1 /* -*- Mode: C; indent-tabs-mode:t ; c-basic-offset:8 -*- */
2 /*
3  * I/O functions for libusb
4  * Copyright © 2007-2009 Daniel Drake <dsd@gentoo.org>
5  * Copyright © 2001 Johannes Erdfelt <johannes@erdfelt.com>
6  * Copyright © 2019 Nathan Hjelm <hjelmn@cs.umm.edu>
7  * Copyright © 2019 Google LLC. All rights reserved.
8  *
9  * This library is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * This library is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with this library; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 #include "libusbi.h"
25 #include "hotplug.h"
26 
27 /**
28  * \page libusb_io Synchronous and asynchronous device I/O
29  *
30  * \section io_intro Introduction
31  *
32  * If you're using libusb in your application, you're probably wanting to
33  * perform I/O with devices - you want to perform USB data transfers.
34  *
35  * libusb offers two separate interfaces for device I/O. This page aims to
36  * introduce the two in order to help you decide which one is more suitable
37  * for your application. You can also choose to use both interfaces in your
38  * application by considering each transfer on a case-by-case basis.
39  *
40  * Once you have read through the following discussion, you should consult the
41  * detailed API documentation pages for the details:
42  * - \ref libusb_syncio
43  * - \ref libusb_asyncio
44  *
45  * \section theory Transfers at a logical level
46  *
47  * At a logical level, USB transfers typically happen in two parts. For
48  * example, when reading data from a endpoint:
49  * -# A request for data is sent to the device
50  * -# Some time later, the incoming data is received by the host
51  *
52  * or when writing data to an endpoint:
53  *
54  * -# The data is sent to the device
55  * -# Some time later, the host receives acknowledgement from the device that
56  *    the data has been transferred.
57  *
58  * There may be an indefinite delay between the two steps. Consider a
59  * fictional USB input device with a button that the user can press. In order
60  * to determine when the button is pressed, you would likely submit a request
61  * to read data on a bulk or interrupt endpoint and wait for data to arrive.
62  * Data will arrive when the button is pressed by the user, which is
63  * potentially hours later.
64  *
65  * libusb offers both a synchronous and an asynchronous interface to performing
66  * USB transfers. The main difference is that the synchronous interface
67  * combines both steps indicated above into a single function call, whereas
68  * the asynchronous interface separates them.
69  *
70  * \section sync The synchronous interface
71  *
72  * The synchronous I/O interface allows you to perform a USB transfer with
73  * a single function call. When the function call returns, the transfer has
74  * completed and you can parse the results.
75  *
76  * If you have used the libusb-0.1 before, this I/O style will seem familiar to
77  * you. libusb-0.1 only offered a synchronous interface.
78  *
79  * In our input device example, to read button presses you might write code
80  * in the following style:
81 \code
82 unsigned char data[4];
83 int actual_length;
84 int r = libusb_bulk_transfer(dev_handle, LIBUSB_ENDPOINT_IN, data, sizeof(data), &actual_length, 0);
85 if (r == 0 && actual_length == sizeof(data)) {
86 	// results of the transaction can now be found in the data buffer
87 	// parse them here and report button press
88 } else {
89 	error();
90 }
91 \endcode
92  *
93  * The main advantage of this model is simplicity: you did everything with
94  * a single simple function call.
95  *
96  * However, this interface has its limitations. Your application will sleep
97  * inside libusb_bulk_transfer() until the transaction has completed. If it
98  * takes the user 3 hours to press the button, your application will be
99  * sleeping for that long. Execution will be tied up inside the library -
100  * the entire thread will be useless for that duration.
101  *
102  * Another issue is that by tying up the thread with that single transaction
103  * there is no possibility of performing I/O with multiple endpoints and/or
104  * multiple devices simultaneously, unless you resort to creating one thread
105  * per transaction.
106  *
107  * Additionally, there is no opportunity to cancel the transfer after the
108  * request has been submitted.
109  *
110  * For details on how to use the synchronous API, see the
111  * \ref libusb_syncio "synchronous I/O API documentation" pages.
112  *
113  * \section async The asynchronous interface
114  *
115  * Asynchronous I/O is the most significant new feature in libusb-1.0.
116  * Although it is a more complex interface, it solves all the issues detailed
117  * above.
118  *
119  * Instead of providing which functions that block until the I/O has complete,
120  * libusb's asynchronous interface presents non-blocking functions which
121  * begin a transfer and then return immediately. Your application passes a
122  * callback function pointer to this non-blocking function, which libusb will
123  * call with the results of the transaction when it has completed.
124  *
125  * Transfers which have been submitted through the non-blocking functions
126  * can be cancelled with a separate function call.
127  *
128  * The non-blocking nature of this interface allows you to be simultaneously
129  * performing I/O to multiple endpoints on multiple devices, without having
130  * to use threads.
131  *
132  * This added flexibility does come with some complications though:
133  * - In the interest of being a lightweight library, libusb does not create
134  * threads and can only operate when your application is calling into it. Your
135  * application must call into libusb from it's main loop when events are ready
136  * to be handled, or you must use some other scheme to allow libusb to
137  * undertake whatever work needs to be done.
138  * - libusb also needs to be called into at certain fixed points in time in
139  * order to accurately handle transfer timeouts.
140  * - Memory handling becomes more complex. You cannot use stack memory unless
141  * the function with that stack is guaranteed not to return until the transfer
142  * callback has finished executing.
143  * - You generally lose some linearity from your code flow because submitting
144  * the transfer request is done in a separate function from where the transfer
145  * results are handled. This becomes particularly obvious when you want to
146  * submit a second transfer based on the results of an earlier transfer.
147  *
148  * Internally, libusb's synchronous interface is expressed in terms of function
149  * calls to the asynchronous interface.
150  *
151  * For details on how to use the asynchronous API, see the
152  * \ref libusb_asyncio "asynchronous I/O API" documentation pages.
153  */
154 
155 
156 /**
157  * \page libusb_packetoverflow Packets and overflows
158  *
159  * \section packets Packet abstraction
160  *
161  * The USB specifications describe how data is transmitted in packets, with
162  * constraints on packet size defined by endpoint descriptors. The host must
163  * not send data payloads larger than the endpoint's maximum packet size.
164  *
165  * libusb and the underlying OS abstract out the packet concept, allowing you
166  * to request transfers of any size. Internally, the request will be divided
167  * up into correctly-sized packets. You do not have to be concerned with
168  * packet sizes, but there is one exception when considering overflows.
169  *
170  * \section overflow Bulk/interrupt transfer overflows
171  *
172  * When requesting data on a bulk endpoint, libusb requires you to supply a
173  * buffer and the maximum number of bytes of data that libusb can put in that
174  * buffer. However, the size of the buffer is not communicated to the device -
175  * the device is just asked to send any amount of data.
176  *
177  * There is no problem if the device sends an amount of data that is less than
178  * or equal to the buffer size. libusb reports this condition to you through
179  * the \ref libusb_transfer::actual_length "libusb_transfer.actual_length"
180  * field.
181  *
182  * Problems may occur if the device attempts to send more data than can fit in
183  * the buffer. libusb reports LIBUSB_TRANSFER_OVERFLOW for this condition but
184  * other behaviour is largely undefined: actual_length may or may not be
185  * accurate, the chunk of data that can fit in the buffer (before overflow)
186  * may or may not have been transferred.
187  *
188  * Overflows are nasty, but can be avoided. Even though you were told to
189  * ignore packets above, think about the lower level details: each transfer is
190  * split into packets (typically small, with a maximum size of 512 bytes).
191  * Overflows can only happen if the final packet in an incoming data transfer
192  * is smaller than the actual packet that the device wants to transfer.
193  * Therefore, you will never see an overflow if your transfer buffer size is a
194  * multiple of the endpoint's packet size: the final packet will either
195  * fill up completely or will be only partially filled.
196  */
197 
198 /**
199  * @defgroup libusb_asyncio Asynchronous device I/O
200  *
201  * This page details libusb's asynchronous (non-blocking) API for USB device
202  * I/O. This interface is very powerful but is also quite complex - you will
203  * need to read this page carefully to understand the necessary considerations
204  * and issues surrounding use of this interface. Simplistic applications
205  * may wish to consider the \ref libusb_syncio "synchronous I/O API" instead.
206  *
207  * The asynchronous interface is built around the idea of separating transfer
208  * submission and handling of transfer completion (the synchronous model
209  * combines both of these into one). There may be a long delay between
210  * submission and completion, however the asynchronous submission function
211  * is non-blocking so will return control to your application during that
212  * potentially long delay.
213  *
214  * \section asyncabstraction Transfer abstraction
215  *
216  * For the asynchronous I/O, libusb implements the concept of a generic
217  * transfer entity for all types of I/O (control, bulk, interrupt,
218  * isochronous). The generic transfer object must be treated slightly
219  * differently depending on which type of I/O you are performing with it.
220  *
221  * This is represented by the public libusb_transfer structure type.
222  *
223  * \section asynctrf Asynchronous transfers
224  *
225  * We can view asynchronous I/O as a 5 step process:
226  * -# <b>Allocation</b>: allocate a libusb_transfer
227  * -# <b>Filling</b>: populate the libusb_transfer instance with information
228  *    about the transfer you wish to perform
229  * -# <b>Submission</b>: ask libusb to submit the transfer
230  * -# <b>Completion handling</b>: examine transfer results in the
231  *    libusb_transfer structure
232  * -# <b>Deallocation</b>: clean up resources
233  *
234  *
235  * \subsection asyncalloc Allocation
236  *
237  * This step involves allocating memory for a USB transfer. This is the
238  * generic transfer object mentioned above. At this stage, the transfer
239  * is "blank" with no details about what type of I/O it will be used for.
240  *
241  * Allocation is done with the libusb_alloc_transfer() function. You must use
242  * this function rather than allocating your own transfers.
243  *
244  * \subsection asyncfill Filling
245  *
246  * This step is where you take a previously allocated transfer and fill it
247  * with information to determine the message type and direction, data buffer,
248  * callback function, etc.
249  *
250  * You can either fill the required fields yourself or you can use the
251  * helper functions: libusb_fill_control_transfer(), libusb_fill_bulk_transfer()
252  * and libusb_fill_interrupt_transfer().
253  *
254  * \subsection asyncsubmit Submission
255  *
256  * When you have allocated a transfer and filled it, you can submit it using
257  * libusb_submit_transfer(). This function returns immediately but can be
258  * regarded as firing off the I/O request in the background.
259  *
260  * \subsection asynccomplete Completion handling
261  *
262  * After a transfer has been submitted, one of four things can happen to it:
263  *
264  * - The transfer completes (i.e. some data was transferred)
265  * - The transfer has a timeout and the timeout expires before all data is
266  * transferred
267  * - The transfer fails due to an error
268  * - The transfer is cancelled
269  *
270  * Each of these will cause the user-specified transfer callback function to
271  * be invoked. It is up to the callback function to determine which of the
272  * above actually happened and to act accordingly.
273  *
274  * The user-specified callback is passed a pointer to the libusb_transfer
275  * structure which was used to setup and submit the transfer. At completion
276  * time, libusb has populated this structure with results of the transfer:
277  * success or failure reason, number of bytes of data transferred, etc. See
278  * the libusb_transfer structure documentation for more information.
279  *
280  * <b>Important Note</b>: The user-specified callback is called from an event
281  * handling context. It is therefore important that no calls are made into
282  * libusb that will attempt to perform any event handling. Examples of such
283  * functions are any listed in the \ref libusb_syncio "synchronous API" and any of
284  * the blocking functions that retrieve \ref libusb_desc "USB descriptors".
285  *
286  * \subsection Deallocation
287  *
288  * When a transfer has completed (i.e. the callback function has been invoked),
289  * you are advised to free the transfer (unless you wish to resubmit it, see
290  * below). Transfers are deallocated with libusb_free_transfer().
291  *
292  * It is undefined behaviour to free a transfer which has not completed.
293  *
294  * \section asyncresubmit Resubmission
295  *
296  * You may be wondering why allocation, filling, and submission are all
297  * separated above where they could reasonably be combined into a single
298  * operation.
299  *
300  * The reason for separation is to allow you to resubmit transfers without
301  * having to allocate new ones every time. This is especially useful for
302  * common situations dealing with interrupt endpoints - you allocate one
303  * transfer, fill and submit it, and when it returns with results you just
304  * resubmit it for the next interrupt.
305  *
306  * \section asynccancel Cancellation
307  *
308  * Another advantage of using the asynchronous interface is that you have
309  * the ability to cancel transfers which have not yet completed. This is
310  * done by calling the libusb_cancel_transfer() function.
311  *
312  * libusb_cancel_transfer() is asynchronous/non-blocking in itself. When the
313  * cancellation actually completes, the transfer's callback function will
314  * be invoked, and the callback function should check the transfer status to
315  * determine that it was cancelled.
316  *
317  * Freeing the transfer after it has been cancelled but before cancellation
318  * has completed will result in undefined behaviour.
319  *
320  * \attention
321  * When a transfer is cancelled, some of the data may have been transferred.
322  * libusb will communicate this to you in the transfer callback.
323  * <b>Do not assume that no data was transferred.</b>
324  *
325  * \section asyncpartial Partial data transfer resulting from cancellation
326  *
327  * As noted above, some of the data may have been transferred at the time a
328  * transfer is cancelled. It is helpful to see how this is possible if you
329  * consider a bulk transfer to an endpoint with a packet size of 64 bytes.
330  * Supposing you submit a 512-byte transfer to this endpoint, the operating
331  * system will divide this transfer up into 8 separate 64-byte frames that the
332  * host controller will schedule for the device to transfer data. If this
333  * transfer is cancelled while the device is transferring data, a subset of
334  * these frames may be descheduled from the host controller before the device
335  * has the opportunity to finish transferring data to the host.
336  *
337  * What your application should do with a partial data transfer is a policy
338  * decision; there is no single answer that satisfies the needs of every
339  * application. The data that was successfully transferred should be
340  * considered entirely valid, but your application must decide what to do with
341  * the remaining data that was not transferred. Some possible actions to take
342  * are:
343  * - Resubmit another transfer for the remaining data, possibly with a shorter
344  *   timeout
345  * - Discard the partially transferred data and report an error
346  *
347  * \section asynctimeout Timeouts
348  *
349  * When a transfer times out, libusb internally notes this and attempts to
350  * cancel the transfer. As noted in \ref asyncpartial "above", it is possible
351  * that some of the data may actually have been transferred. Your application
352  * should <b>always</b> check how much data was actually transferred once the
353  * transfer completes and act accordingly.
354  *
355  * \section bulk_overflows Overflows on device-to-host bulk/interrupt endpoints
356  *
357  * If your device does not have predictable transfer sizes (or it misbehaves),
358  * your application may submit a request for data on an IN endpoint which is
359  * smaller than the data that the device wishes to send. In some circumstances
360  * this will cause an overflow, which is a nasty condition to deal with. See
361  * the \ref libusb_packetoverflow page for discussion.
362  *
363  * \section asyncctrl Considerations for control transfers
364  *
365  * The <tt>libusb_transfer</tt> structure is generic and hence does not
366  * include specific fields for the control-specific setup packet structure.
367  *
368  * In order to perform a control transfer, you must place the 8-byte setup
369  * packet at the start of the data buffer. To simplify this, you could
370  * cast the buffer pointer to type struct libusb_control_setup, or you can
371  * use the helper function libusb_fill_control_setup().
