1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/Optional.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/LazyCallGraph.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/InstIterator.h"
20 #include "llvm/IR/Instruction.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/IR/PassManagerImpl.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/TimeProfiler.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <iterator>
33
34 #define DEBUG_TYPE "cgscc"
35
36 using namespace llvm;
37
38 // Explicit template instantiations and specialization definitions for core
39 // template typedefs.
40 namespace llvm {
41
42 static cl::opt<bool> AbortOnMaxDevirtIterationsReached(
43 "abort-on-max-devirt-iterations-reached",
44 cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
45 "pass is reached"));
46
47 // Explicit instantiations for the core proxy templates.
48 template class AllAnalysesOn<LazyCallGraph::SCC>;
49 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
50 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
51 LazyCallGraph &, CGSCCUpdateResult &>;
52 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
53 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
54 LazyCallGraph::SCC, LazyCallGraph &>;
55 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
56
57 /// Explicitly specialize the pass manager run method to handle call graph
58 /// updates.
59 template <>
60 PreservedAnalyses
61 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
run(LazyCallGraph::SCC & InitialC,CGSCCAnalysisManager & AM,LazyCallGraph & G,CGSCCUpdateResult & UR)62 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
63 CGSCCAnalysisManager &AM,
64 LazyCallGraph &G, CGSCCUpdateResult &UR) {
65 // Request PassInstrumentation from analysis manager, will use it to run
66 // instrumenting callbacks for the passes later.
67 PassInstrumentation PI =
68 AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
69
70 PreservedAnalyses PA = PreservedAnalyses::all();
71
72 if (DebugLogging)
73 dbgs() << "Starting CGSCC pass manager run.\n";
74
75 // The SCC may be refined while we are running passes over it, so set up
76 // a pointer that we can update.
77 LazyCallGraph::SCC *C = &InitialC;
78
79 // Get Function analysis manager from its proxy.
80 FunctionAnalysisManager &FAM =
81 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager();
82
83 for (auto &Pass : Passes) {
84 // Check the PassInstrumentation's BeforePass callbacks before running the
85 // pass, skip its execution completely if asked to (callback returns false).
86 if (!PI.runBeforePass(*Pass, *C))
87 continue;
88
89 PreservedAnalyses PassPA;
90 {
91 TimeTraceScope TimeScope(Pass->name());
92 PassPA = Pass->run(*C, AM, G, UR);
93 }
94
95 if (UR.InvalidatedSCCs.count(C))
96 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
97 else
98 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
99
100 // Update the SCC if necessary.
101 C = UR.UpdatedC ? UR.UpdatedC : C;
102 if (UR.UpdatedC) {
103 // If C is updated, also create a proxy and update FAM inside the result.
104 auto *ResultFAMCP =
105 &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
106 ResultFAMCP->updateFAM(FAM);
107 }
108
109 // If the CGSCC pass wasn't able to provide a valid updated SCC, the
110 // current SCC may simply need to be skipped if invalid.
111 if (UR.InvalidatedSCCs.count(C)) {
112 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
113 break;
114 }
115 // Check that we didn't miss any update scenario.
116 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
117
118 // Update the analysis manager as each pass runs and potentially
119 // invalidates analyses.
120 AM.invalidate(*C, PassPA);
121
122 // Finally, we intersect the final preserved analyses to compute the
123 // aggregate preserved set for this pass manager.
124 PA.intersect(std::move(PassPA));
125
126 // FIXME: Historically, the pass managers all called the LLVM context's
127 // yield function here. We don't have a generic way to acquire the
128 // context and it isn't yet clear what the right pattern is for yielding
129 // in the new pass manager so it is currently omitted.
130 // ...getContext().yield();
131 }
132
133 // Before we mark all of *this* SCC's analyses as preserved below, intersect
134 // this with the cross-SCC preserved analysis set. This is used to allow
135 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
136 // for them.
137 UR.CrossSCCPA.intersect(PA);
138
139 // Invalidation was handled after each pass in the above loop for the current
140 // SCC. Therefore, the remaining analysis results in the AnalysisManager are
141 // preserved. We mark this with a set so that we don't need to inspect each
142 // one individually.
143 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
144
145 if (DebugLogging)
146 dbgs() << "Finished CGSCC pass manager run.\n";
147
148 return PA;
149 }
150
151 PreservedAnalyses
run(Module & M,ModuleAnalysisManager & AM)152 ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) {
153 // Setup the CGSCC analysis manager from its proxy.
154 CGSCCAnalysisManager &CGAM =
155 AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
156
157 // Get the call graph for this module.
158 LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
159
160 // Get Function analysis manager from its proxy.
161 FunctionAnalysisManager &FAM =
162 AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager();
163
164 // We keep worklists to allow us to push more work onto the pass manager as
165 // the passes are run.
166 SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
167 SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
168
169 // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
170 // iterating off the worklists.
171 SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
172 SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
173
174 SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
175 InlinedInternalEdges;
176
177 CGSCCUpdateResult UR = {
178 RCWorklist, CWorklist, InvalidRefSCCSet, InvalidSCCSet,
179 nullptr, nullptr, PreservedAnalyses::all(), InlinedInternalEdges,
180 {}};
181
182 // Request PassInstrumentation from analysis manager, will use it to run
183 // instrumenting callbacks for the passes later.
184 PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
185
186 PreservedAnalyses PA = PreservedAnalyses::all();
187 CG.buildRefSCCs();
188 for (auto RCI = CG.postorder_ref_scc_begin(),
189 RCE = CG.postorder_ref_scc_end();
190 RCI != RCE;) {
191 assert(RCWorklist.empty() &&
192 "Should always start with an empty RefSCC worklist");
193 // The postorder_ref_sccs range we are walking is lazily constructed, so
194 // we only push the first one onto the worklist. The worklist allows us
195 // to capture *new* RefSCCs created during transformations.
