock.");
753 }
754 
drawEdge(const VPBlockBase * From,const VPBlockBase * To,bool Hidden,const Twine & Label)755 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
756                             bool Hidden, const Twine &Label) {
757   // Due to "dot" we print an edge between two regions as an edge between the
758   // exit basic block and the entry basic of the respective regions.
759   const VPBlockBase *Tail = From->getExitBasicBlock();
760   const VPBlockBase *Head = To->getEntryBasicBlock();
761   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
762   OS << " [ label=\"" << Label << '\"';
763   if (Tail != From)
764     OS << " ltail=" << getUID(From);
765   if (Head != To)
766     OS << " lhead=" << getUID(To);
767   if (Hidden)
768     OS << "; splines=none";
769   OS << "]\n";
770 }
771 
dumpEdges(const VPBlockBase * Block)772 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
773   auto &Successors = Block->getSuccessors();
774   if (Successors.size() == 1)
775     drawEdge(Block, Successors.front(), false, "");
776   else if (Successors.size() == 2) {
777     drawEdge(Block, Successors.front(), false, "T");
778     drawEdge(Block, Successors.back(), false, "F");
779   } else {
780     unsigned SuccessorNumber = 0;
781     for (auto *Successor : Successors)
782       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
783   }
784 }
785 
dumpBasicBlock(const VPBasicBlock * BasicBlock)786 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
787   OS << Indent << getUID(BasicBlock) << " [label =\n";
788   bumpIndent(1);
789   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
790   bumpIndent(1);
791 
792   // Dump the block predicate.
793   const VPValue *Pred = BasicBlock->getPredicate();
794   if (Pred) {
795     OS << " +\n" << Indent << " \"BlockPredicate: ";
796     if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
797       PredI->printAsOperand(OS, SlotTracker);
798       OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
799          << ")\\l\"";
800     } else
801       Pred->printAsOperand(OS, SlotTracker);
802   }
803 
804   for (const VPRecipeBase &Recipe : *BasicBlock) {
805     OS << " +\n" << Indent;
806     Recipe.print(OS, Indent, SlotTracker);
807     OS << "\\l\"";
808   }
809 
810   // Dump the condition bit.
811   const VPValue *CBV = BasicBlock->getCondBit();
812   if (CBV) {
813     OS << " +\n" << Indent << " \"CondBit: ";
814     if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
815       CBI->printAsOperand(OS, SlotTracker);
816       OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
817     } else {
818       CBV->printAsOperand(OS, SlotTracker);
819       OS << "\"";
820     }
821   }
822 
823   bumpIndent(-2);
824   OS << "\n" << Indent << "]\n";
825   dumpEdges(BasicBlock);
826 }
827 
dumpRegion(const VPRegionBlock * Region)828 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
829   OS << Indent << "subgraph " << getUID(Region) << " {\n";
830   bumpIndent(1);
831   OS << Indent << "fontname=Courier\n"
832      << Indent << "label=\""
833      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
834      << DOT::EscapeString(Region->getName()) << "\"\n";
835   // Dump the blocks of the region.
836   assert(Region->getEntry() && "Region contains no inner blocks.");
837   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
838     dumpBlock(Block);
839   bumpIndent(-1);
840   OS << Indent << "}\n";
841   dumpEdges(Region);
842 }
843 
printAsIngredient(raw_ostream & O,const Value * V)844 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) {
845   std::string IngredientString;
846   raw_string_ostream RSO(IngredientString);
847   if (auto *Inst = dyn_cast<Instruction>(V)) {
848     if (!Inst->getType()->isVoidTy()) {
849       Inst->printAsOperand(RSO, false);
850       RSO << " = ";
851     }
852     RSO << Inst->getOpcodeName() << " ";
853     unsigned E = Inst->getNumOperands();
854     if (E > 0) {
855       Inst->getOperand(0)->printAsOperand(RSO, false);
856       for (unsigned I = 1; I < E; ++I)
857         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
858     }
859   } else // !Inst
860     V->printAsOperand(RSO, false);
861   RSO.flush();
862   O << DOT::EscapeString(IngredientString);
863 }
864 
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const865 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
866                               VPSlotTracker &SlotTracker) const {
867   O << "\"WIDEN-CALL ";
868 
869   auto *CI = cast<CallInst>(getUnderlyingInstr());
870   if (CI->getType()->isVoidTy())
871     O << "void ";
872   else {
873     printAsOperand(O, SlotTracker);
874     O << " = ";
875   }
876 
877   O << "call @" << CI->getCalledFunction()->getName() << "(";
878   printOperands(O, SlotTracker);
879   O << ")";
880 }
881 
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const882 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
883                                 VPSlotTracker &SlotTracker) const {
884   O << "\"WIDEN-SELECT ";
885   printAsOperand(O, SlotTracker);
886   O << " = select ";
887   getOperand(0)->printAsOperand(O, SlotTracker);
888   O << ", ";
889   getOperand(1)->printAsOperand(O, SlotTracker);
890   O << ", ";
891   getOperand(2)->printAsOperand(O, SlotTracker);
892   O << (InvariantCond ? " (condition is loop invariant)" : "");
893 }
894 
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const895 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
896                           VPSlotTracker &SlotTracker) const {
897   O << "\"WIDEN ";
898   printAsOperand(O, SlotTracker);
899   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
900   printOperands(O, SlotTracker);
901 }
902 
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const903 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
904                                           VPSlotTracker &SlotTracker) const {
905   O << "\"WIDEN-INDUCTION";