372  *
373  * The wLength field placed in the setup packet must be the length you would
374  * expect to be sent in the setup packet: the length of the payload that
375  * follows (or the expected maximum number of bytes to receive). However,
376  * the length field of the libusb_transfer object must be the length of
377  * the data buffer - i.e. it should be wLength <em>plus</em> the size of
378  * the setup packet (LIBUSB_CONTROL_SETUP_SIZE).
379  *
380  * If you use the helper functions, this is simplified for you:
381  * -# Allocate a buffer of size LIBUSB_CONTROL_SETUP_SIZE plus the size of the
382  * data you are sending/requesting.
383  * -# Call libusb_fill_control_setup() on the data buffer, using the transfer
384  * request size as the wLength value (i.e. do not include the extra space you
385  * allocated for the control setup).
386  * -# If this is a host-to-device transfer, place the data to be transferred
387  * in the data buffer, starting at offset LIBUSB_CONTROL_SETUP_SIZE.
388  * -# Call libusb_fill_control_transfer() to associate the data buffer with
389  * the transfer (and to set the remaining details such as callback and timeout).
390  *   - Note that there is no parameter to set the length field of the transfer.
391  *     The length is automatically inferred from the wLength field of the setup
392  *     packet.
393  * -# Submit the transfer.
394  *
395  * The multi-byte control setup fields (wValue, wIndex and wLength) must
396  * be given in little-endian byte order (the endianness of the USB bus).
397  * Endianness conversion is transparently handled by
398  * libusb_fill_control_setup() which is documented to accept host-endian
399  * values.
400  *
401  * Further considerations are needed when handling transfer completion in
402  * your callback function:
403  * - As you might expect, the setup packet will still be sitting at the start
404  * of the data buffer.
405  * - If this was a device-to-host transfer, the received data will be sitting
406  * at offset LIBUSB_CONTROL_SETUP_SIZE into the buffer.
407  * - The actual_length field of the transfer structure is relative to the
408  * wLength of the setup packet, rather than the size of the data buffer. So,
409  * if your wLength was 4, your transfer's <tt>length</tt> was 12, then you
410  * should expect an <tt>actual_length</tt> of 4 to indicate that the data was
411  * transferred in entirety.
412  *
413  * To simplify parsing of setup packets and obtaining the data from the
414  * correct offset, you may wish to use the libusb_control_transfer_get_data()
415  * and libusb_control_transfer_get_setup() functions within your transfer
416  * callback.
417  *
418  * Even though control endpoints do not halt, a completed control transfer
419  * may have a LIBUSB_TRANSFER_STALL status code. This indicates the control
420  * request was not supported.
421  *
422  * \section asyncintr Considerations for interrupt transfers
423  *
424  * All interrupt transfers are performed using the polling interval presented
425  * by the bInterval value of the endpoint descriptor.
426  *
427  * \section asynciso Considerations for isochronous transfers
428  *
429  * Isochronous transfers are more complicated than transfers to
430  * non-isochronous endpoints.
431  *
432  * To perform I/O to an isochronous endpoint, allocate the transfer by calling
433  * libusb_alloc_transfer() with an appropriate number of isochronous packets.
434  *
435  * During filling, set \ref libusb_transfer::type "type" to
436  * \ref libusb_transfer_type::LIBUSB_TRANSFER_TYPE_ISOCHRONOUS
437  * "LIBUSB_TRANSFER_TYPE_ISOCHRONOUS", and set
438  * \ref libusb_transfer::num_iso_packets "num_iso_packets" to a value less than
439  * or equal to the number of packets you requested during allocation.
440  * libusb_alloc_transfer() does not set either of these fields for you, given
441  * that you might not even use the transfer on an isochronous endpoint.
442  *
443  * Next, populate the length field for the first num_iso_packets entries in
444  * the \ref libusb_transfer::iso_packet_desc "iso_packet_desc" array. Section
445  * 5.6.3 of the USB2 specifications describe how the maximum isochronous
446  * packet length is determined by the wMaxPacketSize field in the endpoint
447  * descriptor.
448  * Two functions can help you here:
449  *
450  * - libusb_get_max_iso_packet_size() is an easy way to determine the max
451  *   packet size for an isochronous endpoint. Note that the maximum packet
452  *   size is actually the maximum number of bytes that can be transmitted in
453  *   a single microframe, therefore this function multiplies the maximum number
454  *   of bytes per transaction by the number of transaction opportunities per
455  *   microframe.
456  * - libusb_set_iso_packet_lengths() assigns the same length to all packets
457  *   within a transfer, which is usually what you want.
458  *
459  * For outgoing transfers, you'll obviously fill the buffer and populate the
460  * packet descriptors in hope that all the data gets transferred. For incoming
461  * transfers, you must ensure the buffer has sufficient capacity for
462  * the situation where all packets transfer the full amount of requested data.
463  *
464  * Completion handling requires some extra consideration. The
465  * \ref libusb_transfer::actual_length "actual_length" field of the transfer
466  * is meaningless and should not be examined; instead you must refer to the
467  * \ref libusb_iso_packet_descriptor::actual_length "actual_length" field of
468  * each individual packet.
469  *
470  * The \ref libusb_transfer::status "status" field of the transfer is also a
471  * little misleading:
472  *  - If the packets were submitted and the isochronous data microframes
473  *    completed normally, status will have value
474  *    \ref libusb_transfer_status::LIBUSB_TRANSFER_COMPLETED
475  *    "LIBUSB_TRANSFER_COMPLETED". Note that bus errors and software-incurred
476  *    delays are not counted as transfer errors; the transfer.status field may
477  *    indicate COMPLETED even if some or all of the packets failed. Refer to
478  *    the \ref libusb_iso_packet_descriptor::status "status" field of each
479  *    individual packet to determine packet failures.
480  *  - The status field will have value
481  *    \ref libusb_transfer_status::LIBUSB_TRANSFER_ERROR
482  *    "LIBUSB_TRANSFER_ERROR" only when serious errors were encountered.
483  *  - Other transfer status codes occur with normal behaviour.
484  *
485  * The data for each packet will be found at an offset into the buffer that
486  * can be calculated as if each prior packet completed in full. The
487  * libusb_get_iso_packet_buffer() and libusb_get_iso_packet_buffer_simple()
488  * functions may help you here.
489  *
490  * \section asynclimits Transfer length limitations
491  *
492  * Some operating systems may impose limits on the length of the transfer data
493  * buffer or, in the case of isochronous transfers, the length of individual
494  * isochronous packets. Such limits can be difficult for libusb to detect, so
495  * in most cases the library will simply try and submit the transfer as set up
496  * by you. If the transfer fails to submit because it is too large,
497  * libusb_submit_transfer() will return
498  * \ref libusb_error::LIBUSB_ERROR_INVALID_PARAM "LIBUSB_ERROR_INVALID_PARAM".
499  *
500  * The following are known limits for control transfer lengths. Note that this
501  * length includes the 8-byte setup packet.
502  * - Linux (4,096 bytes)
503  * - Windows (4,096 bytes)
504  *
505  * \section asyncmem Memory caveats
506  *
507  * In most circumstances, it is not safe to use stack memory for transfer
508  * buffers. This is because the function that fired off the asynchronous
509  * transfer may return before libusb has finished using the buffer, and when
510  * the function returns it's stack gets destroyed. This is true for both
511  * host-to-device and device-to-host transfers.
512  *
513  * The only case in which it is safe to use stack memory is where you can
514  * guarantee that the function owning the stack space for the buffer does not
515  * return until after the transfer's callback function has completed. In every
516  * other case, you need to use heap memory instead.
517  *
518  * \section asyncflags Fine control
519  *
520  * Through using this asynchronous interface, you may find yourself repeating
521  * a few simple operations many times. You can apply a bitwise OR of certain
522  * flags to a transfer to simplify certain things:
523  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_SHORT_NOT_OK
524  *   "LIBUSB_TRANSFER_SHORT_NOT_OK" results in transfers which transferred
525  *   less than the requested amount of data being marked with status
526  *   \ref libusb_transfer_status::LIBUSB_TRANSFER_ERROR "LIBUSB_TRANSFER_ERROR"
527  *   (they would normally be regarded as COMPLETED)
528  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_BUFFER
529  *   "LIBUSB_TRANSFER_FREE_BUFFER" allows you to ask libusb to free the transfer
530  *   buffer when freeing the transfer.
531  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_TRANSFER
532  *   "LIBUSB_TRANSFER_FREE_TRANSFER" causes libusb to automatically free the
533  *   transfer after the transfer callback returns.
534  *
535  * \section asyncevent Event handling
536  *
537  * An asynchronous model requires that libusb perform work at various
538  * points in time - namely processing the results of previously-submitted
539  * transfers and invoking the user-supplied callback function.
540  *
541  * This gives rise to the libusb_handle_events() function which your
542  * application must call into when libusb has work do to. This gives libusb
543  * the opportunity to reap pending transfers, invoke callbacks, etc.
544  *
545  * \note
546  * All event handling is performed by whichever thread calls the
547  * libusb_handle_events() function. libusb does not invoke any callbacks
548  * outside of this context. Consequently, any callbacks will be run on the
549  * thread that calls the libusb_handle_events() function.
550  *
551  * When to call the libusb_handle_events() function depends on which model
552  * your application decides to use. The 2 different approaches:
553  *
554  * -# Repeatedly call libusb_handle_events() in blocking mode from a dedicated
555  *    thread.
556  * -# Integrate libusb with your application's main event loop. libusb
557  *    exposes a set of file descriptors which allow you to do this.
558  *
559  * The first approach has the big advantage that it will also work on Windows
560  * were libusb' poll API for select / poll integration is not available. So
561  * if you want to support Windows and use the async API, you must use this
562  * approach, see the \ref eventthread "Using an event handling thread" section
563  * below for details.
564  *
565  * If you prefer a single threaded approach with a single central event loop,
566  * see the \ref libusb_poll "polling and timing" section for how to integrate libusb
567  * into your application's main event loop.
568  *
569  * \section eventthread Using an event handling thread
570  *
571  * Lets begin with stating the obvious: If you're going to use a separate
572  * thread for libusb event handling, your callback functions MUST be
573  * thread-safe.
574  *
575  * Other then that doing event handling from a separate thread, is mostly
576  * simple. You can use an event thread function as follows:
577 \code
578 void *event_thread_func(void *ctx)
579 {
580     while (event_thread_run)
581         libusb_handle_events(ctx);
582 
583     return NULL;
584 }
585 \endcode
586  *
587  * There is one caveat though, stopping this thread requires setting the
588  * event_thread_run variable to 0, and after that libusb_handle_events() needs
589  * to return control to event_thread_func. But unless some event happens,
590  * libusb_handle_events() will not return.
591  *
592  * There are 2 different ways of dealing with this, depending on if your
593  * application uses libusb' \ref libusb_hotplug "hotplug" support or not.
594  *
595  * Applications which do not use hotplug support, should not start the event
596  * thread until after their first call to libusb_open(), and should stop the
597  * thread when closing the last open device as follows:
598 \code
599 void my_close_handle(libusb_device_handle *dev_handle)
600 {
601     if (open_devs == 1)
602         event_thread_run = 0;
603 
604     libusb_close(dev_handle); // This wakes up libusb_handle_events()
605 
606     if (open_devs == 1)
607         pthread_join(event_thread);
608 
609     open_devs--;
610 }
611 \endcode
612  *
613  * Applications using hotplug support should start the thread at program init,
614  * after having successfully called libusb_hotplug_register_callback(), and
615  * should stop the thread at program exit as follows:
616 \code
617 void my_libusb_exit(void)
618 {
619     event_thread_run = 0;
620     libusb_hotplug_deregister_callback(ctx, hotplug_cb_handle); // This wakes up libusb_handle_events()
621     pthread_join(event_thread);
622     libusb_exit(ctx);
623 }
624 \endcode
625  */
626 
627 /**
628  * @defgroup libusb_poll Polling and timing
629  *
630  * This page documents libusb's functions for polling events and timing.
631  * These functions are only necessary for users of the
632  * \ref libusb_asyncio "asynchronous API". If you are only using the simpler
633  * \ref libusb_syncio "synchronous API" then you do not need to ever call these
634  * functions.
635  *
636  * The justification for the functionality described here has already been
637  * discussed in the \ref asyncevent "event handling" section of the
638  * asynchronous API documentation. In summary, libusb does not create internal
639  * threads for event processing and hence relies on your application calling
640  * into libusb at certain points in time so that pending events can be handled.
641  *
642  * Your main loop is probably already calling poll() or select() or a
643  * variant on a set of file descriptors for other event sources (e.g. keyboard
644  * button presses, mouse movements, network sockets, etc). You then add
645  * libusb's file descriptors to your poll()/select() calls, and when activity
646  * is detected on such descriptors you know it is time to call
647  * libusb_handle_events().
648  *
649  * There is one final event handling complication. libusb supports
650  * asynchronous transfers which time out after a specified time period.
651  *
652  * On some platforms a timerfd is used, so the timeout handling is just another
653  * fd, on other platforms this requires that libusb is called into at or after
654  * the timeout to handle it. So, in addition to considering libusb's file
655  * descriptors in your main event loop, you must also consider that libusb
656  * sometimes needs to be called into at fixed points in time even when there
657  * is no file descriptor activity, see \ref polltime details.
658  *
659  * In order to know precisely when libusb needs to be called into, libusb
660  * offers you a set of pollable file descriptors and information about when
661  * the next timeout expires.
662  *
663  * If you are using the asynchronous I/O API, you must take one of the two
664  * following options, otherwise your I/O will not complete.
665  *
666  * \section pollsimple The simple option
667  *
668  * If your application revolves solely around libusb and does not need to
669  * handle other event sources, you can have a program structure as follows:
670 \code
671 // initialize libusb
672 // find and open device
673 // maybe fire off some initial async I/O
674 
675 while (user_has_not_requested_exit)
676 	libusb_handle_events(ctx);
677 
678 // clean up and exit
679 \endcode
680  *
681  * With such a simple main loop, you do not have to worry about managing
682  * sets of file descriptors or handling timeouts. libusb_handle_events() will
683  * handle those details internally.
684  *
685  * \section libusb_pollmain The more advanced option
686  *
687  * \note This functionality is currently only available on Unix-like platforms.
688  * On Windows, libusb_get_pollfds() simply returns NULL. Applications which
689  * want to support Windows are advised to use an \ref eventthread
690  * "event handling thread" instead.
691  *
692  * In more advanced applications, you will already have a main loop which
693  * is monitoring other event sources: network sockets, X11 events, mouse
694  * movements, etc. Through exposing a set of file descriptors, libusb is
695  * designed to cleanly integrate into such main loops.
696  *
697  * In addition to polling file descriptors for the other event sources, you
698  * take a set of file descriptors from libusb and monitor those too. When you
699  * detect activity on libusb's file descriptors, you call
700  * libusb_handle_events_timeout() in non-blocking mode.
701  *
702  * What's more, libusb may also need to handle events at specific moments in
703  * time. No file descriptor activity is generated at these times, so your
704  * own application needs to be continually aware of when the next one of these
705  * moments occurs (through calling libusb_get_next_timeout()), and then it
706  * needs to call libusb_handle_events_timeout() in non-blocking mode when
707  * these moments occur. This means that you need to adjust your
708  * poll()/select() timeout accordingly.
709  *
710  * libusb provides you with a set of file descriptors to poll and expects you
711  * to poll all of them, treating them as a single entity. The meaning of each
712  * file descriptor in the set is an internal implementation detail,
713  * platform-dependent and may vary from release to release. Don't try and
714  * interpret the meaning of the file descriptors, just do as libusb indicates,
715  * polling all of them at once.