196 //
197 // We really want to form RefSCCs lazily because that makes them cheaper
198 // to update as the program is simplified and allows us to have greater
199 // cache locality as forming a RefSCC touches all the parts of all the
200 // functions within that RefSCC.
201 //
202 // We also eagerly increment the iterator to the next position because
203 // the CGSCC passes below may delete the current RefSCC.
204 RCWorklist.insert(&*RCI++);
205
206 do {
207 LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
208 if (InvalidRefSCCSet.count(RC)) {
209 LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
210 continue;
211 }
212
213 assert(CWorklist.empty() &&
214 "Should always start with an empty SCC worklist");
215
216 LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
217 << "\n");
218
219 // The top of the worklist may *also* be the same SCC we just ran over
220 // (and invalidated for). Keep track of that last SCC we processed due
221 // to SCC update to avoid redundant processing when an SCC is both just
222 // updated itself and at the top of the worklist.
223 LazyCallGraph::SCC *LastUpdatedC = nullptr;
224
225 // Push the initial SCCs in reverse post-order as we'll pop off the
226 // back and so see this in post-order.
227 for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
228 CWorklist.insert(&C);
229
230 do {
231 LazyCallGraph::SCC *C = CWorklist.pop_back_val();
232 // Due to call graph mutations, we may have invalid SCCs or SCCs from
233 // other RefSCCs in the worklist. The invalid ones are dead and the
234 // other RefSCCs should be queued above, so we just need to skip both
235 // scenarios here.
236 if (InvalidSCCSet.count(C)) {
237 LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
238 continue;
239 }
240 if (LastUpdatedC == C) {
241 LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n");
242 continue;
243 }
244 if (&C->getOuterRefSCC() != RC) {
245 LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other "
246 "RefSCC...\n");
247 continue;
248 }
249
250 // Ensure we can proxy analysis updates from the CGSCC analysis manager
251 // into the the Function analysis manager by getting a proxy here.
252 // This also needs to update the FunctionAnalysisManager, as this may be
253 // the first time we see this SCC.
254 CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
255 FAM);
256
257 // Each time we visit a new SCC pulled off the worklist,
258 // a transformation of a child SCC may have also modified this parent
259 // and invalidated analyses. So we invalidate using the update record's
260 // cross-SCC preserved set. This preserved set is intersected by any
261 // CGSCC pass that handles invalidation (primarily pass managers) prior
262 // to marking its SCC as preserved. That lets us track everything that
263 // might need invalidation across SCCs without excessive invalidations
264 // on a single SCC.
265 //
266 // This essentially allows SCC passes to freely invalidate analyses
267 // of any ancestor SCC. If this becomes detrimental to successfully
268 // caching analyses, we could force each SCC pass to manually
269 // invalidate the analyses for any SCCs other than themselves which
270 // are mutated. However, that seems to lose the robustness of the
271 // pass-manager driven invalidation scheme.
272 CGAM.invalidate(*C, UR.CrossSCCPA);
273
274 do {
275 // Check that we didn't miss any update scenario.
276 assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
277 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
278 assert(&C->getOuterRefSCC() == RC &&
279 "Processing an SCC in a different RefSCC!");
280
281 LastUpdatedC = UR.UpdatedC;
282 UR.UpdatedRC = nullptr;
283 UR.UpdatedC = nullptr;
284
285 // Check the PassInstrumentation's BeforePass callbacks before
286 // running the pass, skip its execution completely if asked to
287 // (callback returns false).
288 if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
289 continue;
290
291 PreservedAnalyses PassPA;
292 {
293 TimeTraceScope TimeScope(Pass->name());
294 PassPA = Pass->run(*C, CGAM, CG, UR);
295 }
296
297 if (UR.InvalidatedSCCs.count(C))
298 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
299 else
300 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
301
302 // Update the SCC and RefSCC if necessary.
303 C = UR.UpdatedC ? UR.UpdatedC : C;
304 RC = UR.UpdatedRC ? UR.UpdatedRC : RC;
305
306 if (UR.UpdatedC) {
307 // If we're updating the SCC, also update the FAM inside the proxy's
308 // result.
309 CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
310 FAM);
311 }
312
313 // If the CGSCC pass wasn't able to provide a valid updated SCC,
314 // the current SCC may simply need to be skipped if invalid.
315 if (UR.InvalidatedSCCs.count(C)) {
316 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
317 break;
318 }
319 // Check that we didn't miss any update scenario.
320 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
321
322 // We handle invalidating the CGSCC analysis manager's information
323 // for the (potentially updated) SCC here. Note that any other SCCs
324 // whose structure has changed should have been invalidated by
325 // whatever was updating the call graph. This SCC gets invalidated
326 // late as it contains the nodes that were actively being
327 // processed.
328 CGAM.invalidate(*C, PassPA);
329
330 // Then intersect the preserved set so that invalidation of module
331 // analyses will eventually occur when the module pass completes.
332 // Also intersect with the cross-SCC preserved set to capture any
333 // cross-SCC invalidation.
334 UR.CrossSCCPA.intersect(PassPA);
335 PA.intersect(std::move(PassPA));
336
337 // The pass may have restructured the call graph and refined the
338 // current SCC and/or RefSCC. We need to update our current SCC and
339 // RefSCC pointers to follow these. Also, when the current SCC is
340 // refined, re-run the SCC pass over the newly refined SCC in order
341 // to observe the most precise SCC model available. This inherently
342 // cannot cycle excessively as it only happens when we split SCCs
343 // apart, at most converging on a DAG of single nodes.
344 // FIXME: If we ever start having RefSCC passes, we'll want to
345 // iterate there too.