906   if (Trunc) {
907     O << "\\l\"";
908     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
909     O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc);
910   } else
911     O << " " << VPlanIngredient(IV);
912 }
913 
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const914 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
915                              VPSlotTracker &SlotTracker) const {
916   O << "\"WIDEN-GEP ";
917   O << (IsPtrLoopInvariant ? "Inv" : "Var");
918   size_t IndicesNumber = IsIndexLoopInvariant.size();
919   for (size_t I = 0; I < IndicesNumber; ++I)
920     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
921 
922   O << " ";
923   printAsOperand(O, SlotTracker);
924   O << " = getelementptr ";
925   printOperands(O, SlotTracker);
926 }
927 
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const928 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
929                              VPSlotTracker &SlotTracker) const {
930   O << "\"WIDEN-PHI " << VPlanIngredient(Phi);
931 }
932 
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const933 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
934                           VPSlotTracker &SlotTracker) const {
935   O << "\"BLEND ";
936   Phi->printAsOperand(O, false);
937   O << " =";
938   if (getNumIncomingValues() == 1) {
939     // Not a User of any mask: not really blending, this is a
940     // single-predecessor phi.
941     O << " ";
942     getIncomingValue(0)->printAsOperand(O, SlotTracker);
943   } else {
944     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
945       O << " ";
946       getIncomingValue(I)->printAsOperand(O, SlotTracker);
947       O << "/";
948       getMask(I)->printAsOperand(O, SlotTracker);
949     }
950   }
951 }
952 
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const953 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
954                               VPSlotTracker &SlotTracker) const {
955   O << "\"REDUCE ";
956   printAsOperand(O, SlotTracker);
957   O << " = ";
958   getChainOp()->printAsOperand(O, SlotTracker);
959   O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getRecurrenceBinOp())
960     << " (";
961   getVecOp()->printAsOperand(O, SlotTracker);
962   if (getCondOp()) {
963     O << ", ";
964     getCondOp()->printAsOperand(O, SlotTracker);
965   }
966   O << ")";
967 }
968 
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const969 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
970                               VPSlotTracker &SlotTracker) const {
971   O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ");
972 
973   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
974     printAsOperand(O, SlotTracker);
975     O << " = ";
976   }
977   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
978   printOperands(O, SlotTracker);
979 
980   if (AlsoPack)
981     O << " (S->V)";
982 }
983 
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const984 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
985                                 VPSlotTracker &SlotTracker) const {
986   O << "\"PHI-PREDICATED-INSTRUCTION ";
987   printOperands(O, SlotTracker);
988 }
989 
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const990 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
991                                            VPSlotTracker &SlotTracker) const {
992   O << "\"WIDEN ";
993 
994   if (!isStore()) {
995     printAsOperand(O, SlotTracker);
996     O << " = ";
997   }
998   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
999 
1000   printOperands(O, SlotTracker);
1001 }
1002 
execute(VPTransformState & State)1003 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1004   Value *CanonicalIV = State.CanonicalIV;
1005   Type *STy = CanonicalIV->getType();
1006   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1007   ElementCount VF = State.VF;
1008   assert(!VF.isScalable() && "the code following assumes non scalables ECs");
1009   Value *VStart = VF.isScalar()
1010                       ? CanonicalIV
1011                       : Builder.CreateVectorSplat(VF.getKnownMinValue(),
1012                                                   CanonicalIV, "broadcast");
1013   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1014     SmallVector<Constant *, 8> Indices;
1015     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
1016       Indices.push_back(
1017           ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
1018     // If VF == 1, there is only one iteration in the loop above, thus the
1019     // element pushed back into Indices is ConstantInt::get(STy, Part)
1020     Constant *VStep =
1021         VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
1022     // Add the consecutive indices to the vector value.
1023     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1024     State.set(getVPValue(), CanonicalVectorIV, Part);
1025   }
1026 }
1027 
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker) const1028 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1029                                      VPSlotTracker &SlotTracker) const {
1030   O << "\"EMIT ";
1031   getVPValue()->printAsOperand(O, SlotTracker);
1032   O << " = WIDEN-CANONICAL-INDUCTION";
1033 }
1034 
1035 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1036 
replaceAllUsesWith(VPValue * New)1037 void VPValue::replaceAllUsesWith(VPValue *New) {
1038   for (unsigned J = 0; J < getNumUsers();) {
1039     VPUser *User = Users[J];
1040     unsigned NumUsers = getNumUsers();
1041     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1042       if (User->getOperand(I) == this)
1043         User->setOperand(I, New);
1044     // If a user got removed after updating the current user, the next user to
1045     // update will be moved to the current position, so we only need to
1046     // increment the index if the number of users did not change.