716  *
717  * In pseudo-code, you want something that looks like:
718 \code
719 // initialise libusb
720 
721 libusb_get_pollfds(ctx)
722 while (user has not requested application exit) {
723 	libusb_get_next_timeout(ctx);
724 	poll(on libusb file descriptors plus any other event sources of interest,
725 		using a timeout no larger than the value libusb just suggested)
726 	if (poll() indicated activity on libusb file descriptors)
727 		libusb_handle_events_timeout(ctx, &zero_tv);
728 	if (time has elapsed to or beyond the libusb timeout)
729 		libusb_handle_events_timeout(ctx, &zero_tv);
730 	// handle events from other sources here
731 }
732 
733 // clean up and exit
734 \endcode
735  *
736  * \subsection polltime Notes on time-based events
737  *
738  * The above complication with having to track time and call into libusb at
739  * specific moments is a bit of a headache. For maximum compatibility, you do
740  * need to write your main loop as above, but you may decide that you can
741  * restrict the supported platforms of your application and get away with
742  * a more simplistic scheme.
743  *
744  * These time-based event complications are \b not required on the following
745  * platforms:
746  *  - Darwin
747  *  - Linux, provided that the following version requirements are satisfied:
748  *   - Linux v2.6.27 or newer, compiled with timerfd support
749  *   - glibc v2.9 or newer
750  *   - libusb v1.0.5 or newer
751  *
752  * Under these configurations, libusb_get_next_timeout() will \em always return
753  * 0, so your main loop can be simplified to:
754 \code
755 // initialise libusb
756 
757 libusb_get_pollfds(ctx)
758 while (user has not requested application exit) {
759 	poll(on libusb file descriptors plus any other event sources of interest,
760 		using any timeout that you like)
761 	if (poll() indicated activity on libusb file descriptors)
762 		libusb_handle_events_timeout(ctx, &zero_tv);
763 	// handle events from other sources here
764 }
765 
766 // clean up and exit
767 \endcode
768  *
769  * Do remember that if you simplify your main loop to the above, you will
770  * lose compatibility with some platforms (including legacy Linux platforms,
771  * and <em>any future platforms supported by libusb which may have time-based
772  * event requirements</em>). The resultant problems will likely appear as
773  * strange bugs in your application.
774  *
775  * You can use the libusb_pollfds_handle_timeouts() function to do a runtime
776  * check to see if it is safe to ignore the time-based event complications.
777  * If your application has taken the shortcut of ignoring libusb's next timeout
778  * in your main loop, then you are advised to check the return value of
779  * libusb_pollfds_handle_timeouts() during application startup, and to abort
780  * if the platform does suffer from these timing complications.
781  *
782  * \subsection fdsetchange Changes in the file descriptor set
783  *
784  * The set of file descriptors that libusb uses as event sources may change
785  * during the life of your application. Rather than having to repeatedly
786  * call libusb_get_pollfds(), you can set up notification functions for when
787  * the file descriptor set changes using libusb_set_pollfd_notifiers().
788  *
789  * \subsection mtissues Multi-threaded considerations
790  *
791  * Unfortunately, the situation is complicated further when multiple threads
792  * come into play. If two threads are monitoring the same file descriptors,
793  * the fact that only one thread will be woken up when an event occurs causes
794  * some headaches.
795  *
796  * The events lock, event waiters lock, and libusb_handle_events_locked()
797  * entities are added to solve these problems. You do not need to be concerned
798  * with these entities otherwise.
799  *
800  * See the extra documentation: \ref libusb_mtasync
801  */
802 
803 /** \page libusb_mtasync Multi-threaded applications and asynchronous I/O
804  *
805  * libusb is a thread-safe library, but extra considerations must be applied
806  * to applications which interact with libusb from multiple threads.
807  *
808  * The underlying issue that must be addressed is that all libusb I/O
809  * revolves around monitoring file descriptors through the poll()/select()
810  * system calls. This is directly exposed at the
811  * \ref libusb_asyncio "asynchronous interface" but it is important to note that the
812  * \ref libusb_syncio "synchronous interface" is implemented on top of the
813  * asynchronous interface, therefore the same considerations apply.
814  *
815  * The issue is that if two or more threads are concurrently calling poll()
816  * or select() on libusb's file descriptors then only one of those threads
817  * will be woken up when an event arrives. The others will be completely
818  * oblivious that anything has happened.
819  *
820  * Consider the following pseudo-code, which submits an asynchronous transfer
821  * then waits for its completion. This style is one way you could implement a
822  * synchronous interface on top of the asynchronous interface (and libusb
823  * does something similar, albeit more advanced due to the complications
824  * explained on this page).
825  *
826 \code
827 void cb(struct libusb_transfer *transfer)
828 {
829 	int *completed = transfer->user_data;
830 	*completed = 1;
831 }
832 
833 void myfunc() {
834 	struct libusb_transfer *transfer;
835 	unsigned char buffer[LIBUSB_CONTROL_SETUP_SIZE] __attribute__ ((aligned (2)));
836 	int completed = 0;
837 
838 	transfer = libusb_alloc_transfer(0);
839 	libusb_fill_control_setup(buffer,
840 		LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT, 0x04, 0x01, 0, 0);
841 	libusb_fill_control_transfer(transfer, dev, buffer, cb, &completed, 1000);
842 	libusb_submit_transfer(transfer);
843 
844 	while (!completed) {
845 		poll(libusb file descriptors, 120*1000);
846 		if (poll indicates activity)
847 			libusb_handle_events_timeout(ctx, &zero_tv);
848 	}
849 	printf("completed!");
850 	// other code here
851 }
852 \endcode
853  *
854  * Here we are <em>serializing</em> completion of an asynchronous event
855  * against a condition - the condition being completion of a specific transfer.
856  * The poll() loop has a long timeout to minimize CPU usage during situations
857  * when nothing is happening (it could reasonably be unlimited).
858  *
859  * If this is the only thread that is polling libusb's file descriptors, there
860  * is no problem: there is no danger that another thread will swallow up the
861  * event that we are interested in. On the other hand, if there is another
862  * thread polling the same descriptors, there is a chance that it will receive
863  * the event that we were interested in. In this situation, <tt>myfunc()</tt>
864  * will only realise that the transfer has completed on the next iteration of
865  * the loop, <em>up to 120 seconds later.</em> Clearly a two-minute delay is
866  * undesirable, and don't even think about using short timeouts to circumvent
867  * this issue!
868  *
869  * The solution here is to ensure that no two threads are ever polling the
870  * file descriptors at the same time. A naive implementation of this would
871  * impact the capabilities of the library, so libusb offers the scheme
872  * documented below to ensure no loss of functionality.
873  *
874  * Before we go any further, it is worth mentioning that all libusb-wrapped
875  * event handling procedures fully adhere to the scheme documented below.
876  * This includes libusb_handle_events() and its variants, and all the
877  * synchronous I/O functions - libusb hides this headache from you.
878  *
879  * \section Using libusb_handle_events() from multiple threads
880  *
881  * Even when only using libusb_handle_events() and synchronous I/O functions,
882  * you can still have a race condition. You might be tempted to solve the
883  * above with libusb_handle_events() like so:
884  *
885 \code
886 	libusb_submit_transfer(transfer);
887 
888 	while (!completed) {
889 		libusb_handle_events(ctx);
890 	}
891 	printf("completed!");
892 \endcode
893  *
894  * This however has a race between the checking of completed and
895  * libusb_handle_events() acquiring the events lock, so another thread
896  * could have completed the transfer, resulting in this thread hanging
897  * until either a timeout or another event occurs. See also commit
898  * 6696512aade99bb15d6792af90ae329af270eba6 which fixes this in the
899  * synchronous API implementation of libusb.
900  *
901  * Fixing this race requires checking the variable completed only after
902  * taking the event lock, which defeats the concept of just calling
903  * libusb_handle_events() without worrying about locking. This is why
904  * libusb-1.0.9 introduces the new libusb_handle_events_timeout_completed()
905  * and libusb_handle_events_completed() functions, which handles doing the
906  * completion check for you after they have acquired the lock:
907  *
908 \code
909 	libusb_submit_transfer(transfer);
910 
911 	while (!completed) {
912 		libusb_handle_events_completed(ctx, &completed);
913 	}
914 	printf("completed!");
915 \endcode
916  *
917  * This nicely fixes the race in our example. Note that if all you want to
918  * do is submit a single transfer and wait for its completion, then using
919  * one of the synchronous I/O functions is much easier.
920  *
921  * \note
922  * The `completed` variable must be modified while holding the event lock,
923  * otherwise a race condition can still exist. It is simplest to do so from
924  * within the transfer callback as shown above.
925  *
926  * \section eventlock The events lock
927  *
928  * The problem is when we consider the fact that libusb exposes file
929  * descriptors to allow for you to integrate asynchronous USB I/O into
930  * existing main loops, effectively allowing you to do some work behind
931  * libusb's back. If you do take libusb's file descriptors and pass them to
932  * poll()/select() yourself, you need to be aware of the associated issues.
933  *
934  * The first concept to be introduced is the events lock. The events lock
935  * is used to serialize threads that want to handle events, such that only
936  * one thread is handling events at any one time.
937  *
938  * You must take the events lock before polling libusb file descriptors,
939  * using libusb_lock_events(). You must release the lock as soon as you have
940  * aborted your poll()/select() loop, using libusb_unlock_events().
941  *
942  * \section threadwait Letting other threads do the work for you
943  *
944  * Although the events lock is a critical part of the solution, it is not
945  * enough on it's own. You might wonder if the following is sufficient...
946 \code
947 	libusb_lock_events(ctx);
948 	while (!completed) {
949 		poll(libusb file descriptors, 120*1000);
950 		if (poll indicates activity)
951 			libusb_handle_events_timeout(ctx, &zero_tv);
952 	}
953 	libusb_unlock_events(ctx);
954 \endcode
955  * ...and the answer is that it is not. This is because the transfer in the
956  * code shown above may take a long time (say 30 seconds) to complete, and
957  * the lock is not released until the transfer is completed.
958  *
959  * Another thread with similar code that wants to do event handling may be
960  * working with a transfer that completes after a few milliseconds. Despite
961  * having such a quick completion time, the other thread cannot check that
962  * status of its transfer until the code above has finished (30 seconds later)
963  * due to contention on the lock.
964  *
965  * To solve this, libusb offers you a mechanism to determine when another
966  * thread is handling events. It also offers a mechanism to block your thread
967  * until the event handling thread has completed an event (and this mechanism
968  * does not involve polling of file descriptors).
969  *
970  * After determining that another thread is currently handling events, you
971  * obtain the <em>event waiters</em> lock using libusb_lock_event_waiters().
972  * You then re-check that some other thread is still handling events, and if
973  * so, you call libusb_wait_for_event().
974  *
975  * libusb_wait_for_event() puts your application to sleep until an event
976  * occurs, or until a thread releases the events lock. When either of these
977  * things happen, your thread is woken up, and should re-check the condition
978  * it was waiting on. It should also re-check that another thread is handling
979  * events, and if not, it should start handling events itself.
980  *
981  * This looks like the following, as pseudo-code:
982 \code
983 retry:
984 if (libusb_try_lock_events(ctx) == 0) {
985 	// we obtained the event lock: do our own event handling
986 	while (!completed) {
987 		if (!libusb_event_handling_ok(ctx)) {
988 			libusb_unlock_events(ctx);
989 			goto retry;
990 		}
991 		poll(libusb file descriptors, 120*1000);
992 		if (poll indicates activity)
993 			libusb_handle_events_locked(ctx, 0);
994 	}
995 	libusb_unlock_events(ctx);
996 } else {
997 	// another thread is doing event handling. wait for it to signal us that
998 	// an event has completed
999 	libusb_lock_event_waiters(ctx);
1000 
1001 	while (!completed) {
1002 		// now that we have the event waiters lock, double check that another
1003 		// thread is still handling events for us. (it may have ceased handling
1004 		// events in the time it took us to reach this point)
1005 		if (!libusb_event_handler_active(ctx)) {
1006 			// whoever was handling events is no longer doing so, try again
1007 			libusb_unlock_event_waiters(ctx);
1008 			goto retry;
1009 		}
1010 
1011 		libusb_wait_for_event(ctx, NULL);
1012 	}
1013 	libusb_unlock_event_waiters(ctx);
1014 }
1015 printf("completed!\n");
1016 \endcode
1017  *
1018  * A naive look at the above code may suggest that this can only support
1019  * one event waiter (hence a total of 2 competing threads, the other doing
1020  * event handling), because the event waiter seems to have taken the event
1021  * waiters lock while waiting for an event. However, the system does support
1022  * multiple event waiters, because libusb_wait_for_event() actually drops
1023  * the lock while waiting, and reacquires it before continuing.
1024  *
1025  * We have now implemented code which can dynamically handle situations where
1026  * nobody is handling events (so we should do it ourselves), and it can also
1027  * handle situations where another thread is doing event handling (so we can
1028  * piggyback onto them). It is also equipped to handle a combination of
1029  * the two, for example, another thread is doing event handling, but for
1030  * whatever reason it stops doing so before our condition is met, so we take
1031  * over the event handling.
1032  *
1033  * Four functions were introduced in the above pseudo-code. Their importance
1034  * should be apparent from the code shown above.
1035  * -# libusb_try_lock_events() is a non-blocking function which attempts
1036  *    to acquire the events lock but returns a failure code if it is contended.
1037  * -# libusb_event_handling_ok() checks that libusb is still happy for your
1038  *    thread to be performing event handling. Sometimes, libusb needs to
1039  *    interrupt the event handler, and this is how you can check if you have
1040  *    been interrupted. If this function returns 0, the correct behaviour is
1041  *    for you to give up the event handling lock, and then to repeat the cycle.
1042  *    The following libusb_try_lock_events() will fail, so you will become an
1043  *    events waiter. For more information on this, read \ref fullstory below.
1044  * -# libusb_handle_events_locked() is a variant of
1045  *    libusb_handle_events_timeout() that you can call while holding the
1046  *    events lock. libusb_handle_events_timeout() itself implements similar
1047  *    logic to the above, so be sure not to call it when you are
1048  *    "working behind libusb's back", as is the case here.
1049  * -# libusb_event_handler_active() determines if someone is currently
1050  *    holding the events lock
1051  *
1052  * You might be wondering why there is no function to wake up all threads
1053  * blocked on libusb_wait_for_event(). This is because libusb can do this
1054  * internally: it will wake up all such threads when someone calls
1055  * libusb_unlock_events() or when a transfer completes (at the point after its
1056  * callback has returned).
1057  *
1058  * \subsection fullstory The full story
1059  *
1060  * The above explanation should be enough to get you going, but if you're
1061  * really thinking through the issues then you may be left with some more
1062  * questions regarding libusb's internals. If you're curious, read on, and if
1063  * not, skip to the next section to avoid confusing yourself!
1064  *
1065  * The immediate question that may spring to mind is: what if one thread
1066  * modifies the set of file descriptors that need to be polled while another
1067  * thread is doing event handling?
1068  *
1069  * There are 2 situations in which this may happen.
1070  * -# libusb_open() will add another file descriptor to the poll set,
1071  *    therefore it is desirable to interrupt the event handler so that it
1072  *    restarts, picking up the new descriptor.
1073  * -# libusb_close() will remove a file descriptor from the poll set. There
1074  *    are all kinds of race conditions that could arise here, so it is
1075  *    important that nobody is doing event handling at this time.
1076  *
1077  * libusb handles these issues internally, so application developers do not
1078  * have to stop their event handlers while opening/closing devices. Here's how
1079  * it works, focusing on the libusb_close() situation first:
1080  *
1081  * -# During initialization, libusb opens an internal pipe, and it adds the read
1082  *    end of this pipe to the set of file descriptors to be polled.