346 if (UR.UpdatedC)
347 LLVM_DEBUG(dbgs()
348 << "Re-running SCC passes after a refinement of the "
349 "current SCC: "
350 << *UR.UpdatedC << "\n");
351
352 // Note that both `C` and `RC` may at this point refer to deleted,
353 // invalid SCC and RefSCCs respectively. But we will short circuit
354 // the processing when we check them in the loop above.
355 } while (UR.UpdatedC);
356 } while (!CWorklist.empty());
357
358 // We only need to keep internal inlined edge information within
359 // a RefSCC, clear it to save on space and let the next time we visit
360 // any of these functions have a fresh start.
361 InlinedInternalEdges.clear();
362 } while (!RCWorklist.empty());
363 }
364
365 // By definition we preserve the call garph, all SCC analyses, and the
366 // analysis proxies by handling them above and in any nested pass managers.
367 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
368 PA.preserve<LazyCallGraphAnalysis>();
369 PA.preserve<CGSCCAnalysisManagerModuleProxy>();
370 PA.preserve<FunctionAnalysisManagerModuleProxy>();
371 return PA;
372 }
373
run(LazyCallGraph::SCC & InitialC,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)374 PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC,
375 CGSCCAnalysisManager &AM,
376 LazyCallGraph &CG,
377 CGSCCUpdateResult &UR) {
378 PreservedAnalyses PA = PreservedAnalyses::all();
379 PassInstrumentation PI =
380 AM.getResult<PassInstrumentationAnalysis>(InitialC, CG);
381
382 // The SCC may be refined while we are running passes over it, so set up
383 // a pointer that we can update.
384 LazyCallGraph::SCC *C = &InitialC;
385
386 // Struct to track the counts of direct and indirect calls in each function
387 // of the SCC.
388 struct CallCount {
389 int Direct;
390 int Indirect;
391 };
392
393 // Put value handles on all of the indirect calls and return the number of
394 // direct calls for each function in the SCC.
395 auto ScanSCC = [](LazyCallGraph::SCC &C,
396 SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) {
397 assert(CallHandles.empty() && "Must start with a clear set of handles.");
398
399 SmallDenseMap<Function *, CallCount> CallCounts;
400 CallCount CountLocal = {0, 0};
401 for (LazyCallGraph::Node &N : C) {
402 CallCount &Count =
403 CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal))
404 .first->second;
405 for (Instruction &I : instructions(N.getFunction()))
406 if (auto *CB = dyn_cast<CallBase>(&I)) {
407 if (CB->getCalledFunction()) {
408 ++Count.Direct;
409 } else {
410 ++Count.Indirect;
411 CallHandles.insert({CB, WeakTrackingVH(CB)});
412 }
413 }
414 }
415
416 return CallCounts;
417 };
418
419 UR.IndirectVHs.clear();
420 // Populate the initial call handles and get the initial call counts.
421 auto CallCounts = ScanSCC(*C, UR.IndirectVHs);
422
423 for (int Iteration = 0;; ++Iteration) {
424 if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
425 continue;
426
427 PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR);
428
429 if (UR.InvalidatedSCCs.count(C))
430 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
431 else
432 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
433
434 // If the SCC structure has changed, bail immediately and let the outer
435 // CGSCC layer handle any iteration to reflect the refined structure.
436 if (UR.UpdatedC && UR.UpdatedC != C) {
437 PA.intersect(std::move(PassPA));
438 break;
439 }
440
441 // Check that we didn't miss any update scenario.
442 assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!");
443 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
444
445 // Check whether any of the handles were devirtualized.
446 bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool {
447 if (P.second) {
448 if (CallBase *CB = dyn_cast<CallBase>(P.second)) {
449 if (CB->getCalledFunction()) {
450 LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n");
451 return true;
452 }
453 }
454 }
455 return false;
456 });
457
458 // Rescan to build up a new set of handles and count how many direct
459 // calls remain. If we decide to iterate, this also sets up the input to
460 // the next iteration.
461 UR.IndirectVHs.clear();
462 auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs);
463
464 // If we haven't found an explicit devirtualization already see if we
465 // have decreased the number of indirect calls and increased the number
466 // of direct calls for any function in the SCC. This can be fooled by all
467 // manner of transformations such as DCE and other things, but seems to
468 // work well in practice.
469 if (!Devirt)
470 // Iterate over the keys in NewCallCounts, if Function also exists in
471 // CallCounts, make the check below.
472 for (auto &Pair : NewCallCounts) {
473 auto &CallCountNew = Pair.second;
474 auto CountIt = CallCounts.find(Pair.first);
475 if (CountIt != CallCounts.end()) {
476 const auto &CallCountOld = CountIt->second;
477 if (CallCountOld.Indirect > CallCountNew.Indirect &&
478 CallCountOld.Direct < CallCountNew.Direct) {
479 Devirt = true;
480 break;
481 }
482 }
483 }
484
485 if (!Devirt) {
486 PA.intersect(std::move(PassPA));
487 break;
488 }
489
490 // Otherwise, if we've already hit our max, we're done.
491 if (Iteration >= MaxIterations) {
492 maxDevirtIterationsReached();
493 LLVM_DEBUG(
494 dbgs() << "Found another devirtualization after hitting the max "
495 "number of repetitions ("
496 << MaxIterations << ") on SCC: " << *C << "\n");
497 PA.intersect(std::move(PassPA));
498 break;
499 }
500
501 LLVM_DEBUG(
502 dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
503 << *C << "\n");
504
505 // Move over the new call counts in preparation for iterating.
506 CallCounts = std::move(NewCallCounts);
507
508 // Update the analysis manager with each run and intersect the total set
509 // of preserved analyses so we're ready to iterate.