1047     if (NumUsers == getNumUsers())
1048       J++;
1049   }
1050 }
1051 
printAsOperand(raw_ostream & OS,VPSlotTracker & Tracker) const1052 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1053   if (const Value *UV = getUnderlyingValue()) {
1054     OS << "ir<";
1055     UV->printAsOperand(OS, false);
1056     OS << ">";
1057     return;
1058   }
1059 
1060   unsigned Slot = Tracker.getSlot(this);
1061   if (Slot == unsigned(-1))
1062     OS << "<badref>";
1063   else
1064     OS << "vp<%" << Tracker.getSlot(this) << ">";
1065 }
1066 
printOperands(raw_ostream & O,VPSlotTracker & SlotTracker) const1067 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1068   bool First = true;
1069   for (VPValue *Op : operands()) {
1070     if (!First)
1071       O << ", ";
1072     Op->printAsOperand(O, SlotTracker);
1073     First = false;
1074   }
1075 }
1076 
visitRegion(VPRegionBlock * Region,Old2NewTy & Old2New,InterleavedAccessInfo & IAI)1077 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1078                                           Old2NewTy &Old2New,
1079                                           InterleavedAccessInfo &IAI) {
1080   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1081   for (VPBlockBase *Base : RPOT) {
1082     visitBlock(Base, Old2New, IAI);
1083   }
1084 }
1085 
visitBlock(VPBlockBase * Block,Old2NewTy & Old2New,InterleavedAccessInfo & IAI)1086 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1087                                          InterleavedAccessInfo &IAI) {
1088   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1089     for (VPRecipeBase &VPI : *VPBB) {
1090       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1091       auto *VPInst = cast<VPInstruction>(&VPI);
1092       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1093       auto *IG = IAI.getInterleaveGroup(Inst);
1094       if (!IG)
1095         continue;
1096 
1097       auto NewIGIter = Old2New.find(IG);
1098       if (NewIGIter == Old2New.end())
1099         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1100             IG->getFactor(), IG->isReverse(), IG->getAlign());
1101 
1102       if (Inst == IG->getInsertPos())
1103         Old2New[IG]->setInsertPos(VPInst);
1104 
1105       InterleaveGroupMap[VPInst] = Old2New[IG];
1106       InterleaveGroupMap[VPInst]->insertMember(
1107           VPInst, IG->getIndex(Inst),
1108           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1109                                 : IG->getFactor()));
1110     }
1111   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1112     visitRegion(Region, Old2New, IAI);
1113   else
1114     llvm_unreachable("Unsupported kind of VPBlock.");
1115 }
1116 
VPInterleavedAccessInfo(VPlan & Plan,InterleavedAccessInfo & IAI)1117 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1118                                                  InterleavedAccessInfo &IAI) {
1119   Old2NewTy Old2New;
1120   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1121 }
1122 
assignSlot(const VPValue * V)1123 void VPSlotTracker::assignSlot(const VPValue *V) {
1124   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1125   const Value *UV = V->getUnderlyingValue();
1126   if (UV)
1127     return;
1128   const auto *VPI = dyn_cast<VPInstruction>(V);
1129   if (VPI && !VPI->hasResult())
1130     return;
1131 
1132   Slots[V] = NextSlot++;
1133 }
1134 
assignSlots(const VPBlockBase * VPBB)1135 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
1136   if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
1137     assignSlots(Region);
1138   else
1139     assignSlots(cast<VPBasicBlock>(VPBB));
1140 }
1141 
assignSlots(const VPRegionBlock * Region)1142 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
1143   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
1144   for (const VPBlockBase *Block : RPOT)
1145     assignSlots(Block);
1146 }
1147 
assignSlots(const VPBasicBlock * VPBB)1148 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1149   for (const VPRecipeBase &Recipe : *VPBB) {
1150     if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe))
1151       assignSlot(VPI);
1152     else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe))
1153       assignSlot(VPIV->getVPValue());
1154   }
1155 }
1156 
assignSlots(const VPlan & Plan)1157 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1158 
1159   for (const VPValue *V : Plan.VPExternalDefs)
1160     assignSlot(V);
1161 
1162   for (auto &E : Plan.Value2VPValue)
1163     if (!isa<VPInstruction>(E.second))
1164       assignSlot(E.second);
1165 
1166   for (const VPValue *V : Plan.VPCBVs)
1167     assignSlot(V);
1168 
1169   if (Plan.BackedgeTakenCount)
1170     assignSlot(Plan.BackedgeTakenCount);
1171 
1172   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
1173   for (const VPBlockBase *Block : RPOT)
1174     assignSlots(Block);
1175 }
1176