1083  * -# During libusb_close(), libusb writes some dummy data on this event pipe.
1084  *    This immediately interrupts the event handler. libusb also records
1085  *    internally that it is trying to interrupt event handlers for this
1086  *    high-priority event.
1087  * -# At this point, some of the functions described above start behaving
1088  *    differently:
1089  *   - libusb_event_handling_ok() starts returning 1, indicating that it is NOT
1090  *     OK for event handling to continue.
1091  *   - libusb_try_lock_events() starts returning 1, indicating that another
1092  *     thread holds the event handling lock, even if the lock is uncontended.
1093  *   - libusb_event_handler_active() starts returning 1, indicating that
1094  *     another thread is doing event handling, even if that is not true.
1095  * -# The above changes in behaviour result in the event handler stopping and
1096  *    giving up the events lock very quickly, giving the high-priority
1097  *    libusb_close() operation a "free ride" to acquire the events lock. All
1098  *    threads that are competing to do event handling become event waiters.
1099  * -# With the events lock held inside libusb_close(), libusb can safely remove
1100  *    a file descriptor from the poll set, in the safety of knowledge that
1101  *    nobody is polling those descriptors or trying to access the poll set.
1102  * -# After obtaining the events lock, the close operation completes very
1103  *    quickly (usually a matter of milliseconds) and then immediately releases
1104  *    the events lock.
1105  * -# At the same time, the behaviour of libusb_event_handling_ok() and friends
1106  *    reverts to the original, documented behaviour.
1107  * -# The release of the events lock causes the threads that are waiting for
1108  *    events to be woken up and to start competing to become event handlers
1109  *    again. One of them will succeed; it will then re-obtain the list of poll
1110  *    descriptors, and USB I/O will then continue as normal.
1111  *
1112  * libusb_open() is similar, and is actually a more simplistic case. Upon a
1113  * call to libusb_open():
1114  *
1115  * -# The device is opened and a file descriptor is added to the poll set.
1116  * -# libusb sends some dummy data on the event pipe, and records that it
1117  *    is trying to modify the poll descriptor set.
1118  * -# The event handler is interrupted, and the same behaviour change as for
1119  *    libusb_close() takes effect, causing all event handling threads to become
1120  *    event waiters.
1121  * -# The libusb_open() implementation takes its free ride to the events lock.
1122  * -# Happy that it has successfully paused the events handler, libusb_open()
1123  *    releases the events lock.
1124  * -# The event waiter threads are all woken up and compete to become event
1125  *    handlers again. The one that succeeds will obtain the list of poll
1126  *    descriptors again, which will include the addition of the new device.
1127  *
1128  * \subsection concl Closing remarks
1129  *
1130  * The above may seem a little complicated, but hopefully I have made it clear
1131  * why such complications are necessary. Also, do not forget that this only
1132  * applies to applications that take libusb's file descriptors and integrate
1133  * them into their own polling loops.
1134  *
1135  * You may decide that it is OK for your multi-threaded application to ignore
1136  * some of the rules and locks detailed above, because you don't think that
1137  * two threads can ever be polling the descriptors at the same time. If that
1138  * is the case, then that's good news for you because you don't have to worry.
1139  * But be careful here; remember that the synchronous I/O functions do event
1140  * handling internally. If you have one thread doing event handling in a loop
1141  * (without implementing the rules and locking semantics documented above)
1142  * and another trying to send a synchronous USB transfer, you will end up with
1143  * two threads monitoring the same descriptors, and the above-described
1144  * undesirable behaviour occurring. The solution is for your polling thread to
1145  * play by the rules; the synchronous I/O functions do so, and this will result
1146  * in them getting along in perfect harmony.
1147  *
1148  * If you do have a dedicated thread doing event handling, it is perfectly
1149  * legal for it to take the event handling lock for long periods of time. Any
1150  * synchronous I/O functions you call from other threads will transparently
1151  * fall back to the "event waiters" mechanism detailed above. The only
1152  * consideration that your event handling thread must apply is the one related
1153  * to libusb_event_handling_ok(): you must call this before every poll(), and
1154  * give up the events lock if instructed.
1155  */
1156 
usbi_io_init(struct libusb_context * ctx)1157 int usbi_io_init(struct libusb_context *ctx)
1158 {
1159 	int r;
1160 
1161 	usbi_mutex_init(&ctx->flying_transfers_lock);
1162 	usbi_mutex_init(&ctx->events_lock);
1163 	usbi_mutex_init(&ctx->event_waiters_lock);
1164 	usbi_cond_init(&ctx->event_waiters_cond);
1165 	usbi_mutex_init(&ctx->event_data_lock);
1166 	usbi_tls_key_create(&ctx->event_handling_key);
1167 	list_init(&ctx->flying_transfers);
1168 	list_init(&ctx->event_sources);
1169 	list_init(&ctx->removed_event_sources);
1170 	list_init(&ctx->hotplug_msgs);
1171 	list_init(&ctx->completed_transfers);
1172 
1173 	r = usbi_create_event(&ctx->event);
1174 	if (r < 0)
1175 		goto err;
1176 
1177 	r = usbi_add_event_source(ctx, USBI_EVENT_OS_HANDLE(&ctx->event), USBI_EVENT_POLL_EVENTS);
1178 	if (r < 0)
1179 		goto err_destroy_event;
1180 
1181 #ifdef HAVE_OS_TIMER
1182 	r = usbi_create_timer(&ctx->timer);
1183 	if (r == 0) {
1184 		usbi_dbg("using timer for timeouts");
1185 		r = usbi_add_event_source(ctx, USBI_TIMER_OS_HANDLE(&ctx->timer), USBI_TIMER_POLL_EVENTS);
1186 		if (r < 0)
1187 			goto err_destroy_timer;
1188 	} else {
1189 		usbi_dbg("timer not available for timeouts");
1190 	}
1191 #endif
1192 
1193 	return 0;
1194 
1195 #ifdef HAVE_OS_TIMER
1196 err_destroy_timer:
1197 	usbi_destroy_timer(&ctx->timer);
1198 	usbi_remove_event_source(ctx, USBI_EVENT_OS_HANDLE(&ctx->event));
1199 #endif
1200 err_destroy_event:
1201 	usbi_destroy_event(&ctx->event);
1202 err:
1203 	usbi_mutex_destroy(&ctx->flying_transfers_lock);
1204 	usbi_mutex_destroy(&ctx->events_lock);
1205 	usbi_mutex_destroy(&ctx->event_waiters_lock);
1206 	usbi_cond_destroy(&ctx->event_waiters_cond);
1207 	usbi_mutex_destroy(&ctx->event_data_lock);
1208 	usbi_tls_key_delete(ctx->event_handling_key);
1209 	return r;
1210 }
1211 
cleanup_removed_event_sources(struct libusb_context * ctx)1212 static void cleanup_removed_event_sources(struct libusb_context *ctx)
1213 {
1214 	struct usbi_event_source *ievent_source, *tmp;
1215 
1216 	for_each_removed_event_source_safe(ctx, ievent_source, tmp) {
1217 		list_del(&ievent_source->list);
1218 		free(ievent_source);
1219 	}
1220 }
1221 
usbi_io_exit(struct libusb_context * ctx)1222 void usbi_io_exit(struct libusb_context *ctx)
1223 {
1224 #ifdef HAVE_OS_TIMER
1225 	if (usbi_using_timer(ctx)) {
1226 		usbi_remove_event_source(ctx, USBI_TIMER_OS_HANDLE(&ctx->timer));
1227 		usbi_destroy_timer(&ctx->timer);
1228 	}
1229 #endif
1230 	usbi_remove_event_source(ctx, USBI_EVENT_OS_HANDLE(&ctx->event));
1231 	usbi_destroy_event(&ctx->event);
1232 	usbi_mutex_destroy(&ctx->flying_transfers_lock);
1233 	usbi_mutex_destroy(&ctx->events_lock);
1234 	usbi_mutex_destroy(&ctx->event_waiters_lock);
1235 	usbi_cond_destroy(&ctx->event_waiters_cond);
1236 	usbi_mutex_destroy(&ctx->event_data_lock);
1237 	usbi_tls_key_delete(ctx->event_handling_key);
1238 	cleanup_removed_event_sources(ctx);
1239 	free(ctx->event_data);
1240 }
1241 
calculate_timeout(struct usbi_transfer * itransfer)1242 static void calculate_timeout(struct usbi_transfer *itransfer)
1243 {
1244 	unsigned int timeout =
1245 		USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer)->timeout;
1246 
1247 	if (!timeout) {
1248 		TIMESPEC_CLEAR(&itransfer->timeout);
1249 		return;
1250 	}
1251 
1252 	usbi_get_monotonic_time(&itransfer->timeout);
1253 
1254 	itransfer->timeout.tv_sec += timeout / 1000U;
1255 	itransfer->timeout.tv_nsec += (timeout % 1000U) * 1000000L;
1256 	if (itransfer->timeout.tv_nsec >= NSEC_PER_SEC) {
1257 		++itransfer->timeout.tv_sec;
1258 		itransfer->timeout.tv_nsec -= NSEC_PER_SEC;
1259 	}
1260 }
1261 
1262 /** \ingroup libusb_asyncio
1263  * Allocate a libusb transfer with a specified number of isochronous packet
1264  * descriptors. The returned transfer is pre-initialized for you. When the new
1265  * transfer is no longer needed, it should be freed with
1266  * libusb_free_transfer().
1267  *
1268  * Transfers intended for non-isochronous endpoints (e.g. control, bulk,
1269  * interrupt) should specify an iso_packets count of zero.
1270  *
1271  * For transfers intended for isochronous endpoints, specify an appropriate
1272  * number of packet descriptors to be allocated as part of the transfer.
1273  * The returned transfer is not specially initialized for isochronous I/O;
1274  * you are still required to set the
1275  * \ref libusb_transfer::num_iso_packets "num_iso_packets" and
1276  * \ref libusb_transfer::type "type" fields accordingly.
1277  *
1278  * It is safe to allocate a transfer with some isochronous packets and then
1279  * use it on a non-isochronous endpoint. If you do this, ensure that at time
1280  * of submission, num_iso_packets is 0 and that type is set appropriately.
1281  *
1282  * \param iso_packets number of isochronous packet descriptors to allocate. Must be non-negative.
1283  * \returns a newly allocated transfer, or NULL on error
1284  */
1285 DEFAULT_VISIBILITY
libusb_alloc_transfer(int iso_packets)1286 struct libusb_transfer * LIBUSB_CALL libusb_alloc_transfer(
1287 	int iso_packets)
1288 {
1289 	size_t priv_size;
1290 	size_t alloc_size;
1291 	unsigned char *ptr;
1292 	struct usbi_transfer *itransfer;
1293 	struct libusb_transfer *transfer;
1294 
1295 	assert(iso_packets >= 0);
1296 	if (iso_packets < 0)
1297 		return NULL;
1298 
1299 	priv_size = PTR_ALIGN(usbi_backend.transfer_priv_size);
1300 	alloc_size = priv_size
1301 		+ sizeof(struct usbi_transfer)
1302 		+ sizeof(struct libusb_transfer)
1303 		+ (sizeof(struct libusb_iso_packet_descriptor) * (size_t)iso_packets);
1304 	ptr = calloc(1, alloc_size);
1305 	if (!ptr)
1306 		return NULL;
1307 
1308 	itransfer = (struct usbi_transfer *)(ptr + priv_size);
1309 	itransfer->num_iso_packets = iso_packets;
1310 	itransfer->priv = ptr;
1311 	usbi_mutex_init(&itransfer->lock);
1312 	transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1313 	usbi_dbg("transfer %p", transfer);
1314 	return transfer;
1315 }
1316 
1317 /** \ingroup libusb_asyncio
1318  * Free a transfer structure. This should be called for all transfers
1319  * allocated with libusb_alloc_transfer().
1320  *
1321  * If the \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_BUFFER
1322  * "LIBUSB_TRANSFER_FREE_BUFFER" flag is set and the transfer buffer is
1323  * non-NULL, this function will also free the transfer buffer using the
1324  * standard system memory allocator (e.g. free()).
1325  *
1326  * It is legal to call this function with a NULL transfer. In this case,
1327  * the function will simply return safely.
1328  *
1329  * It is not legal to free an active transfer (one which has been submitted
1330  * and has not yet completed).
1331  *
1332  * \param transfer the transfer to free
1333  */
libusb_free_transfer(struct libusb_transfer * transfer)1334 void API_EXPORTED libusb_free_transfer(struct libusb_transfer *transfer)
1335 {
1336 	struct usbi_transfer *itransfer;
1337 	size_t priv_size;
1338 	unsigned char *ptr;
1339 
1340 	if (!transfer)
1341 		return;
1342 
1343 	usbi_dbg("transfer %p", transfer);
1344 	if (transfer->flags & LIBUSB_TRANSFER_FREE_BUFFER)
1345 		free(transfer->buffer);
1346 
1347 	itransfer = LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1348 	usbi_mutex_destroy(&itransfer->lock);
1349 
1350 	priv_size = PTR_ALIGN(usbi_backend.transfer_priv_size);
1351 	ptr = (unsigned char *)itransfer - priv_size;
1352 	assert(ptr == itransfer->priv);
1353 	free(ptr);
1354 }
1355 
1356 /* iterates through the flying transfers, and rearms the timer based on the
1357  * next upcoming timeout.
1358  * must be called with flying_list locked.
1359  * returns 0 on success or a LIBUSB_ERROR code on failure.
1360  */
1361 #ifdef HAVE_OS_TIMER
arm_timer_for_next_timeout(struct libusb_context * ctx)1362 static int arm_timer_for_next_timeout(struct libusb_context *ctx)
1363 {
1364 	struct usbi_transfer *itransfer;
1365 
1366 	if (!usbi_using_timer(ctx))
1367 		return 0;
1368 
1369 	for_each_transfer(ctx, itransfer) {
1370 		struct timespec *cur_ts = &itransfer->timeout;
1371 
1372 		/* if we've reached transfers of infinite timeout, then we have no
1373 		 * arming to do */
1374 		if (!TIMESPEC_IS_SET(cur_ts))
1375 			break;
1376 
1377 		/* act on first transfer that has not already been handled */
1378 		if (!(itransfer->timeout_flags & (USBI_TRANSFER_TIMEOUT_HANDLED | USBI_TRANSFER_OS_HANDLES_TIMEOUT))) {
1379 			usbi_dbg("next timeout originally %ums", USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer)->timeout);
1380 			return usbi_arm_timer(&ctx->timer, cur_ts);
1381 		}
1382 	}
1383 
1384 	usbi_dbg("no timeouts, disarming timer");
1385 	return usbi_disarm_timer(&ctx->timer);
1386 }
1387 #else
arm_timer_for_next_timeout(struct libusb_context * ctx)1388 static inline int arm_timer_for_next_timeout(struct libusb_context *ctx)
1389 {
1390 	UNUSED(ctx);
1391 	return 0;
1392 }
1393 #endif
1394 
1395 /* add a transfer to the (timeout-sorted) active transfers list.