510 AM.invalidate(*C, PassPA);
511
512 PA.intersect(std::move(PassPA));
513 }
514
515 // Note that we don't add any preserved entries here unlike a more normal
516 // "pass manager" because we only handle invalidation *between* iterations,
517 // not after the last iteration.
518 return PA;
519 }
520
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)521 PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C,
522 CGSCCAnalysisManager &AM,
523 LazyCallGraph &CG,
524 CGSCCUpdateResult &UR) {
525 // Setup the function analysis manager from its proxy.
526 FunctionAnalysisManager &FAM =
527 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
528
529 SmallVector<LazyCallGraph::Node *, 4> Nodes;
530 for (LazyCallGraph::Node &N : C)
531 Nodes.push_back(&N);
532
533 // The SCC may get split while we are optimizing functions due to deleting
534 // edges. If this happens, the current SCC can shift, so keep track of
535 // a pointer we can overwrite.
536 LazyCallGraph::SCC *CurrentC = &C;
537
538 LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n");
539
540 PreservedAnalyses PA = PreservedAnalyses::all();
541 for (LazyCallGraph::Node *N : Nodes) {
542 // Skip nodes from other SCCs. These may have been split out during
543 // processing. We'll eventually visit those SCCs and pick up the nodes
544 // there.
545 if (CG.lookupSCC(*N) != CurrentC)
546 continue;
547
548 Function &F = N->getFunction();
549
550 PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F);
551 if (!PI.runBeforePass<Function>(*Pass, F))
552 continue;
553
554 PreservedAnalyses PassPA;
555 {
556 TimeTraceScope TimeScope(Pass->name());
557 PassPA = Pass->run(F, FAM);
558 }
559
560 PI.runAfterPass<Function>(*Pass, F, PassPA);
561
562 // We know that the function pass couldn't have invalidated any other
563 // function's analyses (that's the contract of a function pass), so
564 // directly handle the function analysis manager's invalidation here.
565 FAM.invalidate(F, PassPA);
566
567 // Then intersect the preserved set so that invalidation of module
568 // analyses will eventually occur when the module pass completes.
569 PA.intersect(std::move(PassPA));
570
571 // If the call graph hasn't been preserved, update it based on this
572 // function pass. This may also update the current SCC to point to
573 // a smaller, more refined SCC.
574 auto PAC = PA.getChecker<LazyCallGraphAnalysis>();
575 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) {
576 CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N,
577 AM, UR, FAM);
578 assert(CG.lookupSCC(*N) == CurrentC &&
579 "Current SCC not updated to the SCC containing the current node!");
580 }
581 }
582
583 // By definition we preserve the proxy. And we preserve all analyses on
584 // Functions. This precludes *any* invalidation of function analyses by the
585 // proxy, but that's OK because we've taken care to invalidate analyses in
586 // the function analysis manager incrementally above.
587 PA.preserveSet<AllAnalysesOn<Function>>();
588 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
589
590 // We've also ensured that we updated the call graph along the way.
591 PA.preserve<LazyCallGraphAnalysis>();
592
593 return PA;
594 }
595
invalidate(Module & M,const PreservedAnalyses & PA,ModuleAnalysisManager::Invalidator & Inv)596 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
597 Module &M, const PreservedAnalyses &PA,
598 ModuleAnalysisManager::Invalidator &Inv) {
599 // If literally everything is preserved, we're done.
600 if (PA.areAllPreserved())
601 return false; // This is still a valid proxy.
602
603 // If this proxy or the call graph is going to be invalidated, we also need
604 // to clear all the keys coming from that analysis.
605 //
606 // We also directly invalidate the FAM's module proxy if necessary, and if
607 // that proxy isn't preserved we can't preserve this proxy either. We rely on
608 // it to handle module -> function analysis invalidation in the face of
609 // structural changes and so if it's unavailable we conservatively clear the
610 // entire SCC layer as well rather than trying to do invalidation ourselves.
611 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
612 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
613 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
614 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
615 InnerAM->clear();
616
617 // And the proxy itself should be marked as invalid so that we can observe
618 // the new call graph. This isn't strictly necessary because we cheat
619 // above, but is still useful.
620 return true;
621 }
622
623 // Directly check if the relevant set is preserved so we can short circuit
624 // invalidating SCCs below.
625 bool AreSCCAnalysesPreserved =
626 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
627
628 // Ok, we have a graph, so we can propagate the invalidation down into it.
629 G->buildRefSCCs();
630 for (auto &RC : G->postorder_ref_sccs())
631 for (auto &C : RC) {
632 Optional<PreservedAnalyses> InnerPA;
633
634 // Check to see whether the preserved set needs to be adjusted based on
635 // module-level analysis invalidation triggering deferred invalidation
636 // for this SCC.
637 if (auto *OuterProxy =
638 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
639 for (const auto &OuterInvalidationPair :
640 OuterProxy->getOuterInvalidations()) {
641 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
642 const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
643 if (Inv.invalidate(OuterAnalysisID, M, PA)) {
644 if (!InnerPA)
645 InnerPA = PA;
646 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
647 InnerPA->abandon(InnerAnalysisID);
648 }
649 }
650
651 // Check if we needed a custom PA set. If so we'll need to run the inner
652 // invalidation.
653 if (InnerPA) {
654 InnerAM->invalidate(C, *InnerPA);
655 continue;
656 }
657
658 // Otherwise we only need to do invalidation if the original PA set didn't
659 // preserve all SCC analyses.
660 if (!AreSCCAnalysesPreserved)
661 InnerAM->invalidate(C, PA);
662 }
663
664 // Return false to indicate that this result is still a valid proxy.
665 return false;
666 }
667
668 template <>
669 CGSCCAnalysisManagerModuleProxy::Result
run(Module & M,ModuleAnalysisManager & AM)670 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
671 // Force the Function analysis manager to also be available so that it can
672 // be accessed in an SCC analysis and proxied onward to function passes.