1396  * This function will return non 0 if fails to update the timer,
1397  * in which case the transfer is *not* on the flying_transfers list. */
add_to_flying_list(struct usbi_transfer * itransfer)1398 static int add_to_flying_list(struct usbi_transfer *itransfer)
1399 {
1400 	struct usbi_transfer *cur;
1401 	struct timespec *timeout = &itransfer->timeout;
1402 	struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
1403 	int r = 0;
1404 	int first = 1;
1405 
1406 	calculate_timeout(itransfer);
1407 
1408 	/* if we have no other flying transfers, start the list with this one */
1409 	if (list_empty(&ctx->flying_transfers)) {
1410 		list_add(&itransfer->list, &ctx->flying_transfers);
1411 		goto out;
1412 	}
1413 
1414 	/* if we have infinite timeout, append to end of list */
1415 	if (!TIMESPEC_IS_SET(timeout)) {
1416 		list_add_tail(&itransfer->list, &ctx->flying_transfers);
1417 		/* first is irrelevant in this case */
1418 		goto out;
1419 	}
1420 
1421 	/* otherwise, find appropriate place in list */
1422 	for_each_transfer(ctx, cur) {
1423 		/* find first timeout that occurs after the transfer in question */
1424 		struct timespec *cur_ts = &cur->timeout;
1425 
1426 		if (!TIMESPEC_IS_SET(cur_ts) || TIMESPEC_CMP(cur_ts, timeout, >)) {
1427 			list_add_tail(&itransfer->list, &cur->list);
1428 			goto out;
1429 		}
1430 		first = 0;
1431 	}
1432 	/* first is 0 at this stage (list not empty) */
1433 
1434 	/* otherwise we need to be inserted at the end */
1435 	list_add_tail(&itransfer->list, &ctx->flying_transfers);
1436 out:
1437 #ifdef HAVE_OS_TIMER
1438 	if (first && usbi_using_timer(ctx) && TIMESPEC_IS_SET(timeout)) {
1439 		/* if this transfer has the lowest timeout of all active transfers,
1440 		 * rearm the timer with this transfer's timeout */
1441 		usbi_dbg("arm timer for timeout in %ums (first in line)",
1442 			USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer)->timeout);
1443 		r = usbi_arm_timer(&ctx->timer, timeout);
1444 	}
1445 #else
1446 	UNUSED(first);
1447 #endif
1448 
1449 	if (r)
1450 		list_del(&itransfer->list);
1451 
1452 	return r;
1453 }
1454 
1455 /* remove a transfer from the active transfers list.
1456  * This function will *always* remove the transfer from the
1457  * flying_transfers list. It will return a LIBUSB_ERROR code
1458  * if it fails to update the timer for the next timeout. */
remove_from_flying_list(struct usbi_transfer * itransfer)1459 static int remove_from_flying_list(struct usbi_transfer *itransfer)
1460 {
1461 	struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
1462 	int rearm_timer;
1463 	int r = 0;
1464 
1465 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1466 	rearm_timer = (TIMESPEC_IS_SET(&itransfer->timeout) &&
1467 		list_first_entry(&ctx->flying_transfers, struct usbi_transfer, list) == itransfer);
1468 	list_del(&itransfer->list);
1469 	if (rearm_timer)
1470 		r = arm_timer_for_next_timeout(ctx);
1471 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1472 
1473 	return r;
1474 }
1475 
1476 /** \ingroup libusb_asyncio
1477  * Submit a transfer. This function will fire off the USB transfer and then
1478  * return immediately.
1479  *
1480  * \param transfer the transfer to submit
1481  * \returns 0 on success
1482  * \returns LIBUSB_ERROR_NO_DEVICE if the device has been disconnected
1483  * \returns LIBUSB_ERROR_BUSY if the transfer has already been submitted.
1484  * \returns LIBUSB_ERROR_NOT_SUPPORTED if the transfer flags are not supported
1485  * by the operating system.
1486  * \returns LIBUSB_ERROR_INVALID_PARAM if the transfer size is larger than
1487  * the operating system and/or hardware can support (see \ref asynclimits)
1488  * \returns another LIBUSB_ERROR code on other failure
1489  */
libusb_submit_transfer(struct libusb_transfer * transfer)1490 int API_EXPORTED libusb_submit_transfer(struct libusb_transfer *transfer)
1491 {
1492 	struct usbi_transfer *itransfer =
1493 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1494 	struct libusb_context *ctx = TRANSFER_CTX(transfer);
1495 	int r;
1496 
1497 	usbi_dbg("transfer %p", transfer);
1498 
1499 	/*
1500 	 * Important note on locking, this function takes / releases locks
1501 	 * in the following order:
1502 	 *  take flying_transfers_lock
1503 	 *  take itransfer->lock
1504 	 *  clear transfer
1505 	 *  add to flying_transfers list
1506 	 *  release flying_transfers_lock
1507 	 *  submit transfer
1508 	 *  release itransfer->lock
1509 	 *  if submit failed:
1510 	 *   take flying_transfers_lock
1511 	 *   remove from flying_transfers list
1512 	 *   release flying_transfers_lock
1513 	 *
1514 	 * Note that it takes locks in the order a-b and then releases them
1515 	 * in the same order a-b. This is somewhat unusual but not wrong,
1516 	 * release order is not important as long as *all* locks are released
1517 	 * before re-acquiring any locks.
1518 	 *
1519 	 * This means that the ordering of first releasing itransfer->lock
1520 	 * and then re-acquiring the flying_transfers_list on error is
1521 	 * important and must not be changed!
1522 	 *
1523 	 * This is done this way because when we take both locks we must always
1524 	 * take flying_transfers_lock first to avoid ab-ba style deadlocks with
1525 	 * the timeout handling and usbi_handle_disconnect paths.
1526 	 *
1527 	 * And we cannot release itransfer->lock before the submission is
1528 	 * complete otherwise timeout handling for transfers with short
1529 	 * timeouts may run before submission.
1530 	 */
1531 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1532 	usbi_mutex_lock(&itransfer->lock);
1533 	if (itransfer->state_flags & USBI_TRANSFER_IN_FLIGHT) {
1534 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
1535 		usbi_mutex_unlock(&itransfer->lock);
1536 		return LIBUSB_ERROR_BUSY;
1537 	}
1538 	itransfer->transferred = 0;
1539 	itransfer->state_flags = 0;
1540 	itransfer->timeout_flags = 0;
1541 	r = add_to_flying_list(itransfer);
1542 	if (r) {
1543 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
1544 		usbi_mutex_unlock(&itransfer->lock);
1545 		return r;
1546 	}
1547 	/*
1548 	 * We must release the flying transfers lock here, because with
1549 	 * some backends the submit_transfer method is synchroneous.
1550 	 */
1551 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1552 
1553 	r = usbi_backend.submit_transfer(itransfer);
1554 	if (r == LIBUSB_SUCCESS) {
1555 		itransfer->state_flags |= USBI_TRANSFER_IN_FLIGHT;
1556 		/* keep a reference to this device */
1557 		libusb_ref_device(transfer->dev_handle->dev);
1558 	}
1559 	usbi_mutex_unlock(&itransfer->lock);
1560 
1561 	if (r != LIBUSB_SUCCESS)
1562 		remove_from_flying_list(itransfer);
1563 
1564 	return r;
1565 }
1566 
1567 /** \ingroup libusb_asyncio
1568  * Asynchronously cancel a previously submitted transfer.
1569  * This function returns immediately, but this does not indicate cancellation
1570  * is complete. Your callback function will be invoked at some later time
1571  * with a transfer status of
1572  * \ref libusb_transfer_status::LIBUSB_TRANSFER_CANCELLED
1573  * "LIBUSB_TRANSFER_CANCELLED."
1574  *
1575  * \param transfer the transfer to cancel
1576  * \returns 0 on success
1577  * \returns LIBUSB_ERROR_NOT_FOUND if the transfer is not in progress,
1578  * already complete, or already cancelled.
1579  * \returns a LIBUSB_ERROR code on failure
1580  */
libusb_cancel_transfer(struct libusb_transfer * transfer)1581 int API_EXPORTED libusb_cancel_transfer(struct libusb_transfer *transfer)
1582 {
1583 	struct usbi_transfer *itransfer =
1584 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1585 	int r;
1586 
1587 	usbi_dbg("transfer %p", transfer );
1588 	usbi_mutex_lock(&itransfer->lock);
1589 	if (!(itransfer->state_flags & USBI_TRANSFER_IN_FLIGHT)
1590 			|| (itransfer->state_flags & USBI_TRANSFER_CANCELLING)) {
1591 		r = LIBUSB_ERROR_NOT_FOUND;
1592 		goto out;
1593 	}
1594 	r = usbi_backend.cancel_transfer(itransfer);
1595 	if (r < 0) {
1596 		if (r != LIBUSB_ERROR_NOT_FOUND &&
1597 		    r != LIBUSB_ERROR_NO_DEVICE)
1598 			usbi_err(TRANSFER_CTX(transfer),
1599 				"cancel transfer failed error %d", r);
1600 		else
1601 			usbi_dbg("cancel transfer failed error %d", r);
1602 
1603 		if (r == LIBUSB_ERROR_NO_DEVICE)
1604 			itransfer->state_flags |= USBI_TRANSFER_DEVICE_DISAPPEARED;
1605 	}
1606 
1607 	itransfer->state_flags |= USBI_TRANSFER_CANCELLING;
1608 
1609 out:
1610 	usbi_mutex_unlock(&itransfer->lock);
1611 	return r;
1612 }
1613 
1614 /** \ingroup libusb_asyncio
1615  * Set a transfers bulk stream id. Note users are advised to use
1616  * libusb_fill_bulk_stream_transfer() instead of calling this function
1617  * directly.
1618  *
1619  * Since version 1.0.19, \ref LIBUSB_API_VERSION >= 0x01000103
1620  *
1621  * \param transfer the transfer to set the stream id for
1622  * \param stream_id the stream id to set
1623  * \see libusb_alloc_streams()
1624  */
libusb_transfer_set_stream_id(struct libusb_transfer * transfer,uint32_t stream_id)1625 void API_EXPORTED libusb_transfer_set_stream_id(
1626 	struct libusb_transfer *transfer, uint32_t stream_id)
1627 {
1628 	struct usbi_transfer *itransfer =
1629 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1630 
1631 	itransfer->stream_id = stream_id;
1632 }
1633 
1634 /** \ingroup libusb_asyncio
1635  * Get a transfers bulk stream id.
1636  *
1637  * Since version 1.0.19, \ref LIBUSB_API_VERSION >= 0x01000103
1638  *
1639  * \param transfer the transfer to get the stream id for
1640  * \returns the stream id for the transfer
1641  */
libusb_transfer_get_stream_id(struct libusb_transfer * transfer)1642 uint32_t API_EXPORTED libusb_transfer_get_stream_id(
1643 	struct libusb_transfer *transfer)
1644 {
1645 	struct usbi_transfer *itransfer =
1646 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1647 
1648 	return itransfer->stream_id;
1649 }
1650 
1651 /* Handle completion of a transfer (completion might be an error condition).
1652  * This will invoke the user-supplied callback function, which may end up
1653  * freeing the transfer. Therefore you cannot use the transfer structure
1654  * after calling this function, and you should free all backend-specific
1655  * data before calling it.
1656  * Do not call this function with the usbi_transfer lock held. User-specified
1657  * callback functions may attempt to directly resubmit the transfer, which
1658  * will attempt to take the lock. */
usbi_handle_transfer_completion(struct usbi_transfer * itransfer,enum libusb_transfer_status status)1659 int usbi_handle_transfer_completion(struct usbi_transfer *itransfer,
1660 	enum libusb_transfer_status status)
1661 {
1662 	struct libusb_transfer *transfer =
1663 		USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1664 	struct libusb_device_handle *dev_handle = transfer->dev_handle;
1665 	uint8_t flags;
1666 	int r;
1667 
1668 	r = remove_from_flying_list(itransfer);
1669 	if (r < 0)
1670 		usbi_err(ITRANSFER_CTX(itransfer), "failed to set timer for next timeout");
1671 
1672 	usbi_mutex_lock(&itransfer->lock);
1673 	itransfer->state_flags &= ~USBI_TRANSFER_IN_FLIGHT;
1674 	usbi_mutex_unlock(&itransfer->lock);
1675 
1676 	if (status == LIBUSB_TRANSFER_COMPLETED
1677 			&& transfer->flags & LIBUSB_TRANSFER_SHORT_NOT_OK) {
1678 		int rqlen = transfer->length;
1679 		if (transfer->type == LIBUSB_TRANSFER_TYPE_CONTROL)
1680 			rqlen -= LIBUSB_CONTROL_SETUP_SIZE;
1681 		if (rqlen != itransfer->transferred) {
1682 			usbi_dbg("interpreting short transfer as error");
1683 			status = LIBUSB_TRANSFER_ERROR;
1684 		}
1685 	}
1686 
1687 	flags = transfer->flags;
1688 	transfer->status = status;
1689 	transfer->actual_length = itransfer->transferred;
1690 	usbi_dbg("transfer %p has callback %p", transfer, transfer->callback);
1691 	if (transfer->callback)
1692 		transfer->callback(transfer);
1693 	/* transfer might have been freed by the above call, do not use from
1694 	 * this point. */
1695 	if (flags & LIBUSB_TRANSFER_FREE_TRANSFER)
1696 		libusb_free_transfer(transfer);
1697 	libusb_unref_device(dev_handle->dev);
1698 	return r;
1699 }
1700 
1701 /* Similar to usbi_handle_transfer_completion() but exclusively for transfers
1702  * that were asynchronously cancelled. The same concerns w.r.t. freeing of
1703  * transfers exist here.
1704  * Do not call this function with the usbi_transfer lock held. User-specified
1705  * callback functions may attempt to directly resubmit the transfer, which
1706  * will attempt to take the lock. */
usbi_handle_transfer_cancellation(struct usbi_transfer * itransfer)1707 int usbi_handle_transfer_cancellation(struct usbi_transfer *itransfer)
1708 {
1709 	struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
1710 	uint8_t timed_out;
1711 
1712 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1713 	timed_out = itransfer->timeout_flags & USBI_TRANSFER_TIMED_OUT;
1714 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1715 
1716 	/* if the URB was cancelled due to timeout, report timeout to the user */
1717 	if (timed_out) {
1718 		usbi_dbg("detected timeout cancellation");
1719 		return usbi_handle_transfer_completion(itransfer, LIBUSB_TRANSFER_TIMED_OUT);
1720 	}
1721 
1722 	/* otherwise its a normal async cancel */
1723 	return usbi_handle_transfer_completion(itransfer, LIBUSB_TRANSFER_CANCELLED);
1724 }
1725 
1726 /* Add a completed transfer to the completed_transfers list of the
1727  * context and signal the event. The backend's handle_transfer_completion()
1728  * function will be called the next time an event handler runs. */
usbi_signal_transfer_completion(struct usbi_transfer * itransfer)1729 void usbi_signal_transfer_completion(struct usbi_transfer *itransfer)
1730 {
1731 	libusb_device_handle *dev_handle = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer)->dev_handle;
1732 
1733 	if (dev_handle) {
1734 		struct libusb_context *ctx = HANDLE_CTX(dev_handle);
1735 		unsigned int event_flags;
1736 
1737 		usbi_mutex_lock(&ctx->event_data_lock);
1738 		event_flags = ctx->event_flags;
1739 		ctx->event_flags |= USBI_EVENT_TRANSFER_COMPLETED;
1740 		list_add_tail(&itransfer->completed_list, &ctx->completed_transfers);
1741 		if (!event_flags)
1742 			usbi_signal_event(&ctx->event);
1743 		usbi_mutex_unlock(&ctx->event_data_lock);
1744 	}
1745 }
1746 
1747 /** \ingroup libusb_poll
1748  * Attempt to acquire the event handling lock. This lock is used to ensure that
1749  * only one thread is monitoring libusb event sources at any one time.
1750  *
1751  * You only need to use this lock if you are developing an application
1752  * which calls poll() or select() on libusb's file descriptors directly.
1753  * If you stick to libusb's event handling loop functions (e.g.
1754  * libusb_handle_events()) then you do not need to be concerned with this
1755  * locking.
1756  *
1757  * While holding this lock, you are trusted to actually be handling events.
1758  * If you are no longer handling events, you must call libusb_unlock_events()
1759  * as soon as possible.
1760  *
1761  * \param ctx the context to operate on, or NULL for the default context
1762  * \returns 0 if the lock was obtained successfully
1763  * \returns 1 if the lock was not obtained (i.e. another thread holds the lock)
1764  * \ref libusb_mtasync
1765  */
libusb_try_lock_events(libusb_context * ctx)1766 int API_EXPORTED libusb_try_lock_events(libusb_context *ctx)
1767 {
1768 	int r;
1769 	unsigned int ru;
1770 
1771 	ctx = usbi_get_context(ctx);
1772 
1773 	/* is someone else waiting to close a device? if so, don't let this thread
1774 	 * start event handling */
1775 	usbi_mutex_lock(&ctx->event_data_lock);
1776 	ru = ctx->device_close;
1777 	usbi_mutex_unlock(&ctx->event_data_lock);
1778 	if (ru) {
1779 		usbi_dbg("someone else is closing a device");
1780 		return 1;
1781 	}
1782 
1783 	r = usbi_mutex_trylock(&ctx->events_lock);
1784 	if (!r)
1785 		return 1;
1786 
1787 	ctx->event_handler_active = 1;
1788 	return 0;
1789 }
1790 
1791 /** \ingroup libusb_poll
1792  * Acquire the event handling lock, blocking until successful acquisition if
1793  * it is contended. This lock is used to ensure that only one thread is
1794  * monitoring libusb event sources at any one time.
1795  *
1796  * You only need to use this lock if you are developing an application
1797  * which calls poll() or select() on libusb's file descriptors directly.
1798  * If you stick to libusb's event handling loop functions (e.g.
1799  * libusb_handle_events()) then you do not need to be concerned with this
1800  * locking.
1801  *
1802  * While holding this lock, you are trusted to actually be handling events.
1803  * If you are no longer handling events, you must call libusb_unlock_events()
1804  * as soon as possible.
1805  *
1806  * \param ctx the context to operate on, or NULL for the default context
1807  * \ref libusb_mtasync
1808  */
libusb_lock_events(libusb_context * ctx)1809 void API_EXPORTED libusb_lock_events(libusb_context *ctx)
1810 {
1811 	ctx = usbi_get_context(ctx);
1812 	usbi_mutex_lock(&ctx->events_lock);
1813 	ctx->event_handler_active = 1;
1814 }
1815 
1816 /** \ingroup libusb_poll
1817  * Release the lock previously acquired with libusb_try_lock_events() or
1818  * libusb_lock_events(). Releasing this lock will wake up any threads blocked
1819  * on libusb_wait_for_event().
1820  *
1821  * \param ctx the context to operate on, or NULL for the default context
1822  * \ref libusb_mtasync
1823  */
libusb_unlock_events(libusb_context * ctx)1824 void API_EXPORTED libusb_unlock_events(libusb_context *ctx)
1825 {
1826 	ctx = usbi_get_context(ctx);
1827 	ctx->event_handler_active = 0;
1828 	usbi_mutex_unlock(&ctx->events_lock);
1829 
1830 	/* FIXME: perhaps we should be a bit more efficient by not broadcasting
1831 	 * the availability of the events lock when we are modifying pollfds
1832 	 * (check ctx->device_close)? */
1833 	usbi_mutex_lock(&ctx->event_waiters_lock);
1834 	usbi_cond_broadcast(&ctx->event_waiters_cond);
1835 	usbi_mutex_unlock(&ctx->event_waiters_lock);
1836 }
1837 
1838 /** \ingroup libusb_poll
1839  * Determine if it is still OK for this thread to be doing event handling.
1840  *
1841  * Sometimes, libusb needs to temporarily pause all event handlers, and this
1842  * is the function you should use before polling file descriptors to see if
1843  * this is the case.
1844  *
1845  * If this function instructs your thread to give up the events lock, you
1846  * should just continue the usual logic that is documented in \ref libusb_mtasync.
1847  * On the next iteration, your thread will fail to obtain the events lock,
1848  * and will hence become an event waiter.
1849  *
1850  * This function should be called while the events lock is held: you don't
1851  * need to worry about the results of this function if your thread is not
1852  * the current event handler.
1853  *
1854  * \param ctx the context to operate on, or NULL for the default context
1855  * \returns 1 if event handling can start or continue
1856  * \returns 0 if this thread must give up the events lock
1857  * \ref fullstory "Multi-threaded I/O: the full story"
1858  */
libusb_event_handling_ok(libusb_context * ctx)1859 int API_EXPORTED libusb_event_handling_ok(libusb_context *ctx)
1860 {
1861 	unsigned int r;
1862 
1863 	ctx = usbi_get_context(ctx);
1864 
1865 	/* is someone else waiting to close a device? if so, don't let this thread
1866 	 * continue event handling */
1867 	usbi_mutex_lock(&ctx->event_data_lock);
1868 	r = ctx->device_close;
1869 	usbi_mutex_unlock(&ctx->event_data_lock);
1870 	if (r) {
1871 		usbi_dbg("someone else is closing a device");
1872 		return 0;
1873 	}
1874 
1875 	return 1;
1876 }
1877 
1878 
1879 /** \ingroup libusb_poll
1880  * Determine if an active thread is handling events (i.e. if anyone is holding
1881  * the event handling lock).
1882  *
1883  * \param ctx the context to operate on, or NULL for the default context
1884  * \returns 1 if a thread is handling events
1885  * \returns 0 if there are no threads currently handling events
1886  * \ref libusb_mtasync
1887  */
libusb_event_handler_active(libusb_context * ctx)1888 int API_EXPORTED libusb_event_handler_active(libusb_context *ctx)
1889 {
1890 	unsigned int r;
1891 
1892 	ctx = usbi_get_context(ctx);
1893 
1894 	/* is someone else waiting to close a device? if so, don't let this thread
1895 	 * start event handling -- indicate that event handling is happening */
1896 	usbi_mutex_lock(&ctx->event_data_lock);
1897 	r = ctx->device_close;
1898 	usbi_mutex_unlock(&ctx->event_data_lock);
1899 	if (r) {
1900 		usbi_dbg("someone else is closing a device");
1901 		return 1;
1902 	}
1903 
1904 	return ctx->event_handler_active;
1905 }
1906 
1907 /** \ingroup libusb_poll
1908  * Interrupt any active thread that is handling events. This is mainly useful
1909  * for interrupting a dedicated event handling thread when an application
1910  * wishes to call libusb_exit().
1911  *
1912  * Since version 1.0.21, \ref LIBUSB_API_VERSION >= 0x01000105
1913  *
1914  * \param ctx the context to operate on, or NULL for the default context
1915  * \ref libusb_mtasync
1916  */
libusb_interrupt_event_handler(libusb_context * ctx)1917 void API_EXPORTED libusb_interrupt_event_handler(libusb_context *ctx)
1918 {
1919 	unsigned int event_flags;
1920 
1921 	usbi_dbg(" ");
1922 
1923 	ctx = usbi_get_context(ctx);
1924 	usbi_mutex_lock(&ctx->event_data_lock);
1925 
1926 	event_flags = ctx->event_flags;
1927 	ctx->event_flags |= USBI_EVENT_USER_INTERRUPT;
1928 	if (!event_flags)
1929 		usbi_signal_event(&ctx->event);
1930 
1931 	usbi_mutex_unlock(&ctx->event_data_lock);
1932 }
1933 
1934 /** \ingroup libusb_poll
1935  * Acquire the event waiters lock. This lock is designed to be obtained under
1936  * the situation where you want to be aware when events are completed, but
1937  * some other thread is event handling so calling libusb_handle_events() is not
1938  * allowed.
1939  *
1940  * You then obtain this lock, re-check that another thread is still handling
1941  * events, then call libusb_wait_for_event().
1942  *
1943  * You only need to use this lock if you are developing an application
1944  * which calls poll() or select() on libusb's file descriptors directly,
1945  * <b>and</b> may potentially be handling events from 2 threads simultaneously.
1946  * If you stick to libusb's event handling loop functions (e.g.
1947  * libusb_handle_events()) then you do not need to be concerned with this
1948  * locking.
1949  *
1950  * \param ctx the context to operate on, or NULL for the default context
1951  * \ref libusb_mtasync
1952  */
libusb_lock_event_waiters(libusb_context * ctx)1953 void API_EXPORTED libusb_lock_event_waiters(libusb_context *ctx)
1954 {
1955 	ctx = usbi_get_context(ctx);
1956 	usbi_mutex_lock(&ctx->event_waiters_lock);
1957 }
1958 
1959 /** \ingroup libusb_poll
1960  * Release the event waiters lock.
1961  * \param ctx the context to operate on, or NULL for the default context
1962  * \ref libusb_mtasync
1963  */
libusb_unlock_event_waiters(libusb_context * ctx)1964 void API_EXPORTED libusb_unlock_event_waiters(libusb_context *ctx)
1965 {
1966 	ctx = usbi_get_context(ctx);
1967 	usbi_mutex_unlock(&ctx->event_waiters_lock);
1968 }
1969 
1970 /** \ingroup libusb_poll
1971  * Wait for another thread to signal completion of an event. Must be called
1972  * with the event waiters lock held, see libusb_lock_event_waiters().
1973  *
1974  * This function will block until any of the following conditions are met:
1975  * -# The timeout expires
1976  * -# A transfer completes
1977  * -# A thread releases the event handling lock through libusb_unlock_events()
1978  *
1979  * Condition 1 is obvious. Condition 2 unblocks your thread <em>after</em>
1980  * the callback for the transfer has completed. Condition 3 is important
1981  * because it means that the thread that was previously handling events is no
1982  * longer doing so, so if any events are to complete, another thread needs to
1983  * step up and start event handling.
1984  *
1985  * This function releases the event waiters lock before putting your thread
1986  * to sleep, and reacquires the lock as it is being woken up.
1987  *
1988  * \param ctx the context to operate on, or NULL for the default context
1989  * \param tv maximum timeout for this blocking function. A NULL value
1990  * indicates unlimited timeout.
1991  * \returns 0 after a transfer completes or another thread stops event handling
1992  * \returns 1 if the timeout expired
1993  * \returns LIBUSB_ERROR_INVALID_PARAM if timeval is invalid
1994  * \ref libusb_mtasync
1995  */
libusb_wait_for_event(libusb_context * ctx,struct timeval * tv)1996 int API_EXPORTED libusb_wait_for_event(libusb_context *ctx, struct timeval *tv)
1997 {
1998 	int r;
1999 
2000 	ctx = usbi_get_context(ctx);
2001 	if (!tv) {
2002 		usbi_cond_wait(&ctx->event_waiters_cond, &ctx->event_waiters_lock);
2003 		return 0;
2004 	}
2005 
2006 	if (!TIMEVAL_IS_VALID(tv))
2007 		return LIBUSB_ERROR_INVALID_PARAM;
2008 
2009 	r = usbi_cond_timedwait(&ctx->event_waiters_cond,
2010 		&ctx->event_waiters_lock, tv);
2011 	if (r < 0)
2012 		return r == LIBUSB_ERROR_TIMEOUT;
2013 
2014 	return 0;
2015 }
2016 
handle_timeout(struct usbi_transfer * itransfer)2017 static void handle_timeout(struct usbi_transfer *itransfer)
2018 {
2019 	struct libusb_transfer *transfer =
2020 		USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
2021 	int r;
2022 
2023 	itransfer->timeout_flags |= USBI_TRANSFER_TIMEOUT_HANDLED;
2024 	r = libusb_cancel_transfer(transfer);
2025 	if (r == LIBUSB_SUCCESS)
2026 		itransfer->timeout_flags |= USBI_TRANSFER_TIMED_OUT;
2027 	else
2028 		usbi_warn(TRANSFER_CTX(transfer),
2029 			"async cancel failed %d", r);
2030 }
2031 
handle_timeouts_locked(struct libusb_context * ctx)2032 static void handle_timeouts_locked(struct libusb_context *ctx)
2033 {
2034 	struct timespec systime;
2035 	struct usbi_transfer *itransfer;
2036 
2037 	if (list_empty(&ctx->flying_transfers))
2038 		return;
2039 
2040 	/* get current time */
2041 	usbi_get_monotonic_time(&systime);
2042 
2043 	/* iterate through flying transfers list, finding all transfers that
2044 	 * have expired timeouts */
2045 	for_each_transfer(ctx, itransfer) {
2046 		struct timespec *cur_ts = &itransfer->timeout;
2047 
2048 		/* if we've reached transfers of infinite timeout, we're all done */
2049 		if (!TIMESPEC_IS_SET(cur_ts))
2050 			return;
2051 
2052 		/* ignore timeouts we've already handled */
2053 		if (itransfer->timeout_flags & (USBI_TRANSFER_TIMEOUT_HANDLED | USBI_TRANSFER_OS_HANDLES_TIMEOUT))
2054 			continue;
2055 
2056 		/* if transfer has non-expired timeout, nothing more to do */
2057 		if (TIMESPEC_CMP(cur_ts, &systime, >))
2058 			return;
2059 
2060 		/* otherwise, we've got an expired timeout to handle */
2061 		handle_timeout(itransfer);
2062 	}
2063 }
2064 
handle_timeouts(struct libusb_context * ctx)2065 static void handle_timeouts(struct libusb_context *ctx)
2066 {
2067 	ctx = usbi_get_context(ctx);
2068 	usbi_mutex_lock(&ctx->flying_transfers_lock);
2069 	handle_timeouts_locked(ctx);
2070 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
2071 }
2072 
handle_event_trigger(struct libusb_context * ctx)2073 static int handle_event_trigger(struct libusb_context *ctx)
2074 {
2075 	struct list_head hotplug_msgs;
2076 	int r = 0;
2077 
2078 	usbi_dbg("event triggered");
2079 
2080 	list_init(&hotplug_msgs);
2081 
2082 	/* take the the event data lock while processing events */
2083 	usbi_mutex_lock(&ctx->event_data_lock);
2084 
2085 	/* check if someone modified the event sources */
2086 	if (ctx->event_flags & USBI_EVENT_EVENT_SOURCES_MODIFIED)
2087 		usbi_dbg("someone updated the event sources");
2088 
2089 	if (ctx->event_flags & USBI_EVENT_USER_INTERRUPT) {
2090 		usbi_dbg("someone purposefully interrupted");
2091 		ctx->event_flags &= ~USBI_EVENT_USER_INTERRUPT;
2092 	}
2093 
2094 	/* check if someone is closing a device */
2095 	if (ctx->event_flags & USBI_EVENT_DEVICE_CLOSE)
2096 		usbi_dbg("someone is closing a device");
2097 
2098 	/* check for any pending hotplug messages */
2099 	if (ctx->event_flags & USBI_EVENT_HOTPLUG_MSG_PENDING) {
2100 		usbi_dbg("hotplug message received");
2101 		ctx->event_flags &= ~USBI_EVENT_HOTPLUG_MSG_PENDING;
2102 		assert(!list_empty(&ctx->hotplug_msgs));
2103 		list_cut(&hotplug_msgs, &ctx->hotplug_msgs);
2104 	}
2105 
2106 	/* complete any pending transfers */
2107 	if (ctx->event_flags & USBI_EVENT_TRANSFER_COMPLETED) {
2108 		struct usbi_transfer *itransfer, *tmp;
2109 		struct list_head completed_transfers;
2110 
2111 		assert(!list_empty(&ctx->completed_transfers));
2112 		list_cut(&completed_transfers, &ctx->completed_transfers);
2113 		usbi_mutex_unlock(&ctx->event_data_lock);
2114 
2115 		__for_each_completed_transfer_safe(&completed_transfers, itransfer, tmp) {