673 // FIXME: It is pretty awkward to just drop the result here and assert that
674 // we can find it again later.
675 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
676
677 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
678 }
679
680 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
681
682 FunctionAnalysisManagerCGSCCProxy::Result
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG)683 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
684 CGSCCAnalysisManager &AM,
685 LazyCallGraph &CG) {
686 // Note: unconditionally getting checking that the proxy exists may get it at
687 // this point. There are cases when this is being run unnecessarily, but
688 // it is cheap and having the assertion in place is more valuable.
689 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
690 Module &M = *C.begin()->getFunction().getParent();
691 bool ProxyExists =
692 MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M);
693 assert(ProxyExists &&
694 "The CGSCC pass manager requires that the FAM module proxy is run "
695 "on the module prior to entering the CGSCC walk");
696 (void)ProxyExists;
697
698 // We just return an empty result. The caller will use the updateFAM interface
699 // to correctly register the relevant FunctionAnalysisManager based on the
700 // context in which this proxy is run.
701 return Result();
702 }
703
invalidate(LazyCallGraph::SCC & C,const PreservedAnalyses & PA,CGSCCAnalysisManager::Invalidator & Inv)704 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
705 LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
706 CGSCCAnalysisManager::Invalidator &Inv) {
707 // If literally everything is preserved, we're done.
708 if (PA.areAllPreserved())
709 return false; // This is still a valid proxy.
710
711 // All updates to preserve valid results are done below, so we don't need to
712 // invalidate this proxy.
713 //
714 // Note that in order to preserve this proxy, a module pass must ensure that
715 // the FAM has been completely updated to handle the deletion of functions.
716 // Specifically, any FAM-cached results for those functions need to have been
717 // forcibly cleared. When preserved, this proxy will only invalidate results
718 // cached on functions *still in the module* at the end of the module pass.
719 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
720 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
721 for (LazyCallGraph::Node &N : C)
722 FAM->clear(N.getFunction(), N.getFunction().getName());
723
724 return false;
725 }
726
727 // Directly check if the relevant set is preserved.
728 bool AreFunctionAnalysesPreserved =
729 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
730
731 // Now walk all the functions to see if any inner analysis invalidation is
732 // necessary.
733 for (LazyCallGraph::Node &N : C) {
734 Function &F = N.getFunction();
735 Optional<PreservedAnalyses> FunctionPA;
736
737 // Check to see whether the preserved set needs to be pruned based on
738 // SCC-level analysis invalidation that triggers deferred invalidation
739 // registered with the outer analysis manager proxy for this function.
740 if (auto *OuterProxy =
741 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
742 for (const auto &OuterInvalidationPair :
743 OuterProxy->getOuterInvalidations()) {
744 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
745 const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
746 if (Inv.invalidate(OuterAnalysisID, C, PA)) {
747 if (!FunctionPA)
748 FunctionPA = PA;
749 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
750 FunctionPA->abandon(InnerAnalysisID);
751 }
752 }
753
754 // Check if we needed a custom PA set, and if so we'll need to run the
755 // inner invalidation.
756 if (FunctionPA) {
757 FAM->invalidate(F, *FunctionPA);
758 continue;
759 }
760
761 // Otherwise we only need to do invalidation if the original PA set didn't
762 // preserve all function analyses.
763 if (!AreFunctionAnalysesPreserved)
764 FAM->invalidate(F, PA);
765 }
766
767 // Return false to indicate that this result is still a valid proxy.
768 return false;
769 }
770
771 } // end namespace llvm
772
773 /// When a new SCC is created for the graph we first update the
774 /// FunctionAnalysisManager in the Proxy's result.
775 /// As there might be function analysis results cached for the functions now in
776 /// that SCC, two forms of updates are required.
777 ///
778 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
779 /// created so that any subsequent invalidation events to the SCC are
780 /// propagated to the function analysis results cached for functions within it.
781 ///
782 /// Second, if any of the functions within the SCC have analysis results with
783 /// outer analysis dependencies, then those dependencies would point to the
784 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
785 /// function analyses so that they don't retain stale handles.
updateNewSCCFunctionAnalyses(LazyCallGraph::SCC & C,LazyCallGraph & G,CGSCCAnalysisManager & AM,FunctionAnalysisManager & FAM)786 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
787 LazyCallGraph &G,
788 CGSCCAnalysisManager &AM,
789 FunctionAnalysisManager &FAM) {
790 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM);
791
792 // Now walk the functions in this SCC and invalidate any function analysis
793 // results that might have outer dependencies on an SCC analysis.
794 for (LazyCallGraph::Node &N : C) {
795 Function &F = N.getFunction();
796
797 auto *OuterProxy =
798 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
799 if (!OuterProxy)
800 // No outer analyses were queried, nothing to do.
801 continue;
802
803 // Forcibly abandon all the inner analyses with dependencies, but
804 // invalidate nothing else.
805 auto PA = PreservedAnalyses::all();
806 for (const auto &OuterInvalidationPair :
807 OuterProxy->getOuterInvalidations()) {
808 const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
809 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
810 PA.abandon(InnerAnalysisID);
811 }
812
813 // Now invalidate anything we found.
814 FAM.invalidate(F, PA);
815 }
816 }
817
maxDevirtIterationsReached()818 void llvm::maxDevirtIterationsReached() {
819 if (AbortOnMaxDevirtIterationsReached)
820 report_fatal_error("Max devirtualization iterations reached");
821 }
822
823 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
824 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
825 /// added SCCs.
826 ///
827 /// The range of new SCCs must be in postorder already. The SCC they were split
828 /// out of must be provided as \p C. The current node being mutated and
829 /// triggering updates must be passed as \p N.