2116 			list_del(&itransfer->completed_list);
2117 			r = usbi_backend.handle_transfer_completion(itransfer);
2118 			if (r) {
2119 				usbi_err(ctx, "backend handle_transfer_completion failed with error %d", r);
2120 				break;
2121 			}
2122 		}
2123 
2124 		usbi_mutex_lock(&ctx->event_data_lock);
2125 		if (!list_empty(&completed_transfers)) {
2126 			/* an error occurred, put the remaining transfers back on the list */
2127 			list_splice_front(&completed_transfers, &ctx->completed_transfers);
2128 		} else if (list_empty(&ctx->completed_transfers)) {
2129 			ctx->event_flags &= ~USBI_EVENT_TRANSFER_COMPLETED;
2130 		}
2131 	}
2132 
2133 	/* if no further pending events, clear the event */
2134 	if (!ctx->event_flags)
2135 		usbi_clear_event(&ctx->event);
2136 
2137 	usbi_mutex_unlock(&ctx->event_data_lock);
2138 
2139 	/* process the hotplug messages, if any */
2140 	while (!list_empty(&hotplug_msgs)) {
2141 		struct libusb_hotplug_message *message =
2142 			list_first_entry(&hotplug_msgs, struct libusb_hotplug_message, list);
2143 
2144 		usbi_hotplug_match(ctx, message->device, message->event);
2145 
2146 		/* the device left, dereference the device */
2147 		if (message->event == LIBUSB_HOTPLUG_EVENT_DEVICE_LEFT)
2148 			libusb_unref_device(message->device);
2149 
2150 		list_del(&message->list);
2151 		free(message);
2152 	}
2153 
2154 	return r;
2155 }
2156 
2157 #ifdef HAVE_OS_TIMER
handle_timer_trigger(struct libusb_context * ctx)2158 static int handle_timer_trigger(struct libusb_context *ctx)
2159 {
2160 	int r;
2161 
2162 	usbi_mutex_lock(&ctx->flying_transfers_lock);
2163 
2164 	/* process the timeout that just happened */
2165 	handle_timeouts_locked(ctx);
2166 
2167 	/* arm for next timeout */
2168 	r = arm_timer_for_next_timeout(ctx);
2169 
2170 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
2171 
2172 	return r;
2173 }
2174 #endif
2175 
2176 /* do the actual event handling. assumes that no other thread is concurrently
2177  * doing the same thing. */
handle_events(struct libusb_context * ctx,struct timeval * tv)2178 static int handle_events(struct libusb_context *ctx, struct timeval *tv)
2179 {
2180 	struct usbi_reported_events reported_events;
2181 	int r, timeout_ms;
2182 
2183 	/* prevent attempts to recursively handle events (e.g. calling into
2184 	 * libusb_handle_events() from within a hotplug or transfer callback) */
2185 	if (usbi_handling_events(ctx))
2186 		return LIBUSB_ERROR_BUSY;
2187 
2188 	/* only reallocate the event source data when the list of event sources has
2189 	 * been modified since the last handle_events(), otherwise reuse them to
2190 	 * save the additional overhead */
2191 	usbi_mutex_lock(&ctx->event_data_lock);
2192 	if (ctx->event_flags & USBI_EVENT_EVENT_SOURCES_MODIFIED) {
2193 		usbi_dbg("event sources modified, reallocating event data");
2194 
2195 		/* free anything removed since we last ran */
2196 		cleanup_removed_event_sources(ctx);
2197 
2198 		r = usbi_alloc_event_data(ctx);
2199 		if (r) {
2200 			usbi_mutex_unlock(&ctx->event_data_lock);
2201 			return r;
2202 		}
2203 
2204 		/* reset the flag now that we have the updated list */
2205 		ctx->event_flags &= ~USBI_EVENT_EVENT_SOURCES_MODIFIED;
2206 
2207 		/* if no further pending events, clear the event so that we do
2208 		 * not immediately return from the wait function */
2209 		if (!ctx->event_flags)
2210 			usbi_clear_event(&ctx->event);
2211 	}
2212 	usbi_mutex_unlock(&ctx->event_data_lock);
2213 
2214 	timeout_ms = (int)(tv->tv_sec * 1000) + (tv->tv_usec / 1000);
2215 
2216 	/* round up to next millisecond */
2217 	if (tv->tv_usec % 1000)
2218 		timeout_ms++;
2219 
2220 	reported_events.event_bits = 0;
2221 
2222 	usbi_start_event_handling(ctx);
2223 
2224 	r = usbi_wait_for_events(ctx, &reported_events, timeout_ms);
2225 	if (r != LIBUSB_SUCCESS) {
2226 		if (r == LIBUSB_ERROR_TIMEOUT) {
2227 			handle_timeouts(ctx);
2228 			r = LIBUSB_SUCCESS;
2229 		}
2230 		goto done;
2231 	}
2232 
2233 	if (reported_events.event_triggered) {
2234 		r = handle_event_trigger(ctx);
2235 		if (r) {
2236 			/* return error code */
2237 			goto done;
2238 		}
2239 	}
2240 
2241 #ifdef HAVE_OS_TIMER
2242 	if (reported_events.timer_triggered) {
2243 		r = handle_timer_trigger(ctx);
2244 		if (r) {
2245 			/* return error code */
2246 			goto done;
2247 		}
2248 	}
2249 #endif
2250 
2251 	if (!reported_events.num_ready)
2252 		goto done;
2253 
2254 	r = usbi_backend.handle_events(ctx, reported_events.event_data,
2255 		reported_events.event_data_count, reported_events.num_ready);
2256 	if (r)
2257 		usbi_err(ctx, "backend handle_events failed with error %d", r);
2258 
2259 done:
2260 	usbi_end_event_handling(ctx);
2261 	return r;
2262 }
2263 
2264 /* returns the smallest of:
2265  *  1. timeout of next URB
2266  *  2. user-supplied timeout
2267  * returns 1 if there is an already-expired timeout, otherwise returns 0
2268  * and populates out
2269  */
get_next_timeout(libusb_context * ctx,struct timeval * tv,struct timeval * out)2270 static int get_next_timeout(libusb_context *ctx, struct timeval *tv,
2271 	struct timeval *out)
2272 {
2273 	struct timeval timeout;
2274 	int r = libusb_get_next_timeout(ctx, &timeout);
2275 	if (r) {
2276 		/* timeout already expired? */
2277 		if (!timerisset(&timeout))
2278 			return 1;
2279 
2280 		/* choose the smallest of next URB timeout or user specified timeout */
2281 		if (timercmp(&timeout, tv, <))
2282 			*out = timeout;
2283 		else
2284 			*out = *tv;
2285 	} else {
2286 		*out = *tv;
2287 	}
2288 	return 0;
2289 }
2290 
2291 /** \ingroup libusb_poll
2292  * Handle any pending events.
2293  *
2294  * libusb determines "pending events" by checking if any timeouts have expired
2295  * and by checking the set of file descriptors for activity.
2296  *
2297  * If a zero timeval is passed, this function will handle any already-pending
2298  * events and then immediately return in non-blocking style.
2299  *
2300  * If a non-zero timeval is passed and no events are currently pending, this
2301  * function will block waiting for events to handle up until the specified
2302  * timeout. If an event arrives or a signal is raised, this function will
2303  * return early.
2304  *
2305  * If the parameter completed is not NULL then <em>after obtaining the event
2306  * handling lock</em> this function will return immediately if the integer
2307  * pointed to is not 0. This allows for race free waiting for the completion
2308  * of a specific transfer.
2309  *
2310  * \param ctx the context to operate on, or NULL for the default context
2311  * \param tv the maximum time to block waiting for events, or an all zero
2312  * timeval struct for non-blocking mode
2313  * \param completed pointer to completion integer to check, or NULL
2314  * \returns 0 on success
2315  * \returns LIBUSB_ERROR_INVALID_PARAM if timeval is invalid
2316  * \returns another LIBUSB_ERROR code on other failure
2317  * \ref libusb_mtasync
2318  */
libusb_handle_events_timeout_completed(libusb_context * ctx,struct timeval * tv,int * completed)2319 int API_EXPORTED libusb_handle_events_timeout_completed(libusb_context *ctx,
2320 	struct timeval *tv, int *completed)
2321 {
2322 	int r;
2323 	struct timeval poll_timeout;
2324 
2325 	if (!TIMEVAL_IS_VALID(tv))
2326 		return LIBUSB_ERROR_INVALID_PARAM;
2327 
2328 	ctx = usbi_get_context(ctx);
2329 	r = get_next_timeout(ctx, tv, &poll_timeout);
2330 	if (r) {
2331 		/* timeout already expired */
2332 		handle_timeouts(ctx);
2333 		return 0;
2334 	}
2335 
2336 retry:
2337 	if (libusb_try_lock_events(ctx) == 0) {
2338 		if (completed == NULL || !*completed) {
2339 			/* we obtained the event lock: do our own event handling */
2340 			usbi_dbg("doing our own event handling");
2341 			r = handle_events(ctx, &poll_timeout);
2342 		}
2343 		libusb_unlock_events(ctx);
2344 		return r;
2345 	}
2346 
2347 	/* another thread is doing event handling. wait for thread events that
2348 	 * notify event completion. */
2349 	libusb_lock_event_waiters(ctx);
2350 
2351 	if (completed && *completed)
2352 		goto already_done;
2353 
2354 	if (!libusb_event_handler_active(ctx)) {
2355 		/* we hit a race: whoever was event handling earlier finished in the
2356 		 * time it took us to reach this point. try the cycle again. */
2357 		libusb_unlock_event_waiters(ctx);
2358 		usbi_dbg("event handler was active but went away, retrying");
2359 		goto retry;
2360 	}
2361 
2362 	usbi_dbg("another thread is doing event handling");
2363 	r = libusb_wait_for_event(ctx, &poll_timeout);
2364 
2365 already_done:
2366 	libusb_unlock_event_waiters(ctx);
2367 
2368 	if (r < 0)
2369 		return r;
2370 	else if (r == 1)
2371 		handle_timeouts(ctx);
2372 	return 0;
2373 }
2374 
2375 /** \ingroup libusb_poll
2376  * Handle any pending events
2377  *
2378  * Like libusb_handle_events_timeout_completed(), but without the completed
2379  * parameter, calling this function is equivalent to calling
2380  * libusb_handle_events_timeout_completed() with a NULL completed parameter.
2381  *
2382  * This function is kept primarily for backwards compatibility.
2383  * All new code should call libusb_handle_events_completed() or
2384  * libusb_handle_events_timeout_completed() to avoid race conditions.
2385  *
2386  * \param ctx the context to operate on, or NULL for the default context
2387  * \param tv the maximum time to block waiting for events, or an all zero
2388  * timeval struct for non-blocking mode
2389  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2390  */
libusb_handle_events_timeout(libusb_context * ctx,struct timeval * tv)2391 int API_EXPORTED libusb_handle_events_timeout(libusb_context *ctx,
2392 	struct timeval *tv)
2393 {
2394 	return libusb_handle_events_timeout_completed(ctx, tv, NULL);
2395 }
2396 
2397 /** \ingroup libusb_poll
2398  * Handle any pending events in blocking mode. There is currently a timeout
2399  * hard-coded at 60 seconds but we plan to make it unlimited in future. For
2400  * finer control over whether this function is blocking or non-blocking, or
2401  * for control over the timeout, use libusb_handle_events_timeout_completed()
2402  * instead.
2403  *
2404  * This function is kept primarily for backwards compatibility.
2405  * All new code should call libusb_handle_events_completed() or
2406  * libusb_handle_events_timeout_completed() to avoid race conditions.
2407  *
2408  * \param ctx the context to operate on, or NULL for the default context
2409  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2410  */
libusb_handle_events(libusb_context * ctx)2411 int API_EXPORTED libusb_handle_events(libusb_context *ctx)
2412 {
2413 	struct timeval tv;
2414 	tv.tv_sec = 60;
2415 	tv.tv_usec = 0;
2416 	return libusb_handle_events_timeout_completed(ctx, &tv, NULL);
2417 }
2418 
2419 /** \ingroup libusb_poll
2420  * Handle any pending events in blocking mode.
2421  *
2422  * Like libusb_handle_events(), with the addition of a completed parameter
2423  * to allow for race free waiting for the completion of a specific transfer.
2424  *
2425  * See libusb_handle_events_timeout_completed() for details on the completed
2426  * parameter.
2427  *
2428  * \param ctx the context to operate on, or NULL for the default context
2429  * \param completed pointer to completion integer to check, or NULL
2430  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2431  * \ref libusb_mtasync
2432  */
libusb_handle_events_completed(libusb_context * ctx,int * completed)2433 int API_EXPORTED libusb_handle_events_completed(libusb_context *ctx,
2434 	int *completed)
2435 {
2436 	struct timeval tv;
2437 	tv.tv_sec = 60;
2438 	tv.tv_usec = 0;
2439 	return libusb_handle_events_timeout_completed(ctx, &tv, completed);
2440 }
2441 
2442 /** \ingroup libusb_poll
2443  * Handle any pending events by polling file descriptors, without checking if
2444  * any other threads are already doing so. Must be called with the event lock
2445  * held, see libusb_lock_events().
2446  *
2447  * This function is designed to be called under the situation where you have
2448  * taken the event lock and are calling poll()/select() directly on libusb's
2449  * file descriptors (as opposed to using libusb_handle_events() or similar).
2450  * You detect events on libusb's descriptors, so you then call this function
2451  * with a zero timeout value (while still holding the event lock).
2452  *
2453  * \param ctx the context to operate on, or NULL for the default context
2454  * \param tv the maximum time to block waiting for events, or zero for
2455  * non-blocking mode
2456  * \returns 0 on success
2457  * \returns LIBUSB_ERROR_INVALID_PARAM if timeval is invalid
2458  * \returns another LIBUSB_ERROR code on other failure
2459  * \ref libusb_mtasync
2460  */
libusb_handle_events_locked(libusb_context * ctx,struct timeval * tv)2461 int API_EXPORTED libusb_handle_events_locked(libusb_context *ctx,
2462 	struct timeval *tv)
2463 {
2464 	int r;
2465 	struct timeval poll_timeout;
2466 
2467 	if (!TIMEVAL_IS_VALID(tv))
2468 		return LIBUSB_ERROR_INVALID_PARAM;
2469 
2470 	ctx = usbi_get_context(ctx);
2471 	r = get_next_timeout(ctx, tv, &poll_timeout);
2472 	if (r) {
2473 		/* timeout already expired */
2474 		handle_timeouts(ctx);
2475 		return 0;
2476 	}
2477 
2478 	return handle_events(ctx, &poll_timeout);
2479 }
2480 
2481 /** \ingroup libusb_poll
2482  * Determines whether your application must apply special timing considerations
2483  * when monitoring libusb's file descriptors.
2484  *
2485  * This function is only useful for applications which retrieve and poll
2486  * libusb's file descriptors in their own main loop (\ref libusb_pollmain).
2487  *
2488  * Ordinarily, libusb's event handler needs to be called into at specific
2489  * moments in time (in addition to times when there is activity on the file
2490  * descriptor set). The usual approach is to use libusb_get_next_timeout()
2491  * to learn about when the next timeout occurs, and to adjust your
2492  * poll()/select() timeout accordingly so that you can make a call into the
2493  * library at that time.