830 ///
831 /// This function returns the SCC containing \p N. This will be either \p C if
832 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
833 template <typename SCCRangeT>
834 static LazyCallGraph::SCC *
incorporateNewSCCRange(const SCCRangeT & NewSCCRange,LazyCallGraph & G,LazyCallGraph::Node & N,LazyCallGraph::SCC * C,CGSCCAnalysisManager & AM,CGSCCUpdateResult & UR)835 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
836 LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
837 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
838 using SCC = LazyCallGraph::SCC;
839
840 if (NewSCCRange.begin() == NewSCCRange.end())
841 return C;
842
843 // Add the current SCC to the worklist as its shape has changed.
844 UR.CWorklist.insert(C);
845 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
846 << "\n");
847
848 SCC *OldC = C;
849
850 // Update the current SCC. Note that if we have new SCCs, this must actually
851 // change the SCC.
852 assert(C != &*NewSCCRange.begin() &&
853 "Cannot insert new SCCs without changing current SCC!");
854 C = &*NewSCCRange.begin();
855 assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
856
857 // If we had a cached FAM proxy originally, we will want to create more of
858 // them for each SCC that was split off.
859 FunctionAnalysisManager *FAM = nullptr;
860 if (auto *FAMProxy =
861 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC))
862 FAM = &FAMProxy->getManager();
863
864 // We need to propagate an invalidation call to all but the newly current SCC
865 // because the outer pass manager won't do that for us after splitting them.
866 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
867 // there are preserved analysis we can avoid invalidating them here for
868 // split-off SCCs.
869 // We know however that this will preserve any FAM proxy so go ahead and mark
870 // that.
871 PreservedAnalyses PA;
872 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
873 AM.invalidate(*OldC, PA);
874
875 // Ensure the now-current SCC's function analyses are updated.
876 if (FAM)
877 updateNewSCCFunctionAnalyses(*C, G, AM, *FAM);
878
879 for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()),
880 NewSCCRange.end()))) {
881 assert(C != &NewC && "No need to re-visit the current SCC!");
882 assert(OldC != &NewC && "Already handled the original SCC!");
883 UR.CWorklist.insert(&NewC);
884 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
885
886 // Ensure new SCCs' function analyses are updated.
887 if (FAM)
888 updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM);
889
890 // Also propagate a normal invalidation to the new SCC as only the current
891 // will get one from the pass manager infrastructure.
892 AM.invalidate(NewC, PA);
893 }
894 return C;
895 }
896
updateCGAndAnalysisManagerForPass(LazyCallGraph & G,LazyCallGraph::SCC & InitialC,LazyCallGraph::Node & N,CGSCCAnalysisManager & AM,CGSCCUpdateResult & UR,FunctionAnalysisManager & FAM,bool FunctionPass)897 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass(
898 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
899 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
900 FunctionAnalysisManager &FAM, bool FunctionPass) {
901 using Node = LazyCallGraph::Node;
902 using Edge = LazyCallGraph::Edge;
903 using SCC = LazyCallGraph::SCC;
904 using RefSCC = LazyCallGraph::RefSCC;
905
906 RefSCC &InitialRC = InitialC.getOuterRefSCC();
907 SCC *C = &InitialC;
908 RefSCC *RC = &InitialRC;
909 Function &F = N.getFunction();
910
911 // Walk the function body and build up the set of retained, promoted, and
912 // demoted edges.
913 SmallVector<Constant *, 16> Worklist;
914 SmallPtrSet<Constant *, 16> Visited;
915 SmallPtrSet<Node *, 16> RetainedEdges;
916 SmallSetVector<Node *, 4> PromotedRefTargets;
917 SmallSetVector<Node *, 4> DemotedCallTargets;
918 SmallSetVector<Node *, 4> NewCallEdges;
919 SmallSetVector<Node *, 4> NewRefEdges;
920 SmallSetVector<Node *, 4> NewNodes;
921
922 // First walk the function and handle all called functions. We do this first
923 // because if there is a single call edge, whether there are ref edges is
924 // irrelevant.
925 for (Instruction &I : instructions(F)) {
926 if (auto *CB = dyn_cast<CallBase>(&I)) {
927 if (Function *Callee = CB->getCalledFunction()) {
928 if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
929 Node *CalleeN = G.lookup(*Callee);
930 if (!CalleeN) {
931 CalleeN = &G.get(*Callee);
932 NewNodes.insert(CalleeN);
933 }
934 Edge *E = N->lookup(*CalleeN);
935 assert((E || !FunctionPass) &&
936 "No function transformations should introduce *new* "
937 "call edges! Any new calls should be modeled as "
938 "promoted existing ref edges!");
939 bool Inserted = RetainedEdges.insert(CalleeN).second;
940 (void)Inserted;
941 assert(Inserted && "We should never visit a function twice.");
942 if (!E)
943 NewCallEdges.insert(CalleeN);
944 else if (!E->isCall())
945 PromotedRefTargets.insert(CalleeN);
946 }
947 } else {
948 // We can miss devirtualization if an indirect call is created then
949 // promoted before updateCGAndAnalysisManagerForPass runs.
950 auto *Entry = UR.IndirectVHs.find(CB);
951 if (Entry == UR.IndirectVHs.end())
952 UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)});
953 else if (!Entry->second)
954 Entry->second = WeakTrackingVH(CB);
955 }
956 }
957 }
958
959 // Now walk all references.
960 for (Instruction &I : instructions(F))
961 for (Value *Op : I.operand_values())
962 if (auto *OpC = dyn_cast<Constant>(Op))
963 if (Visited.insert(OpC).second)
964 Worklist.push_back(OpC);
965
966 auto VisitRef = [&](Function &Referee) {
967 Node *RefereeN = G.lookup(Referee);
968 if (!RefereeN) {
969 RefereeN = &G.get(Referee);
970 NewNodes.insert(RefereeN);
971 }
972 Edge *E = N->lookup(*RefereeN);
973 assert((E || !FunctionPass) &&
974 "No function transformations should introduce *new* ref "
975 "edges! Any new ref edges would require IPO which "
976 "function passes aren't allowed to do!");
977 bool Inserted = RetainedEdges.insert(RefereeN).second;
978 (void)Inserted;
979 assert(Inserted && "We should never visit a function twice.");
980 if (!E)
981 NewRefEdges.insert(RefereeN);
982 else if (E->isCall())
983 DemotedCallTargets.insert(RefereeN);
984 };
985 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
986
987 for (Node *NewNode : NewNodes)
988 G.initNode(*NewNode, *C);
989
990 // Handle new ref edges.
991 for (Node *RefTarget : NewRefEdges) {
992 SCC &TargetC = *G.lookupSCC(*RefTarget);
993 RefSCC &TargetRC = TargetC.getOuterRefSCC();
994 (void)TargetRC;
995 // TODO: This only allows trivial edges to be added for now.
996 assert((RC == &TargetRC ||
997 RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!");
998 RC->insertTrivialRefEdge(N, *RefTarget);
999 }
1000
1001 // Handle new call edges.
1002 for (Node *CallTarget : NewCallEdges) {
1003 SCC &TargetC = *G.lookupSCC(*CallTarget);
1004 RefSCC &TargetRC = TargetC.getOuterRefSCC();
1005 (void)TargetRC;
1006 // TODO: This only allows trivial edges to be added for now.
1007 assert((RC == &TargetRC ||
1008 RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!");
1009 // Add a trivial ref edge to be promoted later on alongside
1010 // PromotedRefTargets.
1011 RC->insertTrivialRefEdge(N, *CallTarget);
1012 }
1013
1014 // Include synthetic reference edges to known, defined lib functions.
1015 for (auto *LibFn : G.getLibFunctions())
1016 // While the list of lib functions doesn't have repeats, don't re-visit
1017 // anything handled above.
1018 if (!Visited.count(LibFn))
1019 VisitRef(*LibFn);
1020
1021 // First remove all of the edges that are no longer present in this function.
1022 // The first step makes these edges uniformly ref edges and accumulates them
1023 // into a separate data structure so removal doesn't invalidate anything.
1024 SmallVector<Node *, 4> DeadTargets;
1025 for (Edge &E : *N) {
1026 if (RetainedEdges.count(&E.getNode()))
1027 continue;
1028
1029 SCC &TargetC = *G.lookupSCC(E.getNode());
1030 RefSCC &TargetRC = TargetC.getOuterRefSCC();
1031 if (&TargetRC == RC && E.isCall()) {
1032 if (C != &TargetC) {
1033 // For separate SCCs this is trivial.
1034 RC->switchTrivialInternalEdgeToRef(N, E.getNode());
1035 } else {
1036 // Now update the call graph.
1037 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
1038 G, N, C, AM, UR);
1039 }
1040 }
1041
1042 // Now that this is ready for actual removal, put it into our list.
1043 DeadTargets.push_back(&E.getNode());
1044 }
1045 // Remove the easy cases quickly and actually pull them out of our list.
1046 DeadTargets.erase(
1047 llvm::remove_if(DeadTargets,
1048 [&](Node *TargetN) {
1049 SCC &TargetC = *G.lookupSCC(*TargetN);
1050 RefSCC &TargetRC = TargetC.getOuterRefSCC();
1051
1052 // We can't trivially remove internal targets, so skip
1053 // those.
1054 if (&TargetRC == RC)
1055 return false;
1056
1057 RC->removeOutgoingEdge(N, *TargetN);
1058 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '"
1059 << N << "' to '" << TargetN << "'\n");
1060 return true;
1061 }),
1062 DeadTargets.end());
1063
1064 // Now do a batch removal of the internal ref edges left.
1065 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
1066 if (!NewRefSCCs.empty()) {
1067 // The old RefSCC is dead, mark it as such.
1068 UR.InvalidatedRefSCCs.insert(RC);
1069
1070 // Note that we don't bother to invalidate analyses as ref-edge
1071 // connectivity is not really observable in any way and is intended
1072 // exclusively to be used for ordering of transforms rather than for
1073 // analysis conclusions.
1074
1075 // Update RC to the "bottom".
1076 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
1077 RC = &C->getOuterRefSCC();
1078 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
1079
1080 // The RC worklist is in reverse postorder, so we enqueue the new ones in
1081 // RPO except for the one which contains the source node as that is the
1082 // "bottom" we will continue processing in the bottom-up walk.
1083 assert(NewRefSCCs.front() == RC &&
1084 "New current RefSCC not first in the returned list!");
1085 for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()),
1086 NewRefSCCs.end()))) {
1087 assert(NewRC != RC && "Should not encounter the current RefSCC further "
1088 "in the postorder list of new RefSCCs.");
1089 UR.RCWorklist.insert(NewRC);
1090 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
1091 << *NewRC << "\n");
1092 }
1093 }
1094
1095 // Next demote all the call edges that are now ref edges. This helps make
1096 // the SCCs small which should minimize the work below as we don't want to
1097 // form cycles that this would break.
1098 for (Node *RefTarget : DemotedCallTargets) {
1099 SCC &TargetC = *G.lookupSCC(*RefTarget);
1100 RefSCC &TargetRC = TargetC.getOuterRefSCC();
1101
1102 // The easy case is when the target RefSCC is not this RefSCC. This is
1103 // only supported when the target RefSCC is a child of this RefSCC.