2494  *
2495  * Some platforms supported by libusb do not come with this baggage - any
2496  * events relevant to timing will be represented by activity on the file
2497  * descriptor set, and libusb_get_next_timeout() will always return 0.
2498  * This function allows you to detect whether you are running on such a
2499  * platform.
2500  *
2501  * Since v1.0.5.
2502  *
2503  * \param ctx the context to operate on, or NULL for the default context
2504  * \returns 0 if you must call into libusb at times determined by
2505  * libusb_get_next_timeout(), or 1 if all timeout events are handled internally
2506  * or through regular activity on the file descriptors.
2507  * \ref libusb_pollmain "Polling libusb file descriptors for event handling"
2508  */
libusb_pollfds_handle_timeouts(libusb_context * ctx)2509 int API_EXPORTED libusb_pollfds_handle_timeouts(libusb_context *ctx)
2510 {
2511 	ctx = usbi_get_context(ctx);
2512 	return usbi_using_timer(ctx);
2513 }
2514 
2515 /** \ingroup libusb_poll
2516  * Determine the next internal timeout that libusb needs to handle. You only
2517  * need to use this function if you are calling poll() or select() or similar
2518  * on libusb's file descriptors yourself - you do not need to use it if you
2519  * are calling libusb_handle_events() or a variant directly.
2520  *
2521  * You should call this function in your main loop in order to determine how
2522  * long to wait for select() or poll() to return results. libusb needs to be
2523  * called into at this timeout, so you should use it as an upper bound on
2524  * your select() or poll() call.
2525  *
2526  * When the timeout has expired, call into libusb_handle_events_timeout()
2527  * (perhaps in non-blocking mode) so that libusb can handle the timeout.
2528  *
2529  * This function may return 1 (success) and an all-zero timeval. If this is
2530  * the case, it indicates that libusb has a timeout that has already expired
2531  * so you should call libusb_handle_events_timeout() or similar immediately.
2532  * A return code of 0 indicates that there are no pending timeouts.
2533  *
2534  * On some platforms, this function will always returns 0 (no pending
2535  * timeouts). See \ref polltime.
2536  *
2537  * \param ctx the context to operate on, or NULL for the default context
2538  * \param tv output location for a relative time against the current
2539  * clock in which libusb must be called into in order to process timeout events
2540  * \returns 0 if there are no pending timeouts, 1 if a timeout was returned,
2541  * or LIBUSB_ERROR_OTHER on failure
2542  */
libusb_get_next_timeout(libusb_context * ctx,struct timeval * tv)2543 int API_EXPORTED libusb_get_next_timeout(libusb_context *ctx,
2544 	struct timeval *tv)
2545 {
2546 	struct usbi_transfer *itransfer;
2547 	struct timespec systime;
2548 	struct timespec next_timeout = { 0, 0 };
2549 
2550 	ctx = usbi_get_context(ctx);
2551 	if (usbi_using_timer(ctx))
2552 		return 0;
2553 
2554 	usbi_mutex_lock(&ctx->flying_transfers_lock);
2555 	if (list_empty(&ctx->flying_transfers)) {
2556 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
2557 		usbi_dbg("no URBs, no timeout!");
2558 		return 0;
2559 	}
2560 
2561 	/* find next transfer which hasn't already been processed as timed out */
2562 	for_each_transfer(ctx, itransfer) {
2563 		if (itransfer->timeout_flags & (USBI_TRANSFER_TIMEOUT_HANDLED | USBI_TRANSFER_OS_HANDLES_TIMEOUT))
2564 			continue;
2565 
2566 		/* if we've reached transfers of infinite timeout, we're done looking */
2567 		if (!TIMESPEC_IS_SET(&itransfer->timeout))
2568 			break;
2569 
2570 		next_timeout = itransfer->timeout;
2571 		break;
2572 	}
2573 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
2574 
2575 	if (!TIMESPEC_IS_SET(&next_timeout)) {
2576 		usbi_dbg("no URB with timeout or all handled by OS; no timeout!");
2577 		return 0;
2578 	}
2579 
2580 	usbi_get_monotonic_time(&systime);
2581 
2582 	if (!TIMESPEC_CMP(&systime, &next_timeout, <)) {
2583 		usbi_dbg("first timeout already expired");
2584 		timerclear(tv);
2585 	} else {
2586 		TIMESPEC_SUB(&next_timeout, &systime, &next_timeout);
2587 		TIMESPEC_TO_TIMEVAL(tv, &next_timeout);
2588 		usbi_dbg("next timeout in %ld.%06lds", (long)tv->tv_sec, (long)tv->tv_usec);
2589 	}
2590 
2591 	return 1;
2592 }
2593 
2594 /** \ingroup libusb_poll
2595  * Register notification functions for file descriptor additions/removals.
2596  * These functions will be invoked for every new or removed file descriptor
2597  * that libusb uses as an event source.
2598  *
2599  * To remove notifiers, pass NULL values for the function pointers.
2600  *
2601  * Note that file descriptors may have been added even before you register
2602  * these notifiers (e.g. at libusb_init() time).
2603  *
2604  * Additionally, note that the removal notifier may be called during
2605  * libusb_exit() (e.g. when it is closing file descriptors that were opened
2606  * and added to the poll set at libusb_init() time). If you don't want this,
2607  * remove the notifiers immediately before calling libusb_exit().
2608  *
2609  * \param ctx the context to operate on, or NULL for the default context
2610  * \param added_cb pointer to function for addition notifications
2611  * \param removed_cb pointer to function for removal notifications
2612  * \param user_data User data to be passed back to callbacks (useful for
2613  * passing context information)
2614  */
libusb_set_pollfd_notifiers(libusb_context * ctx,libusb_pollfd_added_cb added_cb,libusb_pollfd_removed_cb removed_cb,void * user_data)2615 void API_EXPORTED libusb_set_pollfd_notifiers(libusb_context *ctx,
2616 	libusb_pollfd_added_cb added_cb, libusb_pollfd_removed_cb removed_cb,
2617 	void *user_data)
2618 {
2619 #if !defined(PLATFORM_WINDOWS)
2620 	ctx = usbi_get_context(ctx);
2621 	ctx->fd_added_cb = added_cb;
2622 	ctx->fd_removed_cb = removed_cb;
2623 	ctx->fd_cb_user_data = user_data;
2624 #else
2625 	usbi_err(ctx, "external polling of libusb's internal event sources " \
2626 		"is not yet supported on Windows");
2627 	UNUSED(added_cb);
2628 	UNUSED(removed_cb);
2629 	UNUSED(user_data);
2630 #endif
2631 }
2632 
2633 /*
2634  * Interrupt the iteration of the event handling thread, so that it picks
2635  * up the event source change. Callers of this function must hold the event_data_lock.
2636  */
usbi_event_source_notification(struct libusb_context * ctx)2637 static void usbi_event_source_notification(struct libusb_context *ctx)
2638 {
2639 	unsigned int event_flags;
2640 
2641 	/* Record that there is a new poll fd.
2642 	 * Only signal an event if there are no prior pending events. */
2643 	event_flags = ctx->event_flags;
2644 	ctx->event_flags |= USBI_EVENT_EVENT_SOURCES_MODIFIED;
2645 	if (!event_flags)
2646 		usbi_signal_event(&ctx->event);
2647 }
2648 
2649 /* Add an event source to the list of event sources to be monitored.
2650  * poll_events should be specified as a bitmask of events passed to poll(), e.g.
2651  * POLLIN and/or POLLOUT. */
usbi_add_event_source(struct libusb_context * ctx,usbi_os_handle_t os_handle,short poll_events)2652 int usbi_add_event_source(struct libusb_context *ctx, usbi_os_handle_t os_handle, short poll_events)
2653 {
2654 	struct usbi_event_source *ievent_source = malloc(sizeof(*ievent_source));
2655 
2656 	if (!ievent_source)
2657 		return LIBUSB_ERROR_NO_MEM;
2658 
2659 	usbi_dbg("add " USBI_OS_HANDLE_FORMAT_STRING " events %d", os_handle, poll_events);
2660 	ievent_source->data.os_handle = os_handle;
2661 	ievent_source->data.poll_events = poll_events;
2662 	usbi_mutex_lock(&ctx->event_data_lock);
2663 	list_add_tail(&ievent_source->list, &ctx->event_sources);
2664 	usbi_event_source_notification(ctx);
2665 	usbi_mutex_unlock(&ctx->event_data_lock);
2666 
2667 #if !defined(PLATFORM_WINDOWS)
2668 	if (ctx->fd_added_cb)
2669 		ctx->fd_added_cb(os_handle, poll_events, ctx->fd_cb_user_data);
2670 #endif
2671 
2672 	return 0;
2673 }
2674 
2675 /* Remove an event source from the list of event sources to be monitored. */
usbi_remove_event_source(struct libusb_context * ctx,usbi_os_handle_t os_handle)2676 void usbi_remove_event_source(struct libusb_context *ctx, usbi_os_handle_t os_handle)
2677 {
2678 	struct usbi_event_source *ievent_source;
2679 	int found = 0;
2680 
2681 	usbi_dbg("remove " USBI_OS_HANDLE_FORMAT_STRING, os_handle);
2682 	usbi_mutex_lock(&ctx->event_data_lock);
2683 	for_each_event_source(ctx, ievent_source) {
2684 		if (ievent_source->data.os_handle == os_handle) {
2685 			found = 1;
2686 			break;
2687 		}
2688 	}
2689 
2690 	if (!found) {
2691 		usbi_dbg("couldn't find " USBI_OS_HANDLE_FORMAT_STRING " to remove", os_handle);
2692 		usbi_mutex_unlock(&ctx->event_data_lock);
2693 		return;
2694 	}
2695 
2696 	list_del(&ievent_source->list);
2697 	list_add_tail(&ievent_source->list, &ctx->removed_event_sources);
2698 	usbi_event_source_notification(ctx);
2699 	usbi_mutex_unlock(&ctx->event_data_lock);
2700 
2701 #if !defined(PLATFORM_WINDOWS)
2702 	if (ctx->fd_removed_cb)
2703 		ctx->fd_removed_cb(os_handle, ctx->fd_cb_user_data);
2704 #endif
2705 }
2706 
2707 /** \ingroup libusb_poll
2708  * Retrieve a list of file descriptors that should be polled by your main loop
2709  * as libusb event sources.
2710  *
2711  * The returned list is NULL-terminated and should be freed with libusb_free_pollfds()
2712  * when done. The actual list contents must not be touched.
2713  *
2714  * As file descriptors are a Unix-specific concept, this function is not
2715  * available on Windows and will always return NULL.
2716  *
2717  * \param ctx the context to operate on, or NULL for the default context
2718  * \returns a NULL-terminated list of libusb_pollfd structures
2719  * \returns NULL on error
2720  * \returns NULL on platforms where the functionality is not available
2721  */
2722 DEFAULT_VISIBILITY
libusb_get_pollfds(libusb_context * ctx)2723 const struct libusb_pollfd ** LIBUSB_CALL libusb_get_pollfds(
2724 	libusb_context *ctx)
2725 {
2726 #if !defined(PLATFORM_WINDOWS)
2727 	struct libusb_pollfd **ret = NULL;
2728 	struct usbi_event_source *ievent_source;
2729 	size_t i;
2730 
2731 	static_assert(sizeof(struct usbi_event_source_data) == sizeof(struct libusb_pollfd),
2732 		      "mismatch between usbi_event_source_data and libusb_pollfd sizes");
2733 
2734 	ctx = usbi_get_context(ctx);
2735 
2736 	usbi_mutex_lock(&ctx->event_data_lock);
2737 
2738 	i = 0;
2739 	for_each_event_source(ctx, ievent_source)
2740 		i++;
2741 
2742 	ret = calloc(i + 1, sizeof(struct libusb_pollfd *));
2743 	if (!ret)
2744 		goto out;
2745 
2746 	i = 0;
2747 	for_each_event_source(ctx, ievent_source)
2748 		ret[i++] = (struct libusb_pollfd *)ievent_source;
2749 
2750 out:
2751 	usbi_mutex_unlock(&ctx->event_data_lock);
2752 	return (const struct libusb_pollfd **)ret;
2753 #else
2754 	usbi_err(ctx, "external polling of libusb's internal event sources " \
2755 		"is not yet supported on Windows");
2756 	return NULL;
2757 #endif
2758 }
2759 
2760 /** \ingroup libusb_poll
2761  * Free a list of libusb_pollfd structures. This should be called for all
2762  * pollfd lists allocated with libusb_get_pollfds().
2763  *
2764  * Since version 1.0.20, \ref LIBUSB_API_VERSION >= 0x01000104
2765  *
2766  * It is legal to call this function with a NULL pollfd list. In this case,
2767  * the function will simply do nothing.
2768  *
2769  * \param pollfds the list of libusb_pollfd structures to free
2770  */
libusb_free_pollfds(const struct libusb_pollfd ** pollfds)2771 void API_EXPORTED libusb_free_pollfds(const struct libusb_pollfd **pollfds)
2772 {
2773 #if !defined(PLATFORM_WINDOWS)
2774 	free((void *)pollfds);
2775 #else
2776 	UNUSED(pollfds);
2777 #endif
2778 }
2779 
2780 /* Backends may call this from handle_events to report disconnection of a
2781  * device. This function ensures transfers get cancelled appropriately.
2782  * Callers of this function must hold the events_lock.
2783  */
usbi_handle_disconnect(struct libusb_device_handle * dev_handle)2784 void usbi_handle_disconnect(struct libusb_device_handle *dev_handle)
2785 {
2786 	struct libusb_context *ctx = HANDLE_CTX(dev_handle);
2787 	struct usbi_transfer *cur;
2788 	struct usbi_transfer *to_cancel;
2789 
2790 	usbi_dbg("device %d.%d",
2791 		dev_handle->dev->bus_number, dev_handle->dev->device_address);
2792 
2793 	/* terminate all pending transfers with the LIBUSB_TRANSFER_NO_DEVICE
2794 	 * status code.
2795 	 *
2796 	 * when we find a transfer for this device on the list, there are two
2797 	 * possible scenarios:
2798 	 * 1. the transfer is currently in-flight, in which case we terminate the
2799 	 *    transfer here
2800 	 * 2. the transfer has been added to the flying transfer list by
2801 	 *    libusb_submit_transfer, has failed to submit and
2802 	 *    libusb_submit_transfer is waiting for us to release the
2803 	 *    flying_transfers_lock to remove it, so we ignore it
2804 	 */
2805 
2806 	while (1) {
2807 		to_cancel = NULL;
2808 		usbi_mutex_lock(&ctx->flying_transfers_lock);
2809 		for_each_transfer(ctx, cur) {
2810 			if (USBI_TRANSFER_TO_LIBUSB_TRANSFER(cur)->dev_handle == dev_handle) {
2811 				usbi_mutex_lock(&cur->lock);
2812 				if (cur->state_flags & USBI_TRANSFER_IN_FLIGHT)
2813 					to_cancel = cur;
2814 				usbi_mutex_unlock(&cur->lock);
2815 
2816 				if (to_cancel)
2817 					break;
2818 			}
2819 		}
2820 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
2821 
2822 		if (!to_cancel)
2823 			break;
2824 
2825 		usbi_dbg("cancelling transfer %p from disconnect",
2826 			 USBI_TRANSFER_TO_LIBUSB_TRANSFER(to_cancel));
2827 
2828 		usbi_mutex_lock(&to_cancel->lock);
2829 		usbi_backend.clear_transfer_priv(to_cancel);
2830 		usbi_mutex_unlock(&to_cancel->lock);
2831 		usbi_handle_transfer_completion(to_cancel, LIBUSB_TRANSFER_NO_DEVICE);
2832 	}
2833 }
2834