1104 if (&TargetRC != RC) {
1105 assert(RC->isAncestorOf(TargetRC) &&
1106 "Cannot potentially form RefSCC cycles here!");
1107 RC->switchOutgoingEdgeToRef(N, *RefTarget);
1108 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
1109 << "' to '" << *RefTarget << "'\n");
1110 continue;
1111 }
1112
1113 // We are switching an internal call edge to a ref edge. This may split up
1114 // some SCCs.
1115 if (C != &TargetC) {
1116 // For separate SCCs this is trivial.
1117 RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
1118 continue;
1119 }
1120
1121 // Now update the call graph.
1122 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
1123 C, AM, UR);
1124 }
1125
1126 // We added a ref edge earlier for new call edges, promote those to call edges
1127 // alongside PromotedRefTargets.
1128 for (Node *E : NewCallEdges)
1129 PromotedRefTargets.insert(E);
1130
1131 // Now promote ref edges into call edges.
1132 for (Node *CallTarget : PromotedRefTargets) {
1133 SCC &TargetC = *G.lookupSCC(*CallTarget);
1134 RefSCC &TargetRC = TargetC.getOuterRefSCC();
1135
1136 // The easy case is when the target RefSCC is not this RefSCC. This is
1137 // only supported when the target RefSCC is a child of this RefSCC.
1138 if (&TargetRC != RC) {
1139 assert(RC->isAncestorOf(TargetRC) &&
1140 "Cannot potentially form RefSCC cycles here!");
1141 RC->switchOutgoingEdgeToCall(N, *CallTarget);
1142 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
1143 << "' to '" << *CallTarget << "'\n");
1144 continue;
1145 }
1146 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
1147 << N << "' to '" << *CallTarget << "'\n");
1148
1149 // Otherwise we are switching an internal ref edge to a call edge. This
1150 // may merge away some SCCs, and we add those to the UpdateResult. We also
1151 // need to make sure to update the worklist in the event SCCs have moved
1152 // before the current one in the post-order sequence
1153 bool HasFunctionAnalysisProxy = false;
1154 auto InitialSCCIndex = RC->find(*C) - RC->begin();
1155 bool FormedCycle = RC->switchInternalEdgeToCall(
1156 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
1157 for (SCC *MergedC : MergedSCCs) {
1158 assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
1159
1160 HasFunctionAnalysisProxy |=
1161 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
1162 *MergedC) != nullptr;
1163
1164 // Mark that this SCC will no longer be valid.
1165 UR.InvalidatedSCCs.insert(MergedC);
1166
1167 // FIXME: We should really do a 'clear' here to forcibly release
1168 // memory, but we don't have a good way of doing that and
1169 // preserving the function analyses.
1170 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1171 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1172 AM.invalidate(*MergedC, PA);
1173 }
1174 });
1175
1176 // If we formed a cycle by creating this call, we need to update more data
1177 // structures.
1178 if (FormedCycle) {
1179 C = &TargetC;
1180 assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
1181
1182 // If one of the invalidated SCCs had a cached proxy to a function
1183 // analysis manager, we need to create a proxy in the new current SCC as
1184 // the invalidated SCCs had their functions moved.
1185 if (HasFunctionAnalysisProxy)
1186 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM);
1187
1188 // Any analyses cached for this SCC are no longer precise as the shape
1189 // has changed by introducing this cycle. However, we have taken care to
1190 // update the proxies so it remains valide.
1191 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1192 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1193 AM.invalidate(*C, PA);
1194 }
1195 auto NewSCCIndex = RC->find(*C) - RC->begin();
1196 // If we have actually moved an SCC to be topologically "below" the current
1197 // one due to merging, we will need to revisit the current SCC after
1198 // visiting those moved SCCs.
1199 //
1200 // It is critical that we *do not* revisit the current SCC unless we
1201 // actually move SCCs in the process of merging because otherwise we may
1202 // form a cycle where an SCC is split apart, merged, split, merged and so
1203 // on infinitely.
1204 if (InitialSCCIndex < NewSCCIndex) {
1205 // Put our current SCC back onto the worklist as we'll visit other SCCs
1206 // that are now definitively ordered prior to the current one in the
1207 // post-order sequence, and may end up observing more precise context to
1208 // optimize the current SCC.
1209 UR.CWorklist.insert(C);
1210 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
1211 << "\n");
1212 // Enqueue in reverse order as we pop off the back of the worklist.
1213 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
1214 RC->begin() + NewSCCIndex))) {
1215 UR.CWorklist.insert(&MovedC);
1216 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
1217 << MovedC << "\n");
1218 }
1219 }
1220 }
1221
1222 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
1223 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
1224 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
1225
1226 // Record the current RefSCC and SCC for higher layers of the CGSCC pass
1227 // manager now that all the updates have been applied.
1228 if (RC != &InitialRC)
1229 UR.UpdatedRC = RC;
1230 if (C != &InitialC)
1231 UR.UpdatedC = C;
1232
1233 return *C;
1234 }
1235
updateCGAndAnalysisManagerForFunctionPass(LazyCallGraph & G,LazyCallGraph::SCC & InitialC,LazyCallGraph::Node & N,CGSCCAnalysisManager & AM,CGSCCUpdateResult & UR,FunctionAnalysisManager & FAM)1236 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
1237 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1238 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1239 FunctionAnalysisManager &FAM) {
1240 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1241 /* FunctionPass */ true);
1242 }
updateCGAndAnalysisManagerForCGSCCPass(LazyCallGraph & G,LazyCallGraph::SCC & InitialC,LazyCallGraph::Node & N,CGSCCAnalysisManager & AM,CGSCCUpdateResult & UR,FunctionAnalysisManager & FAM)1243 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass(
1244 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1245 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1246 FunctionAnalysisManager &FAM) {
1247 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1248 /* FunctionPass */ false);
1249 }
